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Abstract — Pulmonary nodule detection faces significant
challenges in balancing accuracy and efficiency, particularly
when identifying subtle nodules of varying sizes within
complex thoracic backgrounds. These limitations can
adversely affect clinical decision-making, leading to missed or
false detections. To address these issues, we propose an
optimized YOLOvVS8-based model that incorporates four key
advancements: 1) VanillaNet as a streamlined backbone to
reduce computational complexity while maintaining robust
feature extraction; 2) Dynamic Large Kernel Attention v4
(DLKAvV4), a novel multi-scale attention mechanism that
enhances sensitivity to faint nodule patterns; 3) Detect-DBB, a
redesigned detection head that utilizes diverse branch
convolutions for precise localization; and 4) a dual-loss
framework that combines Quality Focal Loss (QFL) for the
alignment of classification and localization tasks with
Multi-scale Proportional Dynamic IoU (MPDIoU) for
geometric optimization—effectively bridging the gap between
detection confidence and localization accuracy.
Comprehensive evaluation on the LUNA16 dataset
demonstrated significant improvements: a 3.39% increase in
precision, a 6.86% gain in recall, a 3.4% improvement in
mAPS0, and a 4.67% enhancement in mAP50-95, all achieved
with a reduction in parameters. Importantly, validation on a
self-constructed dataset confirmed the model's effectiveness in
real-world scenarios, achieving reliable detection of
sub-centimeter and ground-glass nodules under diverse
imaging conditions. These advancements not only enhance
computational efficiency but also address critical clinical
applications by reducing diagnostic uncertainties, thereby
offering a balanced solution for integration into time-sensitive
clinical workflows. This optimized framework demonstrates
substantial potential to support radiologists in the assessment
of pulmonary nodules while maintaining practical
computational demands.

Index Terms—Pulmonary nodule detection; Clinical
decision-making; YOLOVS; Attention; Clinical applications

1. INTRODUCTION
I UNG cancer is a leading cause of cancer-related deaths
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worldwide, with an increasing incidence rate. Early
detection, accurate diagnosis, and timely treatment are
critical for improving survival rates [1]. Manually detecting
nodules in CT scans is both time-consuming and prone to
errors, particularly when identifying smaller, early-stage
nodules. Automated deep learning-based systems present a
promising solution to this challenge. Recent advancements
in artificial intelligence (AI) for chest imaging have
significantly enhanced both the speed and accuracy of lung
nodule detection, benefiting healthcare providers and
patients alike [2-3]. Early detection is essential for
improving patient prognosis, which has driven the
development of numerous computer-aided diagnostic (CAD)
tools designed to assist in the detection and classification of
nodules [4]. Over the past two decades, research in image
processing has made substantial progress in enhancing
nodule detection, segmentation, and classification in CT
scans [5]. Al has not only improved diagnostic efficiency
and accuracy but also supported better patient management
and treatment strategies [6]. Cutting-edge advancements in
Al and machine learning (ML) demonstrate considerable
potential for addressing the challenges of lung cancer
screening and promoting health equity [7]. CAD systems
help alleviate the workload for radiologists, and deep
learning-based tools have shown high accuracy in detecting
lung nodules without significantly increasing false-positive
rates [8].

The YOLO object detection series is highly regarded for
its real-time capabilities, effectively balancing accuracy
with computational efficiency. YOLOvV8 [9] enhances
earlier models through architectural improvements and
optimized loss functions, resulting in superior performance.
However, detecting pulmonary nodules remains a challenge
due to their small size, irregular shapes, and the complex
tissues surrounding them, necessitating specialized
optimizations for medical imaging. This research advances
deep learning in medical image analysis by demonstrating
how customized detection models can enhance both
accuracy and efficiency in the early diagnosis of lung cancer,
which is critical for reducing mortality rates. The primary
contributions of this study are as follows:

(1) The original backbone was replaced with VanillaNet,
significantly enhancing feature extraction while maintaining
low computational complexity. This change improved both
detection accuracy and processing efficiency for pulmonary
nodules. Additionally, DLKAv4, which integrates DCNv4
with DLKA, was introduced to enhance the model's ability
to capture fine-grained features and increase recall rates.

(2) Detect-DBB was implemented as the new detection
head, optimizing feature representation and enhancing the
differentiation of nodule types and sizes. QFL was employed
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for classification, while MPDIoU was utilized for bounding
box loss, resulting in improved localization accuracy.

(3) Extensive experiments conducted on the LUNAI16
dataset, which included comparative and ablation studies,
resulted in significant improvements: precision increased by
3.39%, recall by 6.86%, mAPS50 by 3.4%, and mAP50-95 by
4.67%. Further validation on a self-constructed dataset
confirmed the model's robustness and applicability across
various scenarios, highlighting its innovative nature and
practical impact.

II. RELATED RESEARCH

Automated lung nodule diagnosis is critical in both
research and clinical contexts; however, several challenges
persist. Recent advances in object detection have led to
effective solutions. For instance, Reference [10] improved
detection accuracy over traditional Support Vector
Machines (SVM) and K-Nearest Neighbors (KNN) by
optimizing the activation functions and convolutional layers
of Convolutional Neural Networks (CNN) using the
Improved Moth Flame Optimization (IMFO) algorithm.
Similarly, Reference [11] introduced the deep
learning-based ~ Synthetic =~ Bone-Suppressed (DLBS)
algorithm, which enables radiologists to detect nodules from
X-rays without the need for additional equipment or
radiation exposure. The Computer-Aided Diagnosis (CAD)
systems discussed in References [12—14] employ methods
such as the 3D Multi-Scale Vision Transformer
(3D-MSViT), a 3D U-shaped CNN with channel attention,
and a Bayesian-optimized Vision Transformer to enhance
feature extraction and predictive accuracy. Reference [15]
implements the Stochastic Gradient Descent with Adaptive
Learning Rate (SGDA) module to improve network
generalization, while Reference [16] utilizes 3D Faster
R-CNN and 3D CNNs to enhance feature recognition and
minimize false positives. In contrast, Reference [17] adopted
an innovative approach using an all-optical Diffractive Deep
Neural Network (D2NN) for CT scan detection. Reference
[18] presented a hybrid Hierarchical Deep Ensemble Neural
Network (HDE-NN) with Channel-Based Selective
Optimization (CBSO) for tumor classification, whereas
Reference [19] integrated spatiotemporal attention with an
enhanced MobileNetV3 and GhostNet for nodule detection.
Reference [20] introduced a 3D Multi-Attention Enhanced
Detection (MAED) network with self-attention and
region-attention modules to reduce false positives, and
Reference [21] developed DBPNDNet, which focuses on
automated nodule detection and segmentation.

Al-based systems have significantly improved detection
rates; however, clinical validation remains essential [22].
Despite notable advancements in accuracy and sensitivity,
some methods continue to face challenges with specific
types of nodules, real-time processing, and extensive
training  requirements. YOLO models, such as
BiRPN-YOLOvX and SwiF-YOLO, have enhanced
diagnostic accuracy by utilizing Adaptive Spatial Feature
Fusion (ASFF) and Swin transformers [23, 24]. YOLOv7
has improved the detection of small nodules through
components like Small Object Detection Layer (SODL),
Multi-Scale Residual Fusion (MSRF), and Enhanced Object

Detection Convolution (EODConv) [25]. Reference [26]
proposed a model that incorporates a deformable attention
module to retain critical features and reduce noise, while the
Weighted Intersection over Union (WIoU) loss function
addresses the impact of low-quality samples on gradient
calculations. The Lung-YOLO algorithm [27] employed a
Multi-scale Dual-branch Attention (MSDA) mechanism and
a Cross-layer Aggregation Module (CLAM) to enhance the
detection of small targets. To overcome the limitations of
YOLO-based systems, a modified version of YOLOVS5 [28]
was proposed for automatic lung nodule detection in CT
scans. This version features improved feature extraction
layers and customized anchor boxes for small nodules,
highlighting the model’s potential for efficient lung cancer
screening. This aligns with the objective of this manuscript
to advance YOLOVS5-based detection techniques.

This study presents an optimized YOLOvVS model
specifically designed for the automatic detection of
pulmonary nodules. The modifications focus on enhancing
feature extraction and classification accuracy while ensuring
computational efficiency. When evaluated on the LUNA16
dataset, a standard benchmark for lung nodule detection, the
proposed enhancements to YOLOVS resulted in a significant
improvement in detection accuracy, particularly for
challenging cases involving small or irregular nodules.

III. IMPROVED YOLOV8 NETWORK

Owing to its impressive speed and performance, YOLOv8
has become a pivotal tool in modern object detection,
enhancing both network efficiency and inference,
particularly in the early detection of lung nodules. However,
it still faces challenges, such as detecting small objects and
providing detailed classifications [29]. Furthermore,
research specifically focused on lung nodule detection
remains limited, despite its clinical significance. To address
these limitations, we developed an optimized version of
YOLOVS specifically designed for lung nodule detection.
Our model retains the speed of YOLOvVS8 while significantly
improving detection accuracy, as demonstrated by our
experimental results. This approach offers a faster and more
precise method for early diagnosis and treatment. Fig. 1
illustrates the architecture of the enhanced YOLOVS.

A. VanillaNet for backbone improvements

VanillaNet [30] is an efficient neural network architecture
designed for real-time detection, emphasizing both
simplicity and performance. Initially, it enhances feature
representation and nonlinearity by incorporating additional
layers and complex structures, which are subsequently
optimized through techniques such as layer merging. This
optimization reduces computational demands while
maintaining performance. This balance between complexity
and efficiency facilitates faster and more accurate inference.
To improve its nonlinear capabilities, VanillaNet employs
parallel activation functions, allowing it to capture a broader
range of features, particularly in the detection of small
targets, such as lung nodules. As a result, it achieves higher
accuracy compared to traditional networks that rely on a
single activation function.
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Fig. 1. Improved network structure

When integrated as the backbone of YOLOVS, VanillaNet
optimizes the inference architecture without compromising
detection accuracy, particularly in applications such as lung
nodule detection. This integration not only accelerates
inference but also enhances overall performance, making it
highly effective in real-world scenarios.

B. The new attention mechanism DLKAv4

The DLKA framework [31] addresses the high
computational  cost associated with  self-attention
mechanisms by utilizing large convolutional kernels to model
global receptive fields. This approach enhances feature
extraction by incorporating extensive contextual information,
thereby improving the model's ability to capture both
large-scale and fine details. In the context of lung nodule
detection, DLKA excels at identifying subtle features while
considering the surrounding context due to its expanded
receptive field. DCNv4 [32], an enhancement over DCNv3
[33], refines deformable convolution by eliminating softmax
normalization in spatial aggregation. This modification
allows for more flexible adaptation of sampling positions to
image features, thereby improving memory efficiency and
reducing computational redundancy. Consequently, it
accelerates processing, particularly for high-resolution data,
and enhances model convergence.

The DLKAv4 module integrates DLKA and DCNv4 into a
cohesive attention mechanism. The large convolutional
kernels in DLKAv4 extract comprehensive contextual
information from lung images, providing global coverage
similar to that of self-attention mechanisms. Meanwhile, the
deformable convolution in DCNv4 enhances flexibility by
adapting the sampling grid to the features of the image, which
is crucial for accurate lung nodule detection. By combining
these techniques, DLKAv4 minimizes computational
overhead, accelerates convergence, and leverages the

memory optimizations offered by DCNv4. This integration
significantly improves efficiency in processing large-scale
datasets, making DLKAv4 particularly effective for medical
imaging tasks such as lung nodule detection. Fig. 2 illustrates
the structure of DLKAv4.
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Fig. 2. Structure of DLKAv4

C. The novel head Detect-DBB

The DBB[34] notably increases the complexity of
convolutional layers during training, thereby enhancing the
network's ability to capture diverse features through the
incorporation of branches with varying sizes and
configurations. This method combines convolutional kernels
of different dimensions with average pooling to improve the
model's representational capacity. What makes the DBB
particularly effective is its two-phase approach: during
training, it employs a complex branching structure, while for
inference, these branches are fused into a single
convolutional  layer, ensuring efficiency  without
compromising performance. Furthermore, the DBB can be
seamlessly integrated into existing architectures, replacing
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standard convolutional layers without altering the overall
network design.

As illustrated in Fig. 3, during the training phase (a), DBB
operates with parallel branches that consist of convolutional
and pooling layers of varying sizes, which subsequently
merge their outputs. After training (b), this intricate structure
simplifies into a single convolutional layer, ensuring that
microstructural complexity is preserved during training while
maintaining operational efficiency during inference. This

approach  enhances feature representation  without
compromising the model's runtime performance.
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(a)Training-time DBB
Fig. 3. DBB Training and Reasoning Process

(b)Inference-time DEB

In this study, we introduce Detect-DBB, a novel detection
head that integrates DBB directly in front of the original
YOLOvVS detection head. This integration enhances the
feature extraction process by enabling the model to capture
more refined and contextually rich information, thereby
improving object detection performance. By incorporating
DBB, Detect-DBB maintains inference efficiency while
introducing microstructural complexity during training,

representing a significant innovation in detection head design.

Fig. 4 illustrates the structure of Detect-DBB.
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Fig. 4. Structure of Detect DBB

D. The new Optimization of the loss function

The loss function of YOLOVS comprises two components:
classification and regression. For the classification loss,
Binary Cross-Entropy Loss (BCEL) is utilized, while the
regression component employs Distribution Focus Loss
(DFL) and Bounding Box Regression Loss (BBRL). The
overall loss function can be expressed as follows:

/i Loss — jqf peer T izf prr t i3f BBRL (1)

The MPDIoU [35] was utilized as the bounding box loss
function to enhance performance by addressing the
limitations of traditional regression loss functions, such as
GIloU, DIoU, CloU, and EloU. These conventional methods
often struggle with bounding boxes that have similar aspect

ratios but differ in size or location. MPDIoU improves this
process by calculating bounding box similarity through the
minimum keypoint distance of a horizontal rectangle, while
also incorporating the overlap area, centroid distance, and
width-height deviation. This approach provides a more
precise evaluation of keypoint distance, resulting in a more
accurate representation of the differences between the
predicted and actual bounding boxes. Such precision
significantly enhances detection accuracy, particularly for
subtle variations in size or position among bounding boxes
with similar aspect ratios. The application of MPDIoU
improves YOLOV8's capability to detect objects with
complex shapes and positional variations, as demonstrated in
lung nodule detection. Fig. 5 illustrates the components of the
LMPDIoU loss function, highlighting its role in enhancing
detection accuracy.
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Fig. 5. Factors of the LMPDIoU loss function

Specifically, the bounding box for each prediction is as
follows:

X prd
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The true bounding box is approximated by minimizing the
following loss function:

Bél = [xgt’yst’ gt’h (3)

L=min, L(B,,B

gt prd 0)

“

Where Bgt is the set of real bounding boxes and 0 is the
parameter of the regression depth model. The LMPDIoU loss
function formula is as follows:

LMPDIoU =1-MPDIoU (5)
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QFL[36] addresses the challenge of inconsistent
classification and localization in object detection by fostering
a stronger synergy between these tasks. Traditional methods
often treat classification and localization as separate
processes, which diminishes their interdependence. QFL
resolves this issue by incorporating localization quality
metrics (e.g., CloU, EloU, and SIoU scores) into the
classification loss, thereby enhancing the interaction between
tasks during training.

By dynamically adjusting the weight of the localization
quality score within the classification process, the QFL
ensures that the classification loss more accurately reflects
the complexity of the localization task. This adjustment
emphasizes challenging examples, thereby enhancing both
classification and localization accuracy. Unlike standard
Focal Loss, which employs binary labels (0 and 1), QFL
utilizes continuous labels ranging from 0 to 1, providing a
more nuanced representation of localization precision. By
prioritizing difficult objects, QFL minimizes errors and
significantly improves the detection performance of models
such as YOLOvVS. This method offers a practical approach by
integrating localization accuracy into classification, thereby
enhancing detection and aligning model training with

real-world challenges, which leads to more reliable outcomes.

The optimized YOLOvV8 loss function is presented in
Equation (6).

Sioss = j'|fQFL + 4 for + 4 spoiov

(6)
IV. RESULTS
A. Experimental environment
The implemented system  requires  substantial

computational processing during operation, necessitating
specific hardware requirements. Table I provides a
comprehensive overview of our system's configuration.

TABLE |
EXPERIMENTAL CONFIGURATION
Project Specific information
Operating system Linux

CPU Intel(R) Xeon(R) E5-2683 v4

GPU NVIDIA GeForce RTX 4060 Ti
Memory 32GB
Language Python 3.11

Development platform PyTorch

To ensure the rigor and fairness of the experiment, we
standardized the experimental parameter settings, as detailed
in Table II.

TABLE II
EXPERIMENTAL HYPERPARAMETERS

Hyperparameters Value
Learning Rate 0.0001
Image Size 640 x 640
Momentum 0.937
Optimizer SGD
Batch Size 8
Epoch 300
Weight Decay 0.0005

B. Dataset and evaluation index

For this study, we utilized the publicly available ISBI Lung
Nodule Analysis 2016 (LUNA16) dataset, which comprises
888 lung CT scans. These images encompass a diverse array
of nodule characteristics, including various shapes and sizes,
accurately reflecting the complexity of lung anatomy. To
ensure precise annotation, each scan was independently
reviewed by four experienced radiologists, resulting in the
identification of 1,186 labeled lung nodules. The variations in
nodule dimensions, forms, and densities make this dataset
particularly well-suited for evaluating different detection
techniques. To facilitate comprehensive model assessment,
we partitioned the dataset into training, validation, and test
sets using an 8:1:1 ratio. This approach enhances the
reliability of our findings. Additionally, we implemented data
augmentation strategies to further improve model robustness.
Figure 6 illustrates an example from the LUNA16 dataset.

Fig. 6. Sample LUNAR16 dataset

The evaluation metrics employed are Precision, Recall,
and mean Average Precision (mAP). Recall indicates the
detection status, while mAP integrates Precision and Recall
to offer a more comprehensive assessment of overall
performance.

.. TP
Precision = —
TP + FP (7)
Recall = L
TP+ FN (8)

1
AP = [ P(R)dR
0 ©)

¢ AP,
mAP === —
K (10)

Here, TP (True Positives) refers to pulmonary nodules that
are correctly identified, TN (True Negatives) indicates
non-pulmonary nodules that are not misclassified as
pulmonary nodules, FP (False Positives) denotes
non-pulmonary nodules that are incorrectly identified as
pulmonary nodules, and FN (False Negatives) represents
pulmonary nodules that are not accurately identified.
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C. Comparison Experiment

Bounding box loss function comparison experiment

To emphasize the significance of introducing MPDIoU,
we conducted a comprehensive comparison with other
commonly used loss functions, including CIloU, EloU, SloU,
and WloU. Each of these loss functions was evaluated based
on their effectiveness in optimizing object detection models
under identical experimental conditions. Table Il presents
the experimental results of the comparison of the bounding
box loss functions.

TABLE III
LOSS FUNCTION COMPARISON EXPERIMENTAL RESULTS
loss function mAP50/% mAP50-95/%
CloU 89.3 46.1
EloU 89.6 46.3
SloU 89.7 46.6
WioU 90.2 47.1
MPDIoU 914 49.5

As demonstrated in Table III, the MPDIoU loss function
consistently outperforms other loss functions across both
metrics, achieving a mAPS50 of 91.4% and an mAP50-95 of
49.5%. This underscores the superior precision and detection
accuracy of MPDIoU, particularly across multiple IoU
thresholds, thereby validating its effectiveness in enhancing
model performance. The comparison emphasizes the critical
importance of selecting the appropriate loss function to
optimize object detection models for improved accuracy.

Comparison of different backbone networks

The detection head plays a crucial role in influencing the
performance of object detection. Our study compared five
backbone networks — MobileNetV2, MobileNetV3,
GhostNetV2, ShuffleNetV2, and VanillaNet —to evaluate
their impact on pulmonary nodule detection. The results,
summarized in Table IV, illustrate the performance of each
backbone in terms of mAP50, mAP50-95, and model size.
VanillaNet achieved the highest accuracy, with an mAP50 of
88.63% and a mAP50-95 of 47.4%, while maintaining the
smallest model size at 4.87 MB. ShuffleNetV2 followed
closely but had a larger weight. GhostNetV2 and
MobileNetV3  demonstrated  competitive  accuracy
butrequired significantly more parameters. MobileNetV2
exhibited the lowest performance.

These results indicate that VanillaNet optimally balances
detection accuracy and computational efficiency. Its
streamlined architecture enhances feature extraction while
minimizing redundancy, making it ideal for real-time clinical
applications. By integrating VanillaNet into our optimized
YOLOv8 model, we achieve superior performance with
reduced computational overhead, thereby improving the
feasibility of automated pulmonary nodule detection in
medical imaging.

TABLE IV
DETECTION HEAD COMPARISON RESULTS

backbone mAP50/% mAP50-95/% Weights/MB

networks
MobileNetV2 85.3 439 10.26
MobileNetV3 87.7 46.4 13.51
GhostNetV2 88.1 46.8 13.74
ShuffleNetV2 88.6 47.1 6.32

VanillaNet 88.6 47.4 4.87

Model Comparison Experiment

To thoroughly evaluate the performance of our enhanced
YOLOv8 model in lung nodule detection, we conducted
comparative experiments against state-of-the-art models,
including Faster R-CNN, SSD, GhostNetV2, RT-DETR,
YOLOvV5, YOLOv6, YOLOvV7, YOLOV9, and the standard
YOLOvVS8. To ensure a fair assessment, all models were
trained and tested under identical conditions using the
LUNA16 dataset. A summary of the experimental findings is
presented in Table V. The results demonstrate that our model
achieves superior precision, recall, and mAP, all while
maintaining a streamlined architecture with fewer parameters
and robust image-processing capabilities.

Compared to YOLOV9, which achieves a mAP50 of
91.85%, our model enhances accuracy while maintaining a
significantly smaller size and achieving a higher inference
speed. Furthermore, our model outperforms RT-DETR and
GhostNetV2, which, despite their competitive accuracy,
incur increased computational overhead due to their larger
model weights.

The results demonstrate that our optimized YOLOVS
model effectively balances accuracy, efficiency, and speed,
making it highly suitable for real-time pulmonary nodule
detection. Its lightweight design ensures feasibility for
deployment in clinical applications while maintaining
state-of-the-art detection performance.

D. Ablation Experiment

To analyze the influence of each component in the
enhanced YOLOv8 model, we conducted a series of ablation
studies utilizing the LUNA16 dataset. This investigation
aimed to determine the individual contributions of four major
modifications: (A) replacing the backbone with VanillaNet,
(B) incorporating the DLKAv4 attention module into the
neck, (C) introducing the Detect-DBB structure as a new
detection head, and (D) refining the loss functions by
substituting the bounding box loss with MPDIoU and the
classification loss with QFL. The findings, summarized in
Table VI, were evaluated based on three key performance
indicators: precision, recall, and mAP.

The first enhancement, A (VanillaNet replacing the
backbone), resulted in a significant improvement in both
precision and recall. Precision increased by 1.21%, rising
from 87.42% to 88.63%, while recall improved by 2.38%,
increasing from 83.87% to 86.25%. This indicates that
VanillaNet enhances feature extraction.

The incorporation of the B (DLKAv4 attention module)
significantly enhanced performance, particularly in recall,
which increased by 2.35%, rising from 86.25% to 88.60%.
Precision also improved by 1.23%, increasing from 88.63%
to 89.86%, and mAP50 rose from 90.10% to 91.26%. The
DLKAv4 module strengthens the representation of spatial
and scale features, thereby enhancing detection accuracy for
nodules of varying sizes and shapes.

The third enhancement, C (Detect-DBB replacing the
detection head), led to further improvements, particularly in
mAP50, which increased by 0.67%, rising from 91.26% to
91.93%. Additionally, precision saw a slight increase from
89.86% to 90.07%. This new detection head significantly
enhances both localization and classification accuracy.
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TABLE V
COMPARISON OF EXPERIMENTAL RESULTS
Model Precision/%  Recall/% mAP50/% mAP50-95/% FPS/(f/s) Weights/MB

Faster R-CNN 84.88 82.48 88.25 43.59 90.4 27.4
SSD 83.79 80.08 86.28 41.88 98.7 23.9
Ghostnetv2 88.28 85.25 90.23 47.26 123.1 5.13
RT-DETR 89.68 88.92 90.83 47.74 91.5 63.1
YOLOV5 84.65 82.29 88.05 43.12 128.3 3.65
YOLOV6 85.83 83.14 88.72 44.69 114.3 9.94
YOLOV7 84.35 81.21 87.28 42.74 96.6 71.3
YOLOV8 87.42 83.87 89.34 46.12 119.2 5.76
YOLOV9 90.79 90.25 91.85 50.13 69.1 124.2
ours 90.81 90.73 92.74 50.79 121.7 3.71

Finally, the implementation of D (which involved
replacing traditional loss functions with MPDIoU and QFL)
resulted in the most substantial overall improvementsgains,
with mAPS50 improvingby 0.81%, rising from 91.93% to
92.74%, while precision improved by 0.74%, increasing from
90.07% to 90.81%. These innovative loss functions enhanced
both localization and classification, significantly elevating
the overall performance of the model.

TABLE VI
COMPARISON OF EXPERIMENTAL RESULTS

Model Precision/% Recall/% mAP50/%  mAP50-95/%
YOLOvV8 87.42 83.87 89.34 46.12
+A 88.63 86.25 90.10 47.43
+A+B 89.86 88.60 91.26 48.51
+A+B+C 90.07 89.12 91.93 49.22
+A+B+C+D 90.81 90.73 92.74 50.79

E. Self-constructed dataset experiments

To enhance the stability and robustness of our model, we
curated a custom dataset comprising 500 images specifically
designed to meet our experimental requirements. This dataset
includes variations in lighting conditions, object sizes, and
occlusions, effectively addressing key challenges in lung
nodule detection. To ensure consistency, all CT images
underwent identical preprocessing steps, rendering the
dataset highly suitable for experimentation and serving as an
excellent benchmark for evaluating object detection models
(see Fig. 7).

For a comprehensive assessment, we trained and tested our
model alongside several state-of-the-art architectures —
including YOLOvS5, YOLOv6, YOLOv7, YOLOVS,
YOLOV9, and RT-DETR —utilizing the same dataset. The
detection performance was meticulously analyzed using key
evaluation metrics, including precision, recall, mAPS50, and

mAPS50-95.
€d 0 O
¢ Gd o
Fig. 7. Sample self-built dataset
The experimental results presented in Table VII

demonstrate the comprehensive advantages of our model

over existing methods in lung nodule detection tasks. Notably,
our approach achieves a precision of 90.8% and a recall of
88.3%, surpassing even the latest YOLOV9 (89.7% precision,
87.5% recall) and RT-DETR (88.6% precision, 86.2% recall).
This performance gap becomes even more pronounced in the
mAP50 metric (91.7% compared to YOLOV9's 90.8%),
indicating superior detection accuracy under standard
evaluation conditions.

The advantage remains evident in the more rigorous
mAP50-95 assessment, where our model achieves 49.7%,
compared to YOLOV9's 48.3%. This suggests an enhanced
capability in addressing multi-scale detection challenges.
These improvements are a result of our optimized network
architecture and training strategy, which are specifically
designed to accommodate the unique characteristics of
medical imaging, particularly in addressing the high
similarity between nodules and surrounding tissues.

Significantly, the experiments demonstrate that models
trained on our custom medical dataset consistently
outperform those utilizing generic datasets, thereby
confirming the necessity of domain-specific data curation.
The performance gaps of 2.1% to 6.3% across various YOLO
versions underscore that architectural improvements alone
cannot compensate for mismatches between datasets and
tasks. This finding offers essential guidance for medical
computer vision research, advocating for a balanced
approach to both algorithmic innovation and dataset

specialization.
TABLE VII
EXPERIMENTAL RESULTS ON SELF-BUILT DATASET
Model Precision/% Recall/% mAP50/% mAP50-95/%

RT-DETR 88.6 86.2 89.3 47.4
YOLOvV5 86.8 84.2 87.7 45.6
YOLOvV6 86.9 84.4 87.8 45.9
YOLOvV7 84.5 82.6 85.8 447
YOLOV8 87.1 85.5 88.5 46.2
YOLOV9 89.7 87.5 90.8 483
ours 90.8 88.3 91.7 49.7

Fig. 8 provides a visual comparison of detection results
between ground truth (GT) annotations and four
state-of-the-art models: YOLOvVS, YOLOv9, RT-DETR, and
our proposed Nodule-YOLOVS. This visualization highlights
the distinct performance characteristics of each model,
particularly in challenging scenarios involving small nodules,
irregularly shaped lesions, and nodules with low contrast
against surrounding tissues. While YOLOv8, YOLOV9, and
RT-DETR demonstrate competent detection capabilities,
they occasionally overlook subtle nodules or generate false
positives in areas with vascular overlap.
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Fig. 8. Comparison of model prediction results

V. CONCLUSION

This study systematically optimized the YOLOVS
architecture and validated its effectiveness for pulmonary
nodule  detection using the LUNAI6  dataset.
Component-level ablation studies were conducted to evaluate
four strategic enhancements: the replacement of the
VanillaNet backbone, the integration of the DLKAv4
attention module in feature fusion pathways, the
implementation of the Detect-DBB detection head, and joint
optimization utilizing MPDIoU regression loss in
conjunction with QFL classification loss. Experimental
results demonstrated significant improvements in sensitivity,
specificity, and multi-threshold average precision metrics,
thereby establishing an optimized framework for CT-based
pulmonary nodule screening.

Future research will adopt a dual focus on algorithmic
refinement and clinical integration. Technologically, efforts
will concentrate on validating the generalizability of models
across low-dose CT protocols and multi-vendor equipment,
while developing cross-modal detection frameworks
compatible with X-ray and MRI imaging. Clinically, we will
prioritize embedded deployment solutions for real-time
inference, augmented by interpretable heatmap visualizations
to enhance diagnostic confidence. Multi-center prospective
trials will assess the compatibility of clinical workflows,
ultimately establishing an integrated management system that
incorporates intelligent alert mechanisms, malignancy

grading, and growth prediction models. This initiative aims
to standardize Al-radiology collaboration paradigms,
advancing intelligent solutions for pulmonary nodule
management through harmonized computational and clinical
approaches.
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