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Abstract—This paper analyzes a single-machine repairable
system comprising two unreliable servers and one repairman.
The machine can break down at any time, and the two
unreliable servers are responsible for servicing it. The two
servers can fail at any time, with different failure rates during
idle and busy periods. A reliable repairman is tasked with
repairing server failures. The time distributions are assumed
to follow an exponential distribution. Using quasi-birth-death
(QBD) process theory, the steady-state indices of the system
are derived. Case analyses and numerical illustrations are
provided to visualize the effects of system parameters on
performance indices.

Index Terms—machine repairable system, reliability,
availability, failure frequency

I. Introduction

THE machine repairable system is a complex
framework in which machines or equipment can break

down but can be restored to a functional state through
repair or maintenance actions. The study of machine
repairable systems is essential across various fields,
including manufacturing, industrial engineering, and
operations research. This study aids in understanding and
predicting machinery performance and reliability over time.
Key indices in a machine repairable system include
machine availability, server availability, and their respective
failure rates. Failure times for machines and unreliable
servers typically follow specific statistical patterns, such as
the exponential distribution. These time distribution
patterns are utilized to estimate the likelihood of failure
occurring within a specified time frame. Failure times can
also vary based on the operational state of the machine or
server, whether functional or non-functional. Additionally,
repair times can vary based on fault complexity and the
availability of servers for repair. Reduced repair times
enhance system availability and productivity. Effective
management of machine repairable systems entails
implementing preventive maintenance strategies to decrease
failure frequency, optimizing spare parts inventory to
minimize downtime, and training skilled repair personnel
for efficient, timely repairs. Consequently, the analysis and
design of machine repairable systems aim to maximize
system performance, minimize costs related to failures and
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repairs, and ensure smooth operation of equipment and
industrial processes .

Early literatures on repairable machine system are
presented in a survey article[1]. The machine repairable
system can be viewed as a queueing system with a finite
customer source, encompassing both multi-server and
single-server configurations. The single-server models are
explored in references [2], [3], [4], [5], [6], [7], [8].
Research on multi-server systems is addressed in references
[9], [10], [11], [12], [13], [14], [15], [16]. Chen et al.[17]
analyzed the system reliability of a retrial machine repair
system with warm standby units and a single repairman
under the N-policy, deriving the reliability function and
mean time to failure. Ke et al. [18] investigated a machine
repairable system with standbys, in which multiple servers
supervise the machines and implement a synchronous
vacation policy. In their research, most scholars focus on
steady-state characteristics, while some investigate
transient-state indices [14], [19]. Ke et al. [20] presented
optimization results as applications of their study.

In many real systems, it is common for machines to
break down, necessitating the use of servers or maintenance
equipment to address these failures. Machines are restored
to their original condition after service and can resume
operation. Furthermore, the servers responsible for
maintaining the machines may also experience failures.
When a server fails, a repairman will fix the faulty server,
returning it to like-new condition after repair. Some
researchers have examined models in which the server is
unreliable, assuming that the server’s failure rate is a
constant value[9], [13]. However, in many cases, system
parameters are not fixed due to varying working conditions
[7], making it reasonable to assume that the server failure
rate is variable in real systems. Yen et al.[21] studied the
reliability and sensitivity analysis of a retrial machine repair
problem involving working breakdowns under the F-policy.
The server was subject to breakdown only when at least
one machine in the system had failed, and it operated at a
slow rate during these breakdowns. Performance measures,
such as system reliability and mean time to system failure
(MTTF), were derived using the Laplace transform
technique. Meena et al. [22] studied a model in which the
server takes a vacation when there are no failed machines
in the system. The steady-state queue size distribution was
established, and the Laplace-Stieltjes transform, along with
recursive and supplementary variable approaches, was
employed to derive the mean queue length, machine
availability, system availability, and operational utilization.

In actual production, single-machine systems are
common. If a machine may break down, a server is needed
to service the breakdown. Furthermore, if the server is
unreliable, it makes sense to have more than one server in
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the system. Therefore, we consider a repairable system
with one machine, two unreliable servers, and one reliable
repairman. The machine may break down at any time and
will be serviced immediately if at least one server is
available; after service, the machine will continue to
operate. Furthermore, each server may fail at any time, and
the failure rate is variable, adapting to whether the server is
busy or not [8]. One reliable repairman is responsible for
repairing server failures.

II. Model description

The system consists of one repairable machine, two
unreliable servers, and one reliable repairman. The machine
performs the system’s function and may break down
according to an independent Poisson process with a rate of
λ. When the machine breaks down, it is immediately
serviced by a server if there is at least one server is
available; otherwise, the breakdown machine must wait till
one server is available after repairing. The service time for
the server attending to the breakdown machine follows an
exponential distribution with parameter µ. The servers may
fail at any time, with the time to failure following an
exponential distribution characterized by different failure
rates: ξ1 during server idle time and ξ2 during server busy
time. The first failed server will be repaired by the
repairman immediately. The repairman can repair only one
failed server at a time and completes the repair in one go;
the repair time follows an exponential distribution with a
repair rate of η. The breakdown machine and the failed
server will be as good as new after service and repair,
respectively. All time distributions are mutually
independent.

Let N(t) denote the number of operational machines and
S (t) denote the number of available servers at time t, then
{N(t), S (t)} is a QBD process, as the time distributions are
exponentially distributed. The system is in state (i, j) at
time t if N(t) = i and S (t) = j, the state space, arranged in
lexicographic order, is as follows:

Ω = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

We denote P{N(t) = i, S (t) = j} as Pi, j(t). Since the state
space is finite and irreducible, the steady-state probability
of the system state exists clearly[18]. We denote the steady-
state probability of the system being in state (i, j) as Pi, j.
Therefore, we have

Pi, j =

 lim
t→∞

P(i, j)(t), i = 0, 1, j = 0, 1, 2,

0, other.

Since all the time distributions are exponential and
mutually independent, the transitions of the system states
form a QBD process [23]. By applying QBD process
theory, we obtain the steady-state transition rate matrix Q̄
as follows[24]:

Q̄ =
[

A B
C D

]
,

where

A =

 −η η 0
ξ2 −ξ2 − η − µ η
0 ξ1 + ξ2 −ξ1 − ξ2 − µ

 ,

B =

 0 0 0
0 µ 0
0 0 µ

 , C =

 λ 0 0
0 λ 0
0 0 λ

 ,

D =

 −η − λ η 0
ξ1 −ξ1 − η − λ η
0 2ξ1 −2ξ1 − λ

 .
III. System analysis

A. Steady-state Probability of System State

The differential equations for the instantaneous state
probabilities are as follows:

P′0,0(t) = −ηP0,0(t) + λP1,0(t) + ξ2P0,1(t),

P′0,1(t) = ηP0,0(t) − (µ + ξ2 − η)P0,1(t)+
(ξ1 + ξ2)P0,2(t) + λP1,1(t),

P′0,2(t) = ξ2P0,1(t) − (η + ξ1 + ξ2)P0,2(t) + λP1,2(t),

P′1,0(t) = −(η + λ)P1,0(t) + ξ1P1,1(t),

P′1,1(t) = µP0,1(t) + ηP1,0(t)−
(η + λ + ξ1)P1,1(t) + 2ξ1P1,2(t),

P′1,2(t) = ηP1,1(t) − (λ + 2ξ1)P0,2(t) + µP0,2(t).
(1)

From Eq. (1), letting t → ∞ we obtain the following
steady-state probability equations:



−ηP0,0 + ξ2P0,1 + λP1,0 = 0,

ηP0,0 − (µ + ξ2 − η)P0,1 + (ξ1 + ξ2)P0,2 + λP1,1 = 0,

ηP0,1 − (µ + ξ1 + ξ2)P0,2 + λP1,2 = 0,

−(η + λ)P1,0 + ξ1P1,1 = 0,

µP0,1 + ηP1,0 − (η + λ + ξ1)P1,1 + 2ξ1P1,2 = 0,

µP0,2 + ηP1,1 − (λ + 2ξ1)P1,2 = 0,

P0,0 + P0,1 + P0,2 + P1,0 + P1,1 + P1,2 = 1.
(2)

Letting

Φ =2ξ31
[
ηλ + (η + λ) µ + λξ2

]
+

(η + λ)
{
η2 (λ + µ) (η + λ + µ)+

(η + λ) ξ2
[
η (λ + µ) + λξ2

] }
+

ξ21

{
4η2 (λ + µ) + λµ (λ + 2µ)+

η (3λ + µ) (λ + 2µ)+

ξ2
(
4ηλ + 3λ2 + 2ηµ + 4λµ + 2λξ2

) }
+

ξ1

{
η (λ + µ) [3η2 + 5ηλ + λ2 + 2 (η + λ) µ]+

ξ2[5ηλ (λ + µ) + η2 (3λ + 2µ)+

λ2 (λ + 3µ) + λ (2η + 3λ) ξ2]
}
,

then the steady-state probabilities of the system as the
solutions of Eq. (2) can be expressed as follows:
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P0,0 =λ
{
µξ21 (2η + λ + 2µ + 2ξ1)+

ξ1

[
(η + λ)2 + (2η + 3λ) µ+

ξ1 (2η + 3λ + 4µ + 2ξ1)
]
ξ2+[

(η + λ)2 + ξ1 (2η + 3λ + 2ξ1)
]
ξ22

}
Φ−1,

P0,1 =ηλ
{
ξ1

[
(η + λ) (η + λ + 2µ)+

ξ1 (2η + 3λ + 2µ + 2ξ1)
]
+[

(η + λ)2 + ξ1 (2η + 3λ + 2ξ1)
]
ξ2

}
Φ−1,

P0,2 = η
2λ
[

(η + λ) (η + λ + µ)+

ξ1 (2η + 3λ + 2ξ1)
]
Φ−1,

P1,0 = ηµξ1

[
ξ1 (2η + λ + 2µ + 2ξ1)+

(λ + 2ξ1) ξ2
]
Φ−1,

P1,1 = η (η + λ) µ
[
ξ1 (2η + λ + 2µ + 2ξ1)+

(λ + 2ξ1)ξ2
]
Φ−1,

P1,2 = η
2µ
[

(η + 2λ) ξ1+

(η + λ)(η + λ + µ + ξ2)
]
Φ−1.

B. Steady-state Indexes of System Performance

Utilizing the steady-state probabilities mentioned above,
we can derive the significant indices of the system as follows:

uThe steady-state availability of the machine is

AM = P1,0 + P1,1 + P1,2

= ηµ
{
η (η + λ) (η + λ + µ)+

ξ1

[
3η2 + 5ηλ + λ2 + 2 (η + λ) µ+

ξ1 (4η + 3λ + 2µ + 2ξ1)
]
+[

(η + λ)2 + ξ1 (2η + 3λ + 2ξ1)
]
ξ2

}
Φ−1,

uThe steady-state availability of the server is

AS = P0,1 + P0,2 + P1,1 + P1,2

= η
{

2λξ31 + ξ
2
1

(
4ηλ + 3λ2 + 2ηµ + 4λµ + 2λξ2

)
+

(η + λ) (λ + µ)
[
η (η + λ + µ) + (η + λ) ξ2

]
+

ξ1

{
(λ + µ)

[
3η2 + 5ηλ + λ2 + 2 (η + λ) µ

]
+[

λ (2η + 3λ) + 2 (η + λ) µ
]
ξ2

} }
Φ−1,

uThe steady-state probability of the repairman being busy
is

RB = 1 − P0,2 − P1,2

= 1 − η2
{

(η + λ) (λ + µ) (η + λ + µ)+

ξ1

[
η (2λ + µ) + λ (3λ + 2µ) + 2λξ1

]
+

(η + λ) µξ2
}
Φ−1,

uThe steady-state breakdown frequency of the machine is

BFM = λAM = λ(P1,0 + P1,1 + P1,2)

= ληµ
{
η (η + λ) (η + λ + µ)+

ξ1

[
3η2 + 5ηλ + λ2 + 2 (η + λ) µ+

ξ1 (4η + 3λ + 2µ + 2ξ1)
]
+[

(η + λ)2 + ξ1 (2η + 3λ + 2ξ1)
]
ξ2

}
Φ−1,

uThe steady-state failure frequency of the servers is

FFS = ξ2P0,1 + (ξ1 + ξ2)P0,2 + ξ1P1,1 + 2ξ1P1,2

=

{
η2λ
[

(η + λ) (η + λ + µ)+

ξ1 (2η + 3λ + 2ξ1)
]

(ξ1 + ξ2)+

η (η + λ) µξ1
[
ξ1 (2η + λ + 2µ + 2ξ1) + (λ + 2ξ1) ξ2

]
+

ηλξ2

[
ξ1

(
(η + λ) (η + λ + 2µ)+

ξ1 (2η + 3λ + 2µ + 2ξ1)
)
+(

(η + λ)2 + ξ1 (2η + 3λ + 2ξ1)
)
ξ2

]
+

2η2µξ1

[
(η + 2λ) ξ1 + (η + λ) (η + λ + µ + ξ2)

] }
Φ−1.

IV. Special cases

A special case is letting η → ∞ or ξ1 = ξ2 = 0, meaning
that the servers are always available. In this case, the steady-
state probabilities are as follows:

P0,0 = 0, P0,1 = 0, P0,2 =
λ

λ + µ
,

P1,0 = 0, P1,1 = 0, P1,2 =
µ

λ + µ
.

Then the steady-state availability of the machine is

AM = P1,0 + P1,1 + P1,2 =
µ

λ + µ
.

The steady-state availability of the server is

AS = P0,1 + P0,2 + P1,1 + P1,2 = 1.

The steady-state probability of the repairman being busy is

RB = 1 − P0,2 − P1,2 = 0.

The steady-state breakdown frequency of the machine is

BFM = λAM = λ(P1,0 + P1,1 + P1,2) =
λµ

λ + µ
.

The steady-state failure frequency of the servers is

FFS = ξ2P0,1 + (ξ1 + ξ2)P0,2 + ξ1P1,1 + 2ξ1P1,2 = 0.

These results are consistent with the corresponding results
in the reference [24].
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V. Numerical experiments

A. Numerical example

Letting λ = 1, µ = 1.5, ξ1 = 0.5, ξ2 = 1, η = 2, we obtain

P0,0 = 0.0902, P0,1 = 0.1507, P0,2 = 0.2132,

P1,0 = 0.0297, P1,1 = 0.1782, P1,2 = 0.3380.

Then the steady-state availability of the machine is

AM = P1,0 + P1,1 + P1,2 = 0.5459.

The steady-state availability of the server is

AS = P0,1 + P0,2 + P1,1 + P1,2 = 0.8801.

The steady-state probability of the repairman being busy is

RB = 1 − P0,2 − P1,2 = 0.4488.

The steady-state breakdown frequency of the machine is

BFM = λAM = λ(P1,0 + P1,1 + P1,2) = 05459.

The steady-state failure frequency of the servers is

FFS = ξ2P0,1 + (ξ1 + ξ2)P0,2 + ξ1P1,1 + 2ξ1P1,2 = 0.8976.

B. Parametric sensitivity

The purpose of this section is to examine the effects of
the parameters on the steady-state availability of the
machine(AM) and the steady-state availability of the
server(AS ).

In Fig. 1, we set ξ1 = 0.1, ξ2 = 0.2 and η = 0.8, and
calculate the steady-state availability of the machine(AM) by
varying the values of µ and λ. The results indicate that AM
decreases as λ increases and µ decreases, with the influence
of µ becoming significant as λ decreases. Furthermore, when
the values of µ and λ are relatively low, their mutual influence
is more pronounced, and AM = 1 when λ = 0, which is
intuitively clear.

In Fig. 2, we set ξ1 = 0.1, ξ2 = 0.2 and η = 0.8, and
calculate the steady-state availability of the servers(AS ) by
varying the values of µ and λ. The results indicate that AS
decreases as λ increases and µ decreases. Additionally, the
influence of µ becomes significant as λ decreases. Similarly,
the influence of λ becomes significant as µ decreases. Given
that the failure rate of the server is different between idle
and busy times, it is evident that µ and λ have a significant
impact on the steady-state availability of the server(AS ).

In Fig. 3, we set λ = 0.3, µ = 0.5 and η = 1.2, and
calculate the steady-state availability of the machine(AM)
by varying the values of ξ1 and ξ2. The results indicate that
AM decreases as ξ1 and ξ2 increase. Additionally, AM is
clearly less than 1 when ξ1 = 0 and ξ2 = 0. Given the
relatively high value of η, the influence of ξ1 and ξ2 is less
significant.

In Fig. 4, we set λ = 0.3, µ = 0.5 and η = 1.2, and calculate
the steady-state availability of the servers(AS ) by varying the
values of ξ1 and ξ2 . The results indicate that AS decreases
as ξ1 and ξ2 increase. Additionally, AS = 1 when ξ1 = 0 and
ξ2 = 0, which is intuitively clear.

In Fig. 5, we set ξ1 = 0.1, ξ2 = 0.2 and λ = 0.1, and
calculate the steady-state availability of the machine(AM)
by varying the values of µ and η. The results indicate that
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Fig. 1. The steady-state availability of the machine AM versus λ and
µ(ξ1 = 0.1, ξ2 = 0.2, η = 0.8).
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Fig. 2. The steady-state availability of the servers AS versus λ and µ(ξ1 =
0.1, ξ2 = 0.2, η = 0.8).
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Fig. 3. The steady-state availability of the machine AM versus ξ1 and
ξ2(λ = 0.3, µ = 0.5, η = 1.2).

AM decreases as η and µ decrease, and AM = 0 when
µ = 0 or η = 0. We also find that µ and η have a similar
significance for the steady-state availability of the
machine(AM), and when the values of µ and η are
relatively low, their mutual influence is more pronounced.

In Fig. 6, we set ξ1 = 0.1, ξ2 = 1 and λ = 0.1, and calculate
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Fig. 4. The steady-state availability of the servers AS versus ξ1 and ξ2(λ =
0.3, µ = 0.5, η = 1.2).
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Fig. 5. The steady-state availability of the servers AM versus µ and η(λ =
0.1, ξ1 = 0.1, ξ2 = 0.2).
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Fig. 6. The steady-state availability of the servers AS versus µ and η(λ =
0.1, ξ1 = 0.1, ξ2 = 1).

the steady-state availability of the servers(AS ) by varying the
values of µ and η . The results indicate that AS decreases as η
and µ decrease, and AS = 0 when η = 0, These observations
align with our intuitive expectations. We also find that µ and
η have a similar significance for the steady-state availability
of the servers(AS ).
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Fig. 7. The steady-state availability of the servers AM versus η and λ(ξ1 =
0.1, ξ2 = 0.2, µ = 1).
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Fig. 8. The steady-state availability of the servers AS versus η and λ(ξ1 =
0.1, ξ2 = 1, µ = 1).
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Fig. 9. The steady-state availability of the machine AM versus η and
ξ2(ξ1 = 0.1, λ = 0.1, µ = 0.2).

In Fig. 7, we set ξ1 = 0.1, ξ2 = 0.2 and µ = 1, and
calculate the steady-state availability of the machine(AM)
by varying the values of λ and η. The results indicate that
AM decreases as η decreases and λ increases, AM = 1
when λ = 0, and AM = 0 when η = 0. The figure
demonstrates that the combined influence of λ and η on the
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Fig. 10. The steady-state availability of the servers AS versus η and ξ2(ξ1 =
0.1, λ = 0.1, µ = 0.2).

steady-state availability of the machine(AM) is significant.

In Fig. 8, we set ξ1 = 0.1, ξ2 = 1 and µ = 1, and calculate
the steady-state availability of the servers(AS ) by varying
the values of λ and η. The results indicate that AS decreases
as η decreases and λ increases, and AS approaches 0 as η
approaches 0. The influence of η increases as the value of
λ decreases because ξ2 is larger than ξ1. Consequently, the
value of AS will significantly increase with decreasing of
λ. The figure demonstrates that the combined effect of λ
and η on the steady-state availability of the servers(AS ) is
substantial.

In Fig. 9, we set ξ1 = 0.1, λ = 0.1 and µ = 0.2. We then
calculate the steady-state availability of the machine(AM)
by varying the values of ξ2 and η. The results demonstrate
that AM decreases with η decreases as η decreases and ξ2
increases, reaching AM = 0 when η = 0. Our analysis
indicates that when both η and ξ2 are small, the system
indicator AM is more sensitive to variations in these
parameters. The figure illustrates that the combined
influence of ξ2 and η on the steady-state availability of the
machine(AM) is significant.

In Fig. 10, we set ξ1 = 0.1, λ = 0.1 and µ = 0.2, We then
calculate the steady-state availability of the server (AS ) by
varying the values of ξ2 and η. The results indicate that AS
decreases as η decreases and ξ2 increases, reaching AS = 0
when η = 0. Conversely, AS approaches 1 as η increases
and ξ2 decreases. Our analysis reveals that when both ξ2 and
η are small, the system indicator AS is more sensitive to
variations in these parameters. The figure illustrates that the
combined effect of ξ2 and η on the steady-state availability
of the servers(AS ) is significant.

We thoroughly analyze the previously mentioned
numerical experimental results and identify a general rule:
the changes in AM and AS show a positive correlation
under identical conditions, aligning with our intuition.
These numerical results illustrate the impacts and
functional roles of system parameters on key system
indicators. The experiments provide us with a robust
understanding of the operational principles of the system,
which are crucial for efficiently managing its operation.

VI. Conclusion

The model presented in this paper represents a common
system in practice. It assumes that the server is unreliable,
which is reasonable given that there are more servers than
machines, as well as more repairmen in the system. Future
work could involve analyzing a model with more machines
and repairmen in the system. Furthermore, optimization
design is a crucial aspect of the model. Cost-benefit
analysis could be a significant focus for future work on this
model.
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