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Abstract—This paper investigates a two-species amensalism
model with a wind-dependent refuge. In classical amensalism
models, the refuge (or cover) is typically treated as a fixed
parameter. However, in natural environments, the effectiveness
of the refuge may be influenced by environmental factors such
as wind. To more accurately reflect the dynamic behaviors in
natural settings, we introduce a wind-dependent refuge param-
eter k(w), assuming that the size of the refuge decreases as wind
speed increases. By analyzing the equilibrium points and their
stability, we explore the impact of wind speed on the coexistence
of the two species. Numerical simulations demonstrate that
increasing wind speed reduces the effectiveness of the refuge,
thereby affecting the coexistence state of the species. This
study provides new insights into the influence of environmental
factors on ecosystems and offers theoretical support for the
conservation of endangered species.

Index Terms—Amensalism model, refuge, wind speed, stabil-
ity analysis, numerical simulation

I. INTRODUCTION

In ecology, amensalism represents an asymmetric inter-
action between two species, where one species is negatively
affected while the other remains unaffected. This relationship
is prevalent in natural ecosystems, exemplified by certain
plants releasing allelochemicals that inhibit the growth of
neighboring plants without affecting themselves [1]. Such
interactions play a crucial role in shaping community struc-
ture and ecosystem dynamics. Over the past few decades,
the study of amensalism has gained significant attention,
resulting in a wealth of findings across continuous [2]-[25],
discrete [26]-[36], and hybrid modeling frameworks. Key
advances include investigations into functional responses [3],
Allee effects [3], [7], refuge dynamics [15], [17], [33], fear
effect [32], delay[8] and human harvesting impacts [6], [9],
[30].

A refuge—a protected area that reduces a species’ ex-
posure to predation or competition—is a critical factor in
regulating species dynamics. In classical ecological models,
the refuge is often treated as a static parameter, assuming its
effectiveness remains constant over time [17]. However, in
natural environments, the effectiveness of refuges is highly
dynamic and can be influenced by various environmental fac-
tors, such as wind, temperature, and humidity [43]. Among
these, wind is a particularly pervasive factor that not only
affects vegetation structure and distribution but also alters
microclimate conditions within refuges, indirectly impacting
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species survival and reproduction [44] -[49]. Recently, some
scholars [37]-[57] have started attempting to study the impact
of wind on the dynamic behavior of predator-prey systems
using mathematical modeling.

Wind, as a significant environmental factor, influences
refuge effectiveness through multiple mechanisms:

(1) Changes in vegetation structure: Strong winds can
cause physical damage to vegetation, such as breaking
branches or uprooting plants, leading to a reduction in veg-
etation density and coverage [45]. This directly diminishes
the effectiveness of refuges, as species are more exposed to
predation or competition.

(2) Alteration of microclimate conditions: Wind can also
modify microclimate conditions within refuges, such as tem-
perature and humidity. For instance, increased wind speed
can lower temperatures within the refuge, which may ad-
versely affect ectothermic species like insects and reptiles
[43]. Additionally, wind can accelerate evaporation, reducing
humidity levels and impacting species that rely on moist
environments for survival and reproduction.

(3) Behavioral responses of species: Wind can influence
the behavior of species, particularly their foraging and re-
productive activities. For example, strong winds may hinder
the flight of insects, affecting their ability to find food or
mates. Similarly, wind can alter the dispersal of seeds or
pollen, impacting plant reproduction and the availability of
resources for other species.

(4) Interaction with other environmental factors: Wind
often interacts with other environmental factors, such as
temperature and precipitation, to further influence refuge
effectiveness. For example, in hot climates, strong winds can
exacerbate water loss through evaporation, leading to drier
conditions within the refuge. Conversely, in cooler climates,
wind may lower temperatures, creating harsher conditions
for species that are sensitive to cold.

A rather interesting observation is that, to the author’s
knowledge, no scholar has yet explored the impact of wind
on refuge from a mathematical modeling perspective. To
address the dynamic nature of refuge effectiveness, we
propose a two-species amensalism model that incorporates a
wind-dependent refuge parameter, k(w), which decreases
with increasing wind speed. This approach allows us to more
accurately reflect the dynamic behaviors of species in natural
environments, where wind speed can vary significantly over
time and space. By analyzing the equilibrium points and
their stability, we aim to explore how wind speed affects
the coexistence of two species in an amensalistic relation-
ship. Our numerical simulations demonstrate that increasing
wind speed reduces the effectiveness of the refuge, thereby
influencing the coexistence state of the species.

This study contributes to the growing body of literature on
the impact of environmental factors on ecosystem dynamics.
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By extending the classical amensalism model to include
wind-dependent refuge effects, we provide new insights into
how environmental variability can regulate species interac-
tions. Our findings have important implications for the con-
servation of endangered species, particularly in wind-prone
regions where refuge effectiveness may be compromised. For
more works on amensalism species, one could refer to [2]-
[36] and the references therein. For more works on wind
effect, one could refer to [37]-[57].

II. MODEL CONSTRUCTION

A. Ecological background

In ecosystems, amensalism is a common interspecific
relationship where one species is negatively affected while
the other remains unaffected. A classic example is the
release of allelochemicals by certain plants, which inhibit the
growth of neighboring plants without affecting themselves
[1]. Refuges (or covers) play a crucial role in regulating
species dynamics by providing protection against predation
or competition [42]. However, in natural environments, the
effectiveness of refuges is not static but can be influenced
by various environmental factors, particularly wind [43].

Wind is a pervasive environmental factor that affects
vegetation structure, microclimate conditions, and species be-
havior [44]. For example, strong winds can reduce the density
of vegetation cover, thereby diminishing the effectiveness of
refuges [45]. This dynamic interaction between wind and
refuge effectiveness has significant implications for species
survival and coexistence, yet it has been largely overlooked
in classical ecological models.

B. Model dynamic equations

In the classical two-species amensalism model[17], the
refuge is typically treated as a fixed parameter k, representing
the size or effectiveness of the refuge. However, to more
realistically reflect dynamic behaviors in natural environ-
ments, we introduce a wind-dependent refuge parameter
k(w), where w denotes wind speed. Assuming the refuge
size decreases with increasing wind speed, the specific form
is given by:

k(w) = k0e
−αw,

where:
• k0 (0 < k0 < 1) is the refuge size in windless

conditions,
• α is a positive parameter indicating the strength of wind

speed’s impact on the refuge.
Now let’s consider the following example: take k0 = 0.5
and consider k(w) = 0.5e−αw, Fig.1 shows that with the
increasing of α, k(w) approaches zero more rapidly, conse-
quently, Correspondingly, the role of the shelter diminishes
more rapidly.

The model is described by the following system of differ-
ential equations:

dx
dt = a1x(t)− b1x

2(t)− c1(1− k(w))x(t)y(t),

dy
dt = a2y(t)− b2y

2(t),
(1)

where:

• x(t) and y(t) represent the population densities of
species x and y at time t, respectively,

• a1 and a2 are the intrinsic growth rates of species x and
y, respectively,

• b1 and b2 are the intraspecific competition coefficients
of species x and y, respectively,

• c1 is the negative impact coefficient of species y on
species x,

• k(w) = k0e
−αw is the wind-dependent refuge parame-

ter, representing the effect of wind speed w on the size
of the refuge.

The refuge parameter k(w) is modeled as an exponential
decay function of wind speed w, where k0 is the maximum
refuge effectiveness (at zero wind speed) and α is a decay
constant that determines how rapidly the refuge effectiveness
decreases with increasing wind speed. This functional form
is supported by empirical studies showing that wind can
significantly reduce vegetation cover and alter microclimate
conditions [44], [45].

C. Justification of model assumptions

The assumption that refuge effectiveness decreases with
wind speed is based on empirical evidence. For instance,
studies have shown that wind can cause physical damage to
vegetation, reducing its density and coverage [44]. Addition-
ally, wind can alter microclimate conditions within refuges,
such as temperature and humidity, further impacting their
effectiveness [43]. The exponential decay function k(w) =
k0e

−αw is chosen to reflect the nonlinear relationship be-
tween wind speed and refuge effectiveness, as observed in
field studies [45].

It must be pointed out that many biologists have already
observed the effects of wind on predator-prey populations, as
discussed in the review literature[50]. In recent years, several
researchers[51]-[57] have used mathematical modeling to
explore the impact of wind speed on the dynamical behavior
of predator-prey systems. However, to date, no scholar has
considered the influence of wind on the dynamical behavior
of an amensalism population model.

III. LOCAL STABILITY ANALYSIS OF EQUILIBRIUM
POINTS

In this section, we analyze the equilibrium points of the
model and determine their local stability by computing the
eigenvalues of the Jacobian matrix.

A. Equilibrium Points

The equilibrium points are the steady-state solutions of
the system, satisfying dx

dt = 0 and dy
dt = 0. We solve the

following system of equations:

a1x− b1x
2 − c1(1− k(w))xy = 0,

a2y − b2y
2 = 0.

(2)

By solving the above system, we obtain the following
equilibrium points:

• E0(0, 0): - This is the trivial equilibrium point, repre-
senting the extinction of both species.

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 2885-2895

 
______________________________________________________________________________________ 



• E1

(
a1

b1
, 0
)

: - This is the equilibrium point where only
species x exists, representing the extinction of species
y.

• E2

(
0, a2

b2

)
: - This is the equilibrium point where only

species y exists, representing the extinction of species
x.

• E3(x
∗, y∗): - This is the coexistence equilibrium point,

where:

x∗ =
a1b2 − a2c1(1− k(w))

b1b2
, y∗ =

a2
b2

.

The condition for the existence of this equilibrium point
is a1b2 > a2c1(1− k(w)).

Concerned with the local stability property of the above four
equilibria, we have

Theorem 3.1. E0(0, 0) and E1(
a1

b1
, 0) are unstable; If

a1b2 < a2c1(1 − k(w)), then E2(0,
a2

b2
) is stable and if

a1b2 > a2c1(1 − k(w)), then E2(0,
a2

b2
) is unstable; If

a1b2 > a2c1(1− k(w)) hold, E3(x
∗, y∗) is stable.

Proof. To analyze the local stability of the equilibrium points,
we compute the Jacobian matrix of the system. The Jacobian
matrix J(x, y) is defined as:

J(x, y) =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
,

where f(x, y) = a1x−b1x
2−c1(1−k(w))xy and g(x, y) =

a2y − b2y
2. Thus, the Jacobian matrix is:

J(x, y) =

(
A −c1(1− k(w))x
0 a2 − 2b2y

)
.

where

A(x, y) = a1 − 2b1x− c1(1− k(w))y.

We analyze the local stability of each equilibrium point.
• Equilibrium point E0(0, 0):

The Jacobian matrix is:

J(0, 0) =

(
a1 0
0 a2

)
.

The eigenvalues are λ1 = a1 and λ2 = a2, both of
which are positive. Therefore, E0(0, 0) is an unstable
equilibrium point.

• Equilibrium point E1

(
a1

b1
, 0
)

:
The Jacobian matrix is:

J

(
a1
b1

, 0

)
=

(
−a1 − c1(1−k(w))a1

b1
0 a2

)
.

The eigenvalues are λ1 = −a1 and λ2 = a2, where
λ2 > 0. Therefore, E1

(
a1

b1
, 0
)

is an unstable equilib-
rium point.

• Equilibrium point E2

(
0, a2

b2

)
:

The Jacobian matrix is:

J

(
0,

a2
b2

)
=

(
a1 − c1(1−k(w))a2

b2
0

0 −a2

)
.

The eigenvalues are λ1 = a1 − c1(1−k(w))a2

b2
and

λ2 = −a2. If a1 < c1(1−k(w))a2

b2
, which is equivalent

to a1b2 < a2c1(1 − k(w)), then λ1 < 0, and E2 is

locally stable. If a1 > c1(1−k(w))a2

b2
, which is equivalent

to a1b2 > a2c1(1 − k(w)), then λ1 > 0, and E2 is
unstable.

• Equilibrium point E3(x
∗, y∗):

The Jacobian matrix is:

J(x∗, y∗) =

(
A(x∗, y∗) −c1(1− k(w))x∗

0 a2 − 2b2y
∗

)
.

where

A(x∗, y∗) = a1 − 2b1x
∗ − c1(1− k(w))y∗.

Noting that x∗ = a1b2−a2c1(1−k(w))
b1b2

and y∗ = a2

b2
, we

can finally obtain:

J(x∗, y∗)

=

(
−a1b2−a2c1(1−k(w))

b2
B

0 −a2

)
.

(3)

where

B = −c1(1− k(w))(a1b2 − a2c1(1− k(w)))

b1b2
.

The eigenvalues are λ1 = −a1b2−a2c1(1−k(w))
b2

and λ2 =
−a2. Since a1b2 > a2c1(1−k(w)) (the condition for the
existence of the equilibrium point), λ1 < 0 and λ2 <
0. Therefore, E3(x

∗, y∗) is a locally stable equilibrium
point.

Remark 3.1. Biological interpretation of Theorem 2.1:

Stability of boundary equilibrium E2(0,
a2

b2
)

• If a1b2 < a2c1(1− k(w)), E2 is stable, indicating that:
– Species x goes extinct due to the wind-induced

decline in refuge effectiveness (k(w))
– Species y reaches its carrying capacity a2

b2

• Ecological implication: Strong wind compromises the
refuge, leading to the exclusion of species x via amen-
salism..

Stability of coexistence equilibrium E3(x
∗, y∗)

• If a1b2 > a2c1(1− k(w)), E3 is stable, implying that:
– The net growth rate of species x (a1) overcomes

the negative effect from species y (scaled by c1
and refuge loss 1− k(w))

– Both species coexist at densities (x∗, y∗)

• Ecological implication: Under low wind speeds, refuge
effectiveness (k(w)) remains sufficient to mediate niche
partitioning, enabling coexistence.

IV. GLOBAL STABILITY ANALYSIS OF EQUILIBRIUM
POINTS

In this section, we investigate the global stability of the
equilibrium points. Global stability implies that the solutions
of the system converge to a specific equilibrium point regard-
less of the initial conditions. We analyze the global stability
using Lyapunov functions and the Dulac criterion. First of
all, we have the following result.

Lemma 4.1 System

dy

dt
= a2y(t)− b2y

2(t), (4)

has a unique globally attractive positive equilibrium y∗ =
a2

b2
.
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A. Global Stability of Boundary Equilibrium E2(0,
a2

b2
)

When a1b2 < a2c1(1 − k(w)), the boundary equilibrium
E2(0,

a2

b2
) is locally stable. We will show that indeed it is

globally stable.

Theorem 4.1.If a1b2 < a2c1(1 − k(w)) hold, then
E2(0,

a2

b2
) is globally stable.

Proof. a1b2 < a2c1(1− k(w)) is equivalent to

a1 − c1(1− k(w))
a2
b2

< 0.

Hence, one could choose ε > 0 small enough such that

a1 − c1(1− k(w))(
a2
b2

− ε) < 0 (5)

holds. For this ε, it follows from Lemma 4.1 that there exists
a T > 0, such that every positive solution y(t) of (1) satisfies

a2
b2

− ε < y(t) <
a2
b2

+ ε. (6)

Now let us consider the following Lyapunov function:

V (x, y) = x+ y − y∗ − y∗ ln
y

y∗
,

where y∗ = a2

b2
. This function attains its minimum value

V (0, y∗) = 0 at E2(0, y
∗).

The derivative of V (x, y) along the system trajectories is:

dV

dt
=

∂V

∂x

dx

dt
+

∂V

∂y

dy

dt
.

Substituting the system dynamics:

dV
dt = (a1x− b1x

2 − c1(1− k(w))xy)

+
(
1− y∗

y

)
· (a2y − b2y

2).
(7)

Simplifying, we obtain:

dV

dt
= −b1x

2 + (a1 − c1(1− k(w))y)x− b2
y
(y − y∗)2.

Since k(w) < 1− a1b2
a2c1

, we have a1−c1(1−k(w))y∗ < 0.
For t > T ,

a1 − c1(1− k(w))(
a2
b2

− ε) < 0 (8)

holds. Thus:

dV

dt
≤ −b1x

2+(a1−c1(1−k(w))(y∗−ε))x− b2
y
(y−y∗)2.

Since a1 − c1(1 − k(w))(y∗ − ε) < 0, it follows that
dV
dt < 0 for all x > 0 and y > 0, except at x = 0 and
y = y∗. By the Lyapunov stability theorem, the boundary
equilibrium E2(0,

a2

b2
) is globally stable.

This ends the proof of Theorem 4.1.

B. Global stability of coexistence equilibrium E3(x
∗, y∗)

When a1b2 > a2c1(1−k(w)), the coexistence equilibrium
E3(x

∗, y∗) is locally stable. Concerned with the global
stability of E3, we have the following result.

Theorem 4.2. If a1b2 > a2c1(1 − k(w)) hold, then
E3

(
x∗, y∗

)
is globally stable.

Proof. Firstly we proof that every solution of system (1) that
starts in R2

+ is uniformly bounded. From the first equation
of (1) one has

dx

dt
≤ a1x− b1x

2. (9)

By using the differential inequality, we obtain

lim sup
t→+∞

x(t) ≤ a1
b1

. (10)

From (6) and (10), there exists a ε > 0 such that for all
t > T

x(t) <
a1
b2

+ ε, y(t) <
a2
b2

+ ε. (11)

Let B = {(x, y)| ∈ R2
+ : x < a1

b2
+ ε, y < a2

b2
+ ε.}.

Then every solution of system (1) starts in R2
+ is uniformly

bounded on B. Also, from Theorem 3.1 there is an unique
local stable positive equilibrium E3(x

∗, y∗). The Dulac cri-
terion states that if there exists a continuously differentiable
function B(x, y) in a region D such that:

∂(BP )

∂x
+

∂(BQ)

∂y
< 0,

where

P (x, y) = a1x− b1x
2 − c1(1− k(w))xy

and
Q(x, y) = a2y − b2y

2,

then the system has no periodic solutions in D, and all
trajectories converge to an equilibrium point.

We choose B(x, y) =
1

xy
. Then:

∂(BP )

∂x
+

∂(BQ)

∂y

=
∂

∂x

(
a1 − b1x− c1(1− k(w))y

y

)
+

∂

∂y

(
a2 − b2y

x

)
.

(12)

After computation, we obtain:

∂(BP )

∂x
+

∂(BQ)

∂y
= −b1

y
− b2

x
< 0.

Since ∂(BP )
∂x + ∂(BQ)

∂y < 0 for all x > 0 and y > 0, by the
Dulac criterion, the system has no periodic solutions in the
first quadrant, and all trajectories converge to an equilibrium
point. Since the coexistence equilibrium E3(x

∗, y∗) is locally
stable and there are no periodic solutions in the first quadrant,
E3(x

∗, y∗) is globally stable.
The proof of Theorem 4.2 is finished.

Remark 4.1
Through the above analysis, we conclude the following:
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• When k(w) < 1 − a1b2
a2c1

, the boundary equilibrium
E2(0,

a2

b2
) is globally stable.

• When k(w) > 1 − a1b2
a2c1

, the coexistence equilibrium
E3(x

∗, y∗) is globally stable.

V. NUMERIC SIMULATIONS

In this section, numerical simulations are carried out to
verify the feasibility of the results we have obtained.

Example 5.1.
Set the following parameters:

a1 = 1, b1 = 0.5, c1 = 2,
a2 = 2, b2 = 1, k0 = 0.5, α = 0.1, w = 10.

(13)

The wind-dependent refuge parameter is calculated as:

k(w) = k0e
−αw = 0.5 · e−1 ≈ 0.1839.

In this case, one has:

a1b2 = 1 < a2c1(1− k(w)) ≈ 2 · 2 · (1− 0.1839) ≈ 3.264.

That is, the condition of Theorem 3.1 is satisfied, it follows
from Theorem 3.1 that the boundary equilibrium (0, 2) is
globally asymptotically stable. Fig.2 and 3 also support this
assertion.

Through numerical simulations covering multiple sets of
initial conditions, all trajectories converge to the boundary
equilibrium point E2(0, 2).

This indicates that under the wind-related shelter effect,
species x will eventually go extinct, and species y stabilizes
at its carrying capacity y∗ = b2

a2
.

Example 5.2.
Set the following parameters:

a1 = 3, b1 = 0.5, c1 = 1, a2 = 2,
b2 = 1, k0 = 0.5, α = 0.1, w = 5.

(14)

The wind-dependent refuge parameter k(w) is calculated
as:

k(w) = k0e
−αw = 0.5 · e−0.1·5 ≈ 0.3033.

Then

a1b2 = 3 · 1 = 3,

a2c1(1− k(w)) = 2 · 1 · (1− 0.3033) ≈ 1.3934.

Since 3 > 1.3934, the condition a1b2 > a2c1(1 − k(w))
is satisfied, the condition of Theorem 4.2 is satisfied, and
the coexistence equilibrium E3(x

∗, y∗) = (3.2132, 2) is
globally stable. Fig.3 and 4 also support this assertion.

Indeed, Fig.4 shows that all trajectories from different
initial conditions converge to the coexistence equilibrium
E3(x

∗, y∗). Fig.5 shows that the population densities x(t)
and y(t) stabilize over time, confirming the global stability
of E3(x

∗, y∗).

Example 5.3.
Set the following parameters:

a1 = 3, b1 = 0.5, c1 = 1, a2 = 2,
b2 = 1, k0 = 0.5, α = 0.1.

(15)

Now let’s vary w, to observe the influence of wind effect,
from Fig.6 one could see that with the increasing of wind,
the density of the first species decreasing.

Example 5.4.
Set the following parameters:

a1 = 3, b1 = 0.5, c1 = 1, a2 = 2,
b2 = 1, k0 = 0.5, w = 2.

(16)

Now let’s vary α, to observe the influence of parameter
α, from Fig.7 one could see that with the increasing of α,
the density of the first species decreasing.

VI. CONCLUSION AND DISCUSSION

A. Summary of findings

This study investigates a two-species amensalism model
with a wind-dependent refuge by introducing the refuge
parameter k(w) = k0e

−αw. The main findings are as follows:
1) When k(w) < 1 − a1b2

a2c1
, the boundary equilibrium

E2(0,
a2

b2
) is globally stable, leading to the extinction

of species x.
2) When k(w) > 1 − a1b2

a2c1
, the coexistence equilibrium

E3(x
∗, y∗) is globally stable, allowing both species x

and y to coexist.
3) Increasing wind speed reduces the effectiveness of the

refuge, thereby influencing the coexistence state of the
species.

B. Ecological implications

Wind speed not only affects the physical structure of
refuges but may also indirectly impact species survival
and reproduction by altering microclimate conditions (e.g.,
temperature, humidity). The findings demonstrate that wind
speed plays a significant role in regulating species coex-
istence by influencing refuge effectiveness. This provides
new insights into how environmental factors shape ecosystem
dynamics.

C. Limitations of the model

1) The model assumes a linear relationship between wind
speed and refuge effectiveness (k(w) = k0e

−αw).
However, in real ecosystems, this relationship may be
nonlinear. Future studies could consider more complex
functional forms, such as piecewise or sigmoid func-
tions.

2) The model only considers amensalism between two
species and does not account for other interspecific
relationships (e.g., competition, mutualism). Future
research could extend the model to include multiple
species and complex interactions.

D. Conservation and management implications

1) In regions with high wind speeds, planting wind-
resistant vegetation or constructing windbreaks could
mitigate the destructive effects of wind on refuges,
thereby protecting endangered species.

2) In ecological restoration projects, the impact of wind
on refuge effectiveness should be considered, and
vegetation cover and microclimate conditions should
be designed to enhance species survival.
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E. Future research directions

1) Investigate the combined effects of wind speed and
other environmental factors (e.g., temperature, humid-
ity) on refuge effectiveness and species dynamics.

2) Extend the model to include multiple species and com-
plex interspecific relationships, exploring how wind
speed influences ecosystem stability.

3) Validate the model predictions through field experi-
ments or laboratory simulations and refine the model
parameters accordingly.

F. Conclusion

By introducing a wind-dependent refuge parameter, this
study reveals how wind speed regulates species coexistence
by influencing refuge effectiveness. The findings provide new
theoretical insights into the impact of environmental factors
on ecosystems and offer practical guidance for ecological
conservation and management.
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Fig. 1. Refuge effectiveness vs. wind speed for different alpha values.
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Fig. 2. Phase diagram:The trajectories under different initial conditions all converge to E2(0, 2).

Fig. 3. Time series: The species x(t) goes extinct, and the species y(t) approaches y∗ = 2.
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Fig. 4. Phase diagram:The trajectories under different initial conditions all converge to E3(x∗, y∗) = (3.2132, 2).

Fig. 5. Time series: The species x(t) approaches x∗ = 3.2132, and the species y(t) approaches y∗ = 2.
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Fig. 6. x(t) decreasing with the increasing of w.

Fig. 7. x(t) decreasing with the increasing of α.
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