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Abstract—In the rolling process of hot-rolled strip steel,

variations in mill operating conditions and process parameters
may induce multiple surface defects on the produced strip steel.
Product quality is seriously affected by strip defects, which have
apparent similarities, and defect detection leads to poor
accuracy. This study proposes a hybrid feature fusion approach
integrated with a probabilistic neural network (PNN) to
enhance computational efficiency and recognition accuracy in
hot-rolled strip steel surface defect detection. Firstly, a
comprehensive image processing method and an improved
Multi-Scale Retinex (MSR) algorithm are used to construct a
defect recognition system and process image enhancement. The
block adaptive threshold method quickly identifies the
suspected defect target in the enhanced image, allowing for
precise location and segmentation of the defect area. The gray
co-occurrence matrix and maximum entropy method are
adopted, and the combined features are extracted from the
defect region as the classification and discrimination
parameters. Defects are classified by Logistic particle swarm
optimization-based probabilistic neural network (LPSO-PNN).
The existing classification algorithm and experimental results
are verified. The verification results show that hot-rolled strip
steel surface defects are extracted based on combination
features, then a probabilistic neural network has been employed
for detection and recognition, and the accuracy rate reached
99.57%.

Index Terms—improved MSR algorithm, combination
features, probabilistic neural network, strip steel defect
detection, particle swarm optimization.

I. INTRODUCTION
N the complex hot rolled strip steel production process,
affected by equipment and technological conditions, there
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are inevitably different kinds of defects on the strip surface.
Based on causative factors and morphological

characteristics, surface defects in steel plates are primarily
categorized into five defects: scratches, inclusions, patches,
scabs, and surface pits. These imperfections pose significant
challenges for manual detection due to their dimensional
variability combined with visually indistinct features or
undetectable attributes [1][2][3][4]. As surface defects not
only significantly compromise the steel's structural integrity
but also detrimentally affect its fatigue resistance and wear
characteristics [5][6], computer vision-based detection
systems [7][8][9] have been developed to address these
critical quality issues. These advanced systems employ a
multi-stage analytical approach involving image
enhancement [10], precise segmentation, and discriminative
feature extraction, enabling reliable defect identification and
classification that effectively mitigates quality risks in strip
steel production.
Computer vision-based detection systems remain

susceptible to performance degradation caused by
non-uniform illumination in industrial environments. Even
with stringently controlled lighting conditions, persistent
interference persists due to the intrinsic limitations of
ambient light modulation in steel surface inspection. Current
preprocessing methodologies can partially mitigate these
photometric distortions, thereby enhancing image fidelity.
Advanced computational enhancement techniques enable
amplification of inter-class feature discriminability,
suppression of non-essential image components, and
optimization of signal-to-noise ratio. This tripartite approach
not only elevates the information entropy of visual data but
also significantly reduces misclassification rates in
downstream defect detection and categorization processes
[11]. The conventional multi-scale retinex (MSR) algorithm
employs multi-scale filtering operations to compute
reflectance components for image enhancement. However,
its manual weight assignment mechanism introduces
operator-dependent bias that compromises algorithmic
consistency. To address this limitation, we propose an
entropy-optimized adaptive MSR algorithm that
automatically determines optimal weighting coefficients
through quantitative analysis of information entropy
distribution across scale spaces. This innovation establishes a
robust preprocessing foundation for subsequent defect image
segmentation and discriminative feature extraction [12].
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In contrast to traditional edge detection methods, the
dynamic threshold segmentation approach [13] demonstrates
superior performance in identifying irregularly shaped
defects within preprocessed industrial images. While the
local adaptive threshold method demonstrates superior
segmentation performance under complex illumination by
utilizing grayscale statistical features (including mean
intensity, median value, standard deviation, and interquartile
range) within pixel neighborhoods to determine dynamic
thresholds, it presents three principal limitations high
computational complexity, slow processing speed, and
sensitivity to parameter selection [14]. Addressing these
constraints, Truong and Kim [15] developed an
entropy-weighted Otsu segmentation framework that
autonomously detects micro-defect regions through
entropy-based probability distribution optimization,
significantly improving detection accuracy.
This study proposes a novel block adaptive thresholding

with a singularity density analysis framework that achieves
rapid identification of potential defect targets through
localized threshold adaptation. The proposed methodology
enables enhanced segmentation precision through multi-scale
singularity quantification and optimized defect boundary
delineation via adaptive block-wise parameter optimization.
Furthermore, the developed system addresses the critical
challenge in steel surface inspection, efficient extraction, and
reliable classification of defect signatures from high-volume
industrial image datasets. Following defect segmentation, our
methodology employs a dual-feature extraction approach that
integrates morphological characteristics with textural
patterns for comprehensive defect classification. The feature
engineering process comprises two principal components: (1)
textural quantification through gray-level co-occurrence
matrix (GLCM) analyses [16][17], extracting five
discriminative parameters: energy (En), contrast (Co),
correlation (Cl), entropy (Et), and inverse difference moment
(Idm) [18]; (2) morphological characterization involving
geometric descriptors derived from maximum-entropy
threshold segmentation [19], including area ratio (Ar) and
aspect ratio (As), and the extracted combined features were
classified by deep learning technology.
The remarkable progress in computational capabilities [20]

coupled with the curation of large-scale industrial datasets
has driven transformative advancements in deep
learning-based classification systems, achieving
unprecedented performance benchmarks [21][22].
Demonstrating this technological evolution, Liu et al. [23]
implemented a probabilistic neural network (PNN)
architecture for multi-scale entropy feature extraction from
biological tissue ultrasonic echo signals. Their comparative
analysis revealed two distinct advantages of PNN over
conventional methods: accelerated training convergence and
superior recognition accuracy. Crucially, the classification
fidelity of PNN models exhibits strong dependence on the
smoothing factor parameter σ , a critical hyperparameter
governing probability density estimation that requires careful
calibration through optimization techniques [24].
However, conventional particle swarm optimization (PSO)

algorithms exhibit three fundamental limitations: suboptimal
convergence rates, solution instability, and premature
convergence to local optima, which collectively compromise

defect recognition accuracy [25][26]. To address these
critical challenges, we propose an enhanced PSO framework
that integrates adaptive inertia weight and dynamic
neighborhood strategies.
This study develops an optimized (MSR) framework

integrating multi-scale guided filtering and adaptive weight
allocation, which achieves enhanced image quality while
significantly improving machine vision system robustness
under varying illumination scenarios. Then, the BAT-SDA
method is used to quickly identify the suspected defect target.
The images with defects are selected from the mass surface
images of hot-rolled strip, and the suspected defect area is
clipped. The grey scale covariance matrix and maximum
entropy value method extracted the defective region's texture
features and shape features. The extracted feature
combination served as discriminative parameters and was
subsequently fed into the LPSO-PNN defect classification
model. The particle swarm was updated and optimized by
using a nonlinear decreasing inertia weight coefficient and a
Logistic chaotic map. The global particle traversal
optimization capability is strengthened. Finally, the steel
surface defect category is outputted by PNN. The proposed
methodology significantly enhances defect detection
accuracy, demonstrating industrial applicability for
automated strip surface inspection systems.

II. DEFECT IMAGE PROCESSING AND FEATURE EXTRACTION

In this study, a strip surface defect inspection system was
established for the hot-rolled 2150 production line. The
system configuration utilizes a vertically mounted
WP-UT030 CCD industrial camera positioned perpendicular
to the steel plate surface, complemented by an overhead
coaxial illumination unit. Coaxial light source
WP-CO250260 is used as the external light source with 33W
power. It is suitable for the detection of five types of defects
on the strip steel surface.

Fig. 1 demonstrates the MSR algorithm to enhance the
defective features in the captured steel bar image, then the
suspected defect area of the image is detected, the image is
segmented, the image correlation, contrast, energy, entropy,
inverse different moment and other parameters of the image
are extracted, and the Ar, As and roundness (Ro) of the target
are extracted. Texture and shape features demonstrating
strong discriminative power were designated as classification
parameters. Finally, the LPSO-PNN classification model was
built, six features of Co, En, Idm, Ar, As, and Ro were input,

Fig. 1. Strip steel surface defect classification process
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and the defects on the steel surface were output.

A. Image Enhancement Processing
In high-speed hot-rolled strip steel production

environments with variable illumination, maintaining stable
image quality is challenging. However, applying advanced
image preprocessing techniques can effectively mitigate the
impact of ambient illumination on visual data acquisition.
When dealing with images, traditional MSR algorithms
[27][28] will lose the image structure information and
damage the image edges. Therefore, we adopted the
multi-scale guide filtering and adaptive weighting. We
employed guided filtering in place of Gaussian filtering, and
subsequently used image information entropy features to
automatically determine the adaptive weight. Specific values
were assigned based on information entropy, adapting to
variations across different images. The process is detailed
below.
We set guided filters of different scales as the

center-surround function, used the input image as the guided
image, and calculated the retinex enhancement results of
different scales:

��
∧ �, � = �� �� �, � − �� �� �, � ∗�� �, � (1)

* is the convolution, n is the scale, �� �, � is the original
image, �� �, � is the guided filter, and �� �, � ∗�� �, � is
the illumination component.
The spatial characteristics of grayscale distribution are

represented by the neighborhood mean value within the
image. The ratio of the feature binary group �, � is
composed of it and the gray value of an image pixel:

��� = � �,�
�

(2)
� �, � is the frequency. �, � denotes pixel intensity and

the neighborhood mean intensity (0≤i, j≤255), and � is the
total pixel count of the image.
The spatial entropy of a discrete image is defined as:

� =− �=0
255

�=0
255 ����� ������ (3)

The weight calculation formula of each scale image:
�� = ��

�=1
� ���

(4)

�� is the 2D information entropy and � denotes scale total.
The enhancement results of different scales were weighted
and averaged:

�∧ �, � = �=1
� ��� ��

∧ �, � (5)
The reflected component � �, � is obtained by quantizing

�∧ �, � :
� �, � = ���(��

∧ �, � ) (6)
Fig. 2(a) and (b) show the types of defects for scratches

and inclusions, respectively. As can be seen from the
comparison, Fig. 2(b) shows the edge of the target more
clearly than Fig. 2(a), reduces the interference of the
background image, effectively improves the quality of the
image.

B. Suspected defect area detection
Steel strip surface inspection on real-time defect extraction

and classification from high-throughput imaging data. The
threshold segmentation method [29] can be used when there
are obvious differences in the defect images, but the effect is
not ideal under the condition of unstable shading and
illumination, and the adaptive threshold segmentation
method can solve these problems well. The proposed method
detects the suspected defective regions of the original image,
improves the efficiency of the system's analysis, and reduces
the amount of data transmission. The process of detection is
as follows:

Firstly, we defined the extended side length subdomain
according to the image size, carried out the original image
subdomain, and then carried out the intra-domain
segmentation according to the fixed template. According to
the grayscale, color difference, and distribution
characteristics, a fast block test is carried out to activate the
domain with an active block, and the finite domain
connectivity is carried out according to the domain's
connectivity. Finally, the domain information is encapsulated,
and the image is segmented.
Our defect detection framework synergizes adaptive block

thresholding with singularity density profiling, enabling
rapid anomaly identification followed by precision
segmentation. The flow chart is as follows:

Calculate the mean and standard deviation of the gray
boundaries of each region to determit'se gray boundaries of
the image. If ����� � < ����� ∪ ����� � >
�����, it is set to an effective block, the set value is updated
to ����� and ����� , and the upper and determine the

Fig. 4. Image flow of steel surface defect segmentation

Scratch Inclusion Scratch Inclusion
(a)Original image (b)Improved MSR enhanced images

Fig. 2. Comparison before and after improved MSR algorithm

Fig. 3. Defect area detection process
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lower boundary of image gray levels. Otherwise, its set to an
invalid block, the calculation formula is as follows:

���� = ��� 254, ����� � + 2∗����� � (7)
���� = ����� � − 2∗����� � (8)

����� � is the gray mean value, ����� � is the gray
standard deviation, � is the block number, and �� is the gray
effective value. ����� ����� > ���� ∪ ����� ����� <
���� , it is determined as a defective image of the strip
surface, the normal region and defect boundary region of the
steel surface image are extracted, and then the singular target
boundary is determined.
The average gray level ����� � and standard deviation

of gray level ����� � of strip steel are calculated and
analyzed. If ����� � + 3∗����� � < 255 ∪
����� � − 3∗����� � > 0 , the singular target
boundary of high and low light is determined for the effective
block, and the calculation formula is as follows:

��� = ��� 254, ����� � + 4∗����� � (9)
��� = ��� 254, ����� � − 4∗����� � (10)

����� � 、����� � are the standard deviation and
average value of gray cale in the image. When
����� ����� > ��� ∪ ����� ����� < ��� is determined
to be a singular point, the singular density is set to the gray
value of each pixel in the singular point image processed by
Gaussian mean. When singular threshold < singular density,
the defective pixel is obtained, the connected image of the
defective pixel is segmented from the original image, and
then the edge segmentation image is carried out. The
information image is the defect bitmap and related color level
image, which will be used in the subsequent classification.
The enhanced MSR-processed image was segmented, with

Fig. 5(a) and (b) displaying the edge segmentation results of
the scratch and inclusion from Fig. 2. The results demonstrate
complete target segmentation with clearly defined,
high-contrast edges, effectively removing background
interference.

C. Defect image combination feature extraction
The defective image is segmented from the suspected

defect area image, and the important feature information of
the classification defect is extracted. For many images that
feature information, the texture feature is crucial. The gray
co-occurrence matrix [30] is a statistical texture analysis
method. This approach quantifies texture characteristics by
analyzing spatial relationships between adjacent pixels in
digital images. The gray co-occurrence matrix generates
high-dimensional data, which is rarely employed directly for
texture classification, but is used to describe the texture
classification features of defects through the constructed
partial quadratic statistics. The local gray correlation
quantifies ��� the statistical dependence between the gray

level of a pixel and the gray levels of its neighboring pixels.
��� = �=0

�−1
�=0
�−1 �×�×� �,� −����

����
�� (11)

� �, � is the gray co-occurrence matrix, ��, �� is the
horizontal row mean and column mean row standard
deviation of the co-occurrence matrix, �� , �� is the row
standard deviation and column standard deviation
respectively.
The contrast of image sharpness and texture groove depth

is calculated as follows:
���2 = �=0

�−1
�=0
�−1 � − �

2
� �, ��� (12)

The textural energy metrics and the energy of gray level
distribution uniformity:

� = �=0
�−1

�=0
�−1 � �, � 2�� (13)

Entropy is a measure of image information. Texture
analysis frequently involves quantifying how random or
ordered the pixel intensities are within a region, the formula
is as follows:

� =− �=0
�−1

�=0
�−1 �� �, � ��� � �, �� (14)

The uniformity of image texture, the Idm measuring the
degree of local change of image texture and the formula is as
follows:

� = �=0
�−1

�=0
�−1 � �,�

1+ �−� 2�� (15)
The principle of maximum entropy threshold segmentation

[31] was adopted to extract the features of the defect target
area ratio and aspect ratio. The ratio of the number of pixels
in the target area to the image area is used as the area ratio,
and the formula is as follows:

� = ��
�

(16)
�� is the defect area, A is the image area. The boundary of

the partitioned defect target area is marked by the minimum
external rectangle of the defect area. The aspect ratio of the
rectangular box is calculated as follows:

� = �
�

(17)
� is the length, � is the width. Through the statistics of the

defect boundary information on the number of pixels to get
roundness, the roundness ratio calculation formula is as
follows:

� = 4���
�2 (18)

� represents the circumference of the defect. When e = 1,
it assumes a perfectly circular configuration. As the
eccentricity parameter � decreases, the resultant morphology
becomes progressively more irregular, accompanied by a
corresponding increase in the deviation from the idealized
form. Texture features Co, Et and Idm are used and shape
features Ar, As and Ro of defects are extracted as
discriminant features for classification. The combined
features extracted are input into the model, and the
corresponding classification results are output. Combined
feature extraction provides effective support for defect
classification.

III. STRIP STEEL DEFECT IMAGE CLASSIFICATION BASED ON
LPSO-PNN

A. LPSO algorithm
The PSO algorithm [32], functioning as a

population-driven stochastic search mechanism. A single

(a) Scratch enhanced segmentation (b) Inclusion enhancement segmentation
Fig. 5. Segmentation results of defect enhancement images
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population has N particles and searches randomly in 3D
space. The optimal solution is sought through continuous
iteration. The update method of particle position is as
follows:

���
�+1 = � × ���

� + �1 × �1 × �������� − ���
�

+ �2 × �2 × �������� − ���
�

���
�+1 = ���

� + ���
�+1

(19)

� is the inertia weight coefficient, �1、�2 is the learning
factor, �1 、 �2 obtains randomly from the interval (0,1) a
number obeying a uniform distribution, �������� is the
historical best position searched by a single particle, and
�������� is the historical best position searched by the
particle population.
Because the traditional PSO algorithm was prone to local

optimization and low population richness, this study adopts
the nonlinear decreasing inertia weight coefficient to update
the particle swarm to avoid getting stuck in a locally optimal
solution. Meanwhile, the Logistic chaotic map is used to
optimize the initial state of the population particles, which
strengthens the global particle traversal optimization ability.
1) Inertial weight coefficient of nonlinear decline
The PSO algorithm uses an adaptive inertia weight that

decreases nonlinearly over iterations to balance global
exploration and local optimization, which is calculated as
follows:

� � = ���� ���� − ���� �� � − � /��� (20)
���� , ���� are the initial inertia weight coefficients and

final weight coefficients at the time of iteration, respectively.
�, � denote the maximum and current number of iterations,
respectively.

Fig. 6 presents a comparative analysis of the inertia weight
factor decay curves between the PSO and LPSO algorithms,
revealing distinct differences in their weight adjustment
mechanisms. The PSO algorithm tends to fall into the local
optimum in the first 100 iterations when the algorithm
decreases linearly, while the LPSO algorithm, on the other
hand, increases the solution precision with the same iteration
count by introducing a local search factor. The LPSO
algorithm has a stronger global search capability and more
stable convergence characteristics, mainly due to its dynamic
adjustment mechanism. The LPSO algorithm has stronger
overall search capability and more stable convergence
characteristics, which is mainly due to its dynamically
adjusted weight decay mechanism. The consequences

confirm that the LPSO algorithm is preferable in terms of
convergence accuracy and robustness compared to the
conventional PSO.
2) Logistic chaotic map
The chaotic map based on one-dimensional Logistic

equation is as follows:
��+1 = ��� (1 − �� ) (21)

�� , ��+1 is the chaotic sequence, �� ∈ [0,1] , � is the
control parameter, generally � ∈ [3.56,4], when � closer to 4,
the more intense the chaotic state.
Equations (20) and (21) are substituted into equation (19)

to obtain the particle position update equation of the LPSO
algorithm:

���
�+1 = � � × ���

� + �1 × �1 × �������� − ���
�

+ �2 × �2 × �������� − ���
�

���
�+1 = ���

� + ���
�+1

(22)

The distance ��� between the optimal particle position and
the origin is calculated, and the reciprocal of the distance is
used as the determination value ��� of the optimal particle
position:

��� = ���
�+12

��� = 1
���

(23)

In the process of global particle traversal optimization, it
goes through many iterations. When the iteration limit is
reached, the optimal particle position is updated, and the
corresponding optimal particle position ��� is the optimal
smoothing factor � of PNN.

B. Strip steel defect image classification based on
LPSO-PNN
In the face of complex classification problems, the PNN

network is fast to train and can guarantee the optimal solution
under the Bayesian decision criterion. In this study, we
employ PNN for the analysis and classification of steel
surface defect datasets, which are divided into four layers: the
input layer, hidden layer, summation layer, and output layer.
Its structure is shown in Fig. 7.

J is the number of neurons in the hidden layer, i is the
number of training sample categories, and y is the output
layer. The extracted combined characteristics are input into
the model as training samples. The relationship between each
mode of the training sample and the input layer is as follows:

Fig. 6. Decline curve of inertia weight coefficient

Fig. 7. PNN structure diagram
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� � = 1

2�
�
2��

1
�

��� − �−�� �−�� �

2�2 (24)

� is the dimension of the space where the vector to be
classified resides, � is the number of defective training
samples, �� is the ith training vector of the defect, and � is the
smoothing factor of the probability density function.
In the traditional PNN network, the same smoothing factor

σ is selected for all parameters. When the smoothing factor
takes a single value, the influence of different samples on the
correct classification results cannot be correctly reflected.
Therefore, different � should be selected for different
samples, and the selection of appropriate smoothing factor
parameters is the key to determining the classification
performance of PNN.
The strip surface flaw detection process based on a

modified particle swarm optimization method and a
probabilistic neural network is presented in Fig. 8. The
specific steps are listed below:

Step 1：600 images enhanced by improved MSR were
selected as training samples, the ratio of training dataset to
test dataset is 7:3. The test samples contained 40 defect
instances per category, with six extracted features (Co, En,
Idm, Ar, As, Ro) being fed into the model.
Step 2：The initial population number was set to 100, the

Logistic chaotic map was used to initialize the particle swarm,
the chaos control parameter was set to 3.99, the spatial
dimension of the particle swarm was set to 1, the number of
iterations was set to 80, and the inertial weight coefficient
decreased according to equation (20), wini = 0.9、wfin =
0.4、c1 = 0.5、c2 = 0.5. The fit values of each particle are
calculated, and the individual and population extreme values
of each particle are obtained.
Step 3： The velocity and position of the particle are

updated by formula (22), and the smoothing factor, σ is
obtained after the iteration condition is satisfied. Otherwise,
return to step 2.
Step 4：The optimal smoothing factor, σ is assigned to the

PNN algorithm, and the combined features of steel surface
defect images are classified through the four-layer network.
The statistical classification accuracy is averaged, and the
defect types are output.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Verify the validity of selected combined features
Multiple array CCD cameras and light sources were set up

above the experimental table's steel plate, and the light
source's angle was adjusted. The camera scan is triggered by
the code disk signal of the steel running synchronously in the
field automation network. Based on the target steel lighting
effect analysis and adaptive control method, the light
intensity control is realized to adapt to the complex texture
changes of the on-site steel. 6480 enhanced images were
selected as the experimental data, 1620 as the training set,
and 950 as the test set. Table 1 presents the computed mean
values of Co, En, and Idm features across four spatial
orientations.

The highest contrast is Sc and the lowest is Ps, with Sc
being 12.3 times more varied than Ps. This is because Sc has
a large defect area and its local gray scale variation is the
most significant, while Ps is the most uniform. The highest
value of entropy is 6.2813, and the lowest value is 5.2804,
which is a small difference. This is because Sc has the highest
complexity of defect information, and Ps is the most
homogeneous. The highest value of the inverse difference
moment is 0.5543, and the lowest value is 0.2389, with a
negative correlation between high contrast and low Sc
difference moments, because Ps has the most homogeneous
texture and Sc has the most heterogeneous texture.

Fig. 9 visualizes the 3D distribution of three key texture
descriptors Co, En, and IDM, where scatter plots demonstrate
clear separation across all five defect categories. The
extraction results of shape features of images with different
defects are systematically presented in Table 2.

When an image with multiple defective regions is present,
the ratio of the sum of the areas of the multiple defective
regions to the areas of the image is used as the desired area
ratio. The As and Ro of the largest defects are the same as
those shown in the image. Finally, these six discriminative

Fig. 8. Strip steel surface defect classification process based on LPSO-PNN

TABLE I
CHARACTERISTIC MEAN VALUE FOR SURFACE DEFECT DETECTION OF STEEL

PLATE

Feature average Cr In Pa Sc Ps

Contrast 13.0831 16.9335 7.5262 46.7881 3.8013
Entropy Inverse 5.6857 6.0320 5.4595 6.2813 5.2804
Different moment 0.4088 0.3183 0.4876 0.2389 0.5543

Cr = scratches, In = inclusion, Pa = patches; Sc = scab, Ps = pitted surfaces

Fig. 9. 3D feature distribution of strip steel plate defects

TABLE II
SHAPE FEATURE EXTRACTED OUTCOME OF SURFACE DEFECT TYPE

Shape feature Cr In Pa Sc Pc
Area ratio 3.1 8.48 50.89 23.83 1.70
Aspect ratio 14.47 5.24 1.36 1.91 1.21
Roundness 0.42 0.46 0.75 0.78 0.87

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 2907-2915

 
______________________________________________________________________________________ 



features, Co, En, IDM, AR, AS, and Ro, constitute the final
feature vector for defect classification.
Pa and Sc have much higher area ratios than other defects,

while Ps and Cr are the lowest. This is because Pa and Sc may
be large-sized defects while Ps and Cr are small-sized defects.
It is in the middle and may have medium-sized defects. Cr is
extremely high with 14.47. Roundness gradually increases
from Cr to Ps, indicating that the shape of the defects is
gradually approaching perfect roundness from irregular. Ps
may be nearly round holes, and Cr is highly irregular in shape.
The aspect ratios indicate an extremely elongated shape. In is
next highest at 5.24, while Pa, Sc, and Ps all have aspect
ratios close to 1, indicating that Cr and In are cracked or
linear defects, Pa, Sc, and Ps are holes or massive defects.

B. Comparative experimental analysis
To verify the proposed algorithm's classification effect, we

used precision, recall, accuracy, and test time as metrics. The
identification precision is calculated by inputting the same
parameters in the comparison model. The proposed algorithm
was compared with the current popular classification model,
and the steel surface defects were tested.
Fig. 10 illustrates the accuracy and recall curves of defect

detection under different confidence thresholds. Both metrics
consistently improve as the number of training iterations
increases. After 400 rounds of training, the system's precision
for detecting boxes and masks was 0.96194 and 0.93988,
with recalls of 0.95318 and 0.91213, respectively. When the
mean Average Precision (mAP) threshold was set at 0.5, the
system achieves box recognition accuracy of 0.9834.
However, when evaluated under the stricter mAP@0.5:0.95
metric, the accuracy drops to 0.79204, likely due to
insufficient training iterations. When the number of training
rounds is lower than 500, the mAP is set to 0.5, and the
system is good at detecting surface defects on the strip. When
the training reaches more than 1,000 rounds, the mAP is in
the range of 0.5:0.95, and the accuracy will be above 0.95.
Furthermore, detection accuracy continues to improve with
additional training, confirming the high stability and
robustness of the proposed method.

To compare the effectiveness of the model proposed in this
study, five popular models, MobileNetv (A), ShuffleNetv (B),
DenseNet (C), ShuffleNetv (D), and CNN (E) are listed for
comparison.
By observing Fig. 11, the accuracy rate of the LPSO-PNN

model is 99.57%, the detection time is 3.19s, the
classification accuracy is the highest, the test time is the
shortest, which is 1% higher than that of model A, and the test

Fig. 10. LPSO-PNN evaluation index curve

Fig. 11. Accuracy and test time of the seven models

Fig. 12. ROC curve

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 2907-2915

 
______________________________________________________________________________________ 

mailto:mAP@0.5:0.95


time is 0.47s shorter. This study compared with the F model,
the accuracy rate increased by 1.7% in a short time of 1.4 s,
more than other algorithms. The LPSO-PNN model achieves
high classification accuracy with reduced computational
latency in strip steel surface defect detection, demonstrating
enhanced compatibility with industrial real-time inspection
requirements. Meanwhile, the receiver operating
characteristic (ROC) curve provides a quantitative evaluation
of classification model performance, with the area under the
curve (AUC) serving as a key discriminative metric where
higher values indicate superior class separation capability.
Fig. 12. depicts the ROC curve of the LPSO-PNNmodel. The
LPSO-PNN model exhibits perfect classification
performance AUC=1.00 for Ps, Pa, and Sc, while
maintaining near-ideal discriminative power AUC=0.99 for
In and Cr, thereby validating its industrial-grade detection
precision in steel surface quality control.
A multi-class confusion matrix was implemented to

evaluate the LPSO-PNN model's diagnostic accuracy across
five steel surface defect categories, enabling granular
analysis of inter-class misclassification patterns. Fig. 13.
provides a comparative visualization of classification
accuracy across competing methodologies. The vertical
coordinate denotes the true category, the horizontal
coordinate denotes the predicted category. The confusion
matrix showed that the LPSO-PNN model had the best
classification performance.
The confusion matrix combines the accuracy of

recognition of defect types as well as misclassification. Since
Cr defects are primarily concentrated in a single orientation
while Sc defects are distributed in all directions, these two
categories exhibit certain similarities. This makes Cr defects
in specific orientations particularly prone to being
misclassified as Sc defects during recognition. The
LPSO-PNN effectively addresses this issue of inter-class
confusion between defect types. As shown in Fig. 13, the
proposed method achieves significantly higher recognition
accuracy for In defects compared to both Model A and Model
F. The Ps and In classification accuracies of both D and E
models are not satisfactory, and the present model improves
this significantly as well. LPSO-PNN is significantly better
than models B and C in identifying Ps defects. In conclusion,

the proposed model can maintain a high defect recognition
efficiency under complex conditions and short inference
time.

V. CONCLUSION
This paper studies strip steel surface defects. Similar image

characteristics, complex shapes, and so on are proposed
based on the combination of feature extraction and
probabilistic neural network method for hot rolling strip steel
surface defect detection and recognition.
1) Image enhancement was performed on the acquired steel

defect dataset, and the proportion of calculated
information entropy was used to automatically
determine the weights of different scales. The adaptive
threshold selects the enhanced image, and the suspected
defects are located by the singular point density analysis
method. The image segmentation of the defect area is
completed. The enhancement of a defective image is
clearer than the original image, and the image quality of
the segmentation effect is better.

2) A quadratic statistic and maximum entropy threshold
segmentation method were constructed to extract the
texture and shape features of defects, and the combined
features were used as the discriminant parameters of the
LPSO-PNN classification model. The verification shows
that the combined feature makes the scatter points of the
five defects have no intersection, and achieves a good
separation effect, reflecting the combined feature's
effectiveness.

3) The Logistic chaotic map and a nonlinear decreasing
inertia weight coefficient are used to update the particle
swarm, which is used to select the optimal smoothing
factor of PNN. LPSO-PNN is assigned to PNN to
classify the surface defects of steel. Compared with other
methods, the practicability and effectiveness of the
LPSO algorithm in optimizing PNN for defect
classification are verified.

In our future work, we will investigate more defect types
and identification methods to enhance the architecture and
intelligent monitoring performance of the monitoring
architecture.

Fig. 13. Confusion matrix of classification model
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