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Abstract—Detection of dim infrared small targets is essential
for defense missions, including reconnaissance, surveillance,
long-range precision engagement, and airborne protection.
However, distinguishing these targets against cluttered,
low-contrast backgrounds remains a formidable challenge.
The thesis presents a novel and efficient model specifically
designed for detecting dim infrared small targets in complex
environments. First, the input infrared image is decomposed
into three patch-based matrices corresponding to background,
target, and noise components. In order to weaken the edge
information in the background, the thesis applies a nonconvex
low-rank approximation to the background block matrix
for suppression. Since complex backgrounds may produce
pronounced residual edges in the estimated target component,
fractional total variation (FTV) regularization is incorporated
to capture background characteristics more comprehensively,
thereby enhancing background estimation. Furthermore, a
non-negative L1 norm constraint is imposed on the target
matrix to preserve weak and dim signals. Subsequently,
the resulting minimization problem is addressed using an
alternating optimization strategy. Comprehensive evaluations
on a real-world low-altitude drone dataset indicate that our
approach outperforms existing solutions, yielding enhanced
visual and numerical results for detecting faint infrared small
targets.

Index Terms—Dim infrared small targets, Nonconvex
low-rank approximation, Fractional total variation,
Non-negative L1 norm.

I. INTRODUCTION

INfrared dim small target detection, a vital subfield
of target recognition, finds extensive applications in

precision guidance, spaceborne surveillance, unmanned
aerial vehicle detection, and sensitive target tracking. It
has significant practical value, particularly in the military,
security, and aerospace sectors. Infrared imaging detects
the thermal radiation emitted by objects, independent of
lighting conditions, enabling effective monitoring both day
and night, in adverse weather conditions, and in complex
environments. However, these targets have weak radiation
energy and suffer from low signal-to-noise ratio (SNR)
and signal-to-clutter ratio (SCR), making them susceptible
to being overwhelmed by noise in complex backgrounds
[1]. In addition, long-range imaging results in the loss of
texture and contour details of the target, which typically
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appears as small, blurry spots lacking distinct edges in
infrared images, thereby increasing the difficulty of detection.
In recent years, with ongoing advancements in infrared
sensor technology, the demand for the detection of weak
and small infrared targets has become increasingly urgent,
leading to the emergence of various detection algorithms.
Single-frame detection algorithms are commonly classified
into four categories: background consistency methods,
target saliency methods, deep-learning–based methods, and
mathematical-optimization–based methods.

Background consistency methods assume that background
transitions are slow and local background similarity is high.
These methods focus on suppressing gentle background
clutter and indirectly enhancing the target. Common
algorithms include Tophat [2], Max-Mean, and Max-Median
[3], among others. These algorithms suppress background
clutter by designing filter kernels. A drawback of this
approach is that the fixed filter template lacks adaptability
to complex scenarios, yielding satisfactory performance only
under simple background conditions. As a result, background
residues frequently remain in the detection outputs, leading
to an elevated false alarm rate. Target saliency methods
are based on the saliency of objects, inspired by the
human visual system. The human eye tends to focus on
salient targets, and weak targets are often abrupt points
on a gentle background in infrared images. Therefore,
some researchers have introduced contrast mechanisms,
adaptive scaling, and other aspects of the human visual
system into detection algorithms. LoG (Laplacian of
Gaussian) [4], LCM (local contrast method) [5], and
others are classic saliency algorithms. In recent years,
more complex measurement methods have been proposed,
such as derivative difference measurement [6], dual-layer
local contrast measurement [7], and spatio-temporal local
difference measurement [8]. Such algorithms require the
target to exhibit certain characteristics. However, real-world
scenes are complex, and these algorithms perform poorly
when high radiation interference sources are present.
Learning-based approaches leverage model training to
automatically distinguish feature differences between targets
and backgrounds in infrared imagery, emerging as a key
research direction in infrared small target detection. These
approaches are broadly categorized into traditional machine
learning techniques and deep learning methods. Traditional
methods rely on feature extractors (e.g., gradients, textures,
local contrast) and classifiers (e.g., SVM and random
forests), offering low computational complexity but poor
adaptability to complex backgrounds. Deep learning methods
automatically extract multi-scale features through end-to-end
training, with stronger background suppression and target
enhancement capabilities. HCF-Net (Hierarchical Context
Fusion Network) [9] improves detection performance
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through parallel attention and channel refinement modules.
PBT (Progressive Background-Aware Transformer) [10] uses
an asymmetric encoder-decoder structure and performs well
in complex scenes. The Improved Dense Nested Attention
Network (IDNANet) [11] incorporates a hierarchical vision
transformer backbone with a weighted loss strategy to
mitigate foreground-background class imbalance. You Only
Look Once version 7X Plus (YOLOv7X+) [12] enhances
the YOLOv7 structure to improve small target detection,
especially in aerial images. Optimization approaches for
dim infrared small-target detection often leverage intrinsic
image characteristics by representing the background as a
low-rank component and the target as a sparse element.
By leveraging these assumptions, optimization models with
suitable constraints are iteratively solved, enabling reliable
target isolation from complex backgrounds. In recent years,
increasing attention has been given to leveraging structural
priors in infrared images, especially approaches grounded
in robust principal component analysis (RPCA) [13], [14].
RPCA presumes that the background is represented by a
low-rank matrix, whereas the target manifests as a sparse
component within the image. Gao et al. [15] extended
this idea by introducing the infrared patch-image (IPI)
model, which casts detection as a decomposition of the
data into low-rank background and sparse target components.
However, in complex scenes, the application of nuclear-norm
and L1-norm regularizations in the IPI framework can cause
loss of target details or leave background artifacts—such
as prominent structural edges—within the estimated target
component. To mitigate this, the weighted IPI (WIPI)
model [16] proposed assigning adaptive weights to each
column of the target patch matrix based on local
structural properties. However, the weight estimation in
WIPI is computationally expensive and time-consuming. To
improve efficiency, the reweighted IPI (RIPI) model [17]
introduced weighted nuclear norm and weighted L1-norm
regularizations to better adapt to varying background and
target characteristics. Still, as the nuclear norm effectively
acts as an L1 penalty on the singular values, it may yield
biased estimates. To address this limitation, non-convex
surrogates [18] and the Schatten-12 norm [19] were explored
for more accurate low-rank background modeling [20]. In
parallel, total variation (TV) regularization [21], [22], [23]
has demonstrated effectiveness in preserving both smooth
and edge structures in background estimation. Based on
this, the TVIPI model [24] integrated TV regularization
into the IPI framework to enhance detection performance
and robustness. However, its performance can degrade in
cases with insufficient edge samples, leading to residual
background sparsity [25]. To address this, the reweighted
TVIPI (ReTVIPI) model [25] introduced a combination of
spatial and temporal features. Further developments extended
these models to the tensor domain, such as the tensor-based
ReTVIPI framework [26], which was found effective in
handling more complex background textures. Additionally,
a dual-window local contrast enhancement method followed
by multiscale IPI feature extraction was proposed in [27]
to improve contrast between targets and backgrounds.
Beyond IPI-based techniques, various other strategies have
been developed to identify weak small targets in infrared
images [6], [28], [29], [30], [31]. These approaches represent

diverse modeling strategies and collectively advance the
development of infrared small target detection technologies.

A literature survey reveals that existing detection
models predominantly use the nuclear norm of a matrix
as an approximation of its rank and the L1- norm
to approximate the L0-norm during optimization. These
simplistic approximations can lead to detection errors,
particularly when strong edges in the background are
erroneously classified into the sparse component, increasing
the false alarm rate. To address these issues, the thesis
proposes a new detection model based on fractional-order
total variational regularization and nonnegative L1-norm.
With appropriate algorithmic optimization, the model can
automatically separate the target from the background. The
contributions of this work are as follows:

1) To eliminate suppress the background edge features,
the thesis adopts a low-rank approximation of the
background fast matrix using a non-convex γ norm

2) To eliminate the prominent residual edges in the
target image under challenging backgrounds, this study
combines fractional total variation regularization to
more comprehensively capture background features.

3) Recognizing that true infrared small targets exhibit
consistently positive intensity relative to their
surroundings, we impose a nonnegativity constraint on
the target patch matrix to improve detection accuracy.

II. PRELIMINARIES

A. IPI Model

The IPI model [15] performs low-rank sparse optimization
decomposition by rearranging a single frame image into an
infrared block image as the input image. The core idea
is to decompose the infrared block image I into three
block matrices B (background), T (target), and N (noise)
expressed as:

I = B + T +N (1)

Following the RPCA framework, the rank of B is relaxed
to its nuclear norm ∥B∥∗, and the L0-norm of T is replaced
by the L1-norm ∥T∥1. We further assume that the noise
matrix N has independent, identically distributed entries and
satisfies

∥N∥F ≤ δ, δ > 0.

Equivalently,
∥I −B − T∥F ≤ δ.

Accordingly, the IPI optimization problem can thus be
reformulated as:

min
B,T

∥B∥∗ + λ ∥T∥1

s.t. ∥I −B − T∥F ≤ δ,
(2)

Where, ∥ · ∥∗, ∥ · ∥1, and ∥ · ∥F represent the nuclear norm,
L1-norm, and Frobenius norm, respectively.

B. γ norm

The IPI model may retain residual structural edges because
it relies on the nuclear norm for rank approximation. To
address this limitation, a more accurate surrogate—known
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as the gamma norm—is employed to approximate the rank
of matrix B [18], expressed as:

∥B∥γ =
∑
i

(1 + γ)σi(B)

γ + σi(B)
, γ > 0 (3)

where σi(B) is the singular value of matrix B, and
limγ→∞ ∥B∥γ = ∥B∥∗ and limγ→0 ∥B∥γ = rank(B) can
be derived using the limit in mathematics. As γ → 0,
the γ-norm converges to rank(B), whereas as γ → ∞, it
converges to ∥B∥∗. Consequently, the γ-norm interpolates
between the matrix rank and its nuclear norm, providing
a more accurate representation of the low-rank nature of
the background matrix than the nuclear norm. Directly
minimizing the rank of a matrix leads to a non-convex and
computationally intractable problem. To address this, the
proposed method employs the γ-norm as a tractable surrogate
for rank approximation.

C. Target Nonnegativity

In prior works [15], [16], the L1 norm characterizes the
target patch-image representation. This regularization,
however, exclusively captures target sparsity while
disregarding the inherent physical property that infrared
small targets demonstrate higher intensity than their
local surroundings. Consequently, authentic targets
consistently exhibit positive values within the patch-image
domain. A more physically consistent approach therefore
necessitates imposing a non-negativity constraint on the
target patch-image, formally expressed as:

∥T∥1,≥0 =
∑
i,j

max(Ti,j , 0). (4)

III. PROPOSED METHOD

This section introduces a novel IPI-based detection
framework designed to enhance detection precision. The
methodology, delineated in Fig. 1, comprises two primary
stages: patch-image construction and image reconstruction.
The reconstruction phase is subsequently partitioned into
background restoration and target recovery components.
Target image reconstruction is achieved through optimization
of the proposed model detailed below.

A. Model

The fractional order total variation (FTV) model [32],
[33] extends the classical total variation (TV) model by
incorporating fractional derivatives to better handle image
edges and textures while reducing noise. Classical TV
focuses on first-order gradients, while FTV introduces
fractional derivatives, which capture non-local image
information. This enhances the capability of preserving
image features such as edges and fine details that may be
smoothed out in traditional TV models.

FTV (X) =
m−1∑
i=1

n−1∑
j=1

√
(Dα

xxi,j)2 + (Dα
y xi,j)2 (5)

Let Dα
xxi,j and Dα

y xi,j denote the fractional derivatives of
xi,j in the horizontal and vertical directions, respectively,

defined as follows:

(Dα
xu)i,j =

K−1∑
k=0

(−1)kCα
k ui−k,j

(Dα
y u)i,j =

K−1∑
k=0

(−1)kCα
k ui,j−k

(6)

where K indicates the neighborhood size, and the fractional
coefficients Cα

k are defined by:

Cα
k =

Γ(α+ 1)

Γ(k + 1)Γ(α+ 1− k)
(7)

The Gamma function Γ(x), extending factorials to
non-integer domains, is expressed as:

Γ(x) =

∫ ∞

0

tx−1e−tdt (8)

Defining Dα
i X ∈ R2 as the fractional discrete gradient of

vectorized image X at pixel i, the fractional total variation
(FTV) norm becomes:

FTV(X) =
∑
i

∥Dα
i X∥2, (9)

Minimizing the FTV norm effectively denoises smooth
regions while preserving edge sharpness. Unlike classical
TV, FTV regulates smoothness via the fractional order α.
This yields the nonnegative fractional-order TV regularized
infrared patch-image model:

min
T,B
∥B∥γ + λ1FTV(B) + λ2∥T ∥1,≥0

s.t.I = T +B +N, ∥N∥F ≤ δ.
(10)

Here, FTV (·) represents the FTV norm, N denotes noise,
and λ1, λ2 balance the regularization terms. Substituting
Eq. (9) for FTV(B) produces the unified formulation:

min
T,B
∥B∥γ + λ1

∑
i

∥Dα
i B∥2 + λ2∥T ∥1,≥0

s.t.I = T +B +N, ∥N∥F ≤ δ.

(11)

Here, Dα
i denotes the fractional gradient operator. Applying

both the Gamma norm and the FTV norm to the background
patch B attenuates clutter and improves the accuracy of
background estimation. Solving Eq. (11) yields the infrared
target image, with subsequent postprocessing extracting
target information. The complete methodology is illustrated
in Fig. 1.

B. Optimization

To efficiently solve the optimization model, we develop
an algorithm based on variable splitting and subproblem
decomposition. The solution strategy begins by decoupling
correlated variables in Eq. (11), reformulating it as an
equivalent constrained optimization problem:

min
Z1,Z2,Z3

∥Z1∥γ + λ1

∑
i

∥zi∥2 + λ2∥Z3∥1,≥0

s.t. Z1 = B

Z2 = [z1; z2; ...; zmn], zi = Dα
i B

Z3 = T

I = T +B +N, ∥N∥F ≤ δ.

(12)
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Fig. 1: An overview of the FTVN model proposed in the thesis is provided.

The corresponding augmented Lagrangian formulation for
Eq. (12) is given by:

LA = ∥Z1∥γ + λ1

∑
i

∥zi∥2 + λ2∥Z3∥1,≥0 + ⟨Y1, Z1 −B⟩

+ ⟨Y3, Z3 − T ⟩+ β

2
∥Z3 − T∥2F +

β

2
∥Z1 −B∥2F

+
∑
i

(
⟨yi, zi −Dα

i B⟩+
βi

2
∥zi −Dα

i B∥2F
)

+ ⟨Y4, I − T −B −N⟩+ β

2
∥I − T −B −N∥2F .

(13)
The notation ⟨·, ·⟩ refers to the inner product between
matrices, and Yi (i = 1, 2, 3, 4) are the Lagrange
multipliers, where Yi (i = 1, 3, 4) ∈ Rmn×1 and Y2 =
[y1, y2, . . . , ymn] ∈ R2×mn. The scalar β serves as the
penalty parameter influencing the convergence behavior. To
enhance computational efficiency, the variables Z1, Z3, T ,
B, and N in Eq. (13) are converted into column-vector form.
The optimization is performed using the ADMM [34], [35],
which iteratively updates the subproblems corresponding to
Zi (i = 1, 2, 3), followed by sequential optimization of N , B,
and T .After each iteration, the Lagrange multipliers undergo
an update, while other variables are held constant in their
respective steps.

The optimization subproblem corresponding to Z1 is
reformulated as:

Zk+1
1 = argmin

Z1

LA

(
Z1, Z

k
2 , Z

k
3 , B

k, T k, Nk
)

= argmin
Z1

∥Z1∥γ +
〈
Y k
1 , Z1 −Bk

〉
+

β

2

∥∥Z1 −Bk
∥∥2
F

= argmin
Z1

∥Z1∥γ +
β

2

∥∥∥∥Z1 −
(
Bk − Y k

1

β

)∥∥∥∥2
F

.

(14)
To facilitate solving (14), we utilize the following lemma

established by Kang et al. [18]:
Consider a matrix A ∈ Rm×n with singular value

decomposition given by A = UΣAV
′, where ΣA =

diag(σA) and F (Z) denotes a unitarily invariant function

defined as the composition f ◦ σ(Z). The subsequent
optimization problem is formulated as:

min
Z∈Rm×n

F (Z) +
µ

2
∥Z −A∥2F (15)

with µ > 0 admits optimal solution Z∗ = UΣ∗
ZV

′ where
ΣZ = diag(proxf,µ(σA)). The Moreau-Yosida operator is
defined as

proxf,µ(σA) ≜ argmin
σ≥0

f(σ) +
µ

2
∥σ − σA∥22. (16)

In our model, incorporating the γ-norm renders
the objective in (17) a mixture of convex and
concave components. This thesis utilizes the DC
(difference-of-convex) programming technique [36] to
solve the problem by representing the objective function
as the difference of two convex functions and linearizing
the non-convex part using a first-order Taylor expansion.
During the (t + 1)-th inner iteration, the algorithm solves
the following subproblem:

σt+1 = argmin
σ≥0

⟨wt, σ⟩+
µk

2
∥σ − σA∥22 (17)

which yields a closed-form solution:

σt+1 = max

(
σA −

wt

µk
, 0

)
.

Here, A = Bk − Y k
1 /β, and wt = γ(1 + γ)/(γ + σt)2

represents the gradient of f at σt. Once convergence to
a local optimum σ∗ is achieved, the update Zk+1

1 =
Udiag(σ∗)V

′ is used to solve (14).
The optimization problem for Z2 is equivalent to:

Zk+1
2 = argmin

Z2

LA

(
Zk
1 , Z

k
3 , B

k, T k, Nk
)

= argmin
Z2

∑
i

(
∥zi∥2 +

〈
yki , zi −Dα

i B
k
〉

+
βi

2

∥∥zi −Dα
i B

k
∥∥2
F

)
.

(18)

It is worth noting that this is a constrained L2 optimization
problem, solvable via a two-dimensional shrinkage-based
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solution

zi = max

{∥∥∥∥Dα
i B −

yi
βi

∥∥∥∥
2

− 1

βi
, 0

}
·

(
Dα

i B −
yi

βi

)
∥∥∥Dα

i B −
yi

βi

∥∥∥
2

.

(19)
The Z3 subproblem aims to solve the following

optimization formulation:

Zk+1
3 = argmin

Z3

LA

(
Zk
1 , Z

k
2 , B

k, T k, Nk
)

= argmin
Z3

λ2∥Z3∥1 +
β

2

∥∥∥∥Z3 −
(
T k − Y k

3

β

)∥∥∥∥2
F
(20)

Eq. (20) admits the following closed-form solution:

Zk+1
3 = Thλ2

β

(
T − Y k

3

β

)
(21)

Thε(W ) =

 w − ε w > ε
w + ε w < −ε
0 otherwise

(22)

where Thε(·) is the thresholding operator [37].
In the second step, the subproblems for N , B, and T

are addressed. The N -subproblem can be reformulated as
follows:

Nk+1 = argmin
N

〈
Y k
4 , I − T k −Bk −N

〉
+

β

2

∥∥∥I − T k −Bk −N
∥∥∥2
F

=

∥∥∥∥N − (I − T k −Bk +
Y k
4

β

)∥∥∥∥2
F

,

s.t. ∥N∥F ≤ δ. (23)

The solution to Eq. (23) can be obtained using the
following projection operator:

Nk+1 = PΩ

(
I − T k −Bk +

Y k
4

β

)
. (24)

where Ω denotes the set of matrices with Frobenius norm
bounded by δ, and PΩ represents the orthogonal projection
onto Ω. The B-subproblem can be solved by:

Bk+1 ← ∂LA

∂B
= 0. (25)

Equation (25) is linear and can be expressed equivalently
as:

Bk+1 =

(
2β +

∑
i

βi(D
α
i )

TDα
i

)−1

·
[
Y k
1 + Y k

4 +
∑
i

(
(Dα

i )
T yi + βi(D

α
i )

T zi

)
+ β

(
Zk+1
1 + I − T k −Nk+1

)]
(26)

The solution to the T -subproblem is given by:

T k+1 ← ∂LA

∂T
= 0 (27)

T k+1 =
Y3 + βZk+1

3 + Y4 + β
(
I −Bk+1 −Nk+1

)
2β

(28)

During the third phase, the Lagrange multipliers are
iteratively adjusted based on the updated optimization
variables

Y k+1
1 ← Y k

1 + µβ
(
Zk+1
1 −Bk+1

)
Y k+1
2 ← Y k

2 + µβ
(
Zk+1
2 −DαBk+1

)
Y k+1
3 ← Y k

3 + µβ
(
Zk+1
3 − T k+1

)
Y k+1
4 ← Y k

4 + µβ
(
I − T k+1 −Bk+1 −Nk+1

)
.

(29)

where µ > 0 is a predetermined step size that eliminates
the need to update β at each iteration, thereby enhancing the
stability of the solution. Algorithms 1 and 2 summarize the
overall optimization procedure.
Algorithm 1: FTVN Model Optimization Procedure
Input: Input patch I ∈ Rm×n; parameters β, λ1, λ2,

tolerance δ
Output: Estimated background Bk and target Tk

1 Initialize: B = T = N = Z1 = Z3 = Z4 = Y1 =
Y3 = Y4 = zeros(m,n),

2 vectorize Z2 = zeros(mn, 2), Y2 = zeros(2,mn).
3 while stopping criteria not met do
4 Update Zk+1

1 as per Algorithm 2 and Eq. (17);
5 Compute Zk+1

2 using the 2-D shrinkage operator
(Eq. (19));

6 Compute Zk+1
3 = Thλ2

β

(
T k − Y k

3

β

)
;

7 Update Nk+1 = PΩ

(
I − T k −Bk +

Y k
4

β

)
;

8 Update Bk+1 following Eq. (26);
9 Update T k+1 based on Eq. (28);

10 Refresh multipliers Y k+1
i for i = 1, 2, 3, 4 using

Eq. (29);
11 Verify whether the convergence criterion is

satisfied:

∥I −Bk+1 − T k+1 −Nk+1∥F
∥I∥F

< δ

Increment iteration counter: k ← k + 1;

Algorithm 2: Optimization of Non-Convex Problems
via DC Programming
Input: Initialization parameters Bk, ∆0, Λ, γ, ϵ3
Output: Bk+1 = U∆t+1V

1 Initialization: Set
B0 = T0 = N0 = X0 = zeros(m,n), choose ϵ2, and
t = 0;

2 while the convergence condition remains unmet do
3 Calculate weights wt =

γ(1+γ)
(γ+∆t)2

and update
∆t+1 = max(0, S − wt

µ );
4 if ∥∆t+1 −∆t∥2 < ϵ3, then stop;
5 Increment iteration count t← t+ 1;

IV. EXPERIMENTS

This section presents an evaluation of the proposed
method’s detection performance using real-world datasets.
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A. Evaluation Metrics

We adopted an evaluation framework that combines
both qualitative and quantitative metrics, including TDID
(3D intensity distribution), BSF (background suppression
factor), SNRG (signal-to-noise ratio gain), and computational
efficiency. All experiments were conducted on a Windows 11
platform equipped with an Intel Core™ i5-13600KF CPU
(3.50 GHz), 32 GB of RAM, and MATLAB R2024a.

The target-to-interference difference (TDID) metric
characterizes an image’s gray-level distribution, utilized here
to visually assess the clutter suppression quality in detected
target images.

The BSF measures the effectiveness of background
attenuation, with larger BSF values indicating stronger
suppression. It is defined as:

BSF =
Cin

Cout
(30)

Let Cin and Cout denote the standard deviations of the
background region in the input and processed images,
respectively. A higher BSF value indicates a more effective
suppression of background fluctuation.

SNRG measures target enhancement effectiveness:

SNRG =
SNRout

SNRin
(31)

The terms SNRin and SNRout quantify the image
signal-to-noise ratios before and after applying the model,
respectively. The SNR is computed as (Gmax − Gmean)/θ,
where Gmax, Gmean, and θ correspond to the maximum gray
value, mean gray value, and standard deviation, respectively.
Higher SNRG values indicate better target enhancement
capability.

B. Experimental Setup

Six representative datasets were chosen from infrared
small-target repositories to assess the detection performance
of the proposed method. Their detailed characteristics are
listed in Table I.

To evaluate its effectiveness, the proposed method is
compared with eight advanced techniques for dim infrared
small target detection, including two traditional baselines
(MAXMED and TOPHAT) and six recent algorithms
(PSTNN, IPIAPG, TV-PCP, NRAM, LAMPS, and 4D-TR).
The parameter configurations for these methods are
summarized in Table II.

During the patch-image construction process, overlapping
patches may result in multiple pixel assignments in the
reconstructed image. Consistent with [15], to mitigate this,
a one-dimensional median filtering technique is utilized to
reconstruct the background and target components.

C. Results and Analysis

This section presents the comparative results of the
nine evaluated approaches. We begin by specifying the
parameter settings for the proposed FTVN method. Extensive
experiments reveal that the optimal performance of the
proposed model is achieved with a block size of 50 × 50
and a sliding stride of 15. The parameter λ1 is chosen
empirically and typically set around 0.01; in our experiments,

the parameter λ1 was fixed at 0.005. The balancing parameter
λ2, which mediates the trade-off between the γ-norm and
L1-norm contributions while incorporating the FTV term’s
influence, was selected as:

λ2 =
1√

min(m,n)
,

The height and width of the input infrared image block
are denoted as m and n respectively. The penalty parameter
β in the augmented Lagrangian framework was chosen to be
0.025, and the multiplier µ was empirically set to 1.5.

For the proposed algorithm solving the FTVN model, we
define the tolerance error as:

tol =

∥∥I − T k −Bk −Nk
∥∥
F

∥I∥F
, (32)

where k indicates the current iteration index. Convergence is
declared when tol < 10−5 or when the maximum number
of iterations, MaxIter = 1000, is reached.

Figs. 2-7 present detection outcomes across different
methodologies alongside corresponding TDID plots,
providing visual assessment of target enhancement and
noise suppression capabilities. Ground-truth targets are
circled in green for enhanced visibility. Analysis of Fig. 3
(Dataset 2) reveals minimal background clutter with two
high-brightness targets. All approaches demonstrate effective
detection, achieving perfect (100%) detection probabilities.
For complex backgrounds (Figs. 4-7), most techniques
successfully identify targets but exhibit substantial residual
clutter in target images, leading to elevated false alarm
rates. Notably, classical methods (IPIAPG, PSTNN,
TV-PCP) produce widely distributed noise artifacts. While
the proposed method shows minor residuals in datasets
4-6 (Figs. 5-7), its background residuals are significantly
attenuated compared to alternatives, demonstrating distinct
performance advantages in clutter suppression.

To quantitatively assess performance, we report the
average SNRG and BSF for the proposed and comparative
methods, summarized in Tables IV and V. In datasets
1, 4, and 5, the proposed method demonstrates excellent
performance, achieving the highest average SNRG and
BSF values, significantly outperforming other comparison
methods. Specifically, in these datasets, the proposed
method shows remarkable advantages in background noise
suppression and target detection enhancement. In datasets 2
and 6, although the proposed method did not achieve the
highest values, it still demonstrated strong competitiveness,
ranking second in both cases. This indicates that the proposed
method has strong robustness and versatility when processing
datasets of varying complexity and can effectively improve
detection performance across different scenarios.

D. Sensitivity Analysis

The proposed model incorporates several critical
parameters requiring sensitivity analysis to optimize
detection performance. Among these, the regularization
parameters λ1 and λ2 exert significant influence on the
optimization behavior governed by Eq.(11).
During the experiments, all other parameters are held
constant, and only λ1 and λ2 are varied to evaluate their
influence on performance. We let λ1 take values in {0.01,
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Fig. 2: Detection outcomes and TDID metrics across comparative methodologies for the initial frame of Dataset 1.
Ground-truth targets are annotated with green circles.

Fig. 3: Detection outcomes and TDID metrics across comparative methodologies for the initial frame of Dataset 2.
Ground-truth targets are annotated with green circles.
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Fig. 4: Detection outcomes and TDID metrics across comparative methodologies for the initial frame of Dataset 3.
Ground-truth targets are annotated with green circles.

Fig. 5: Detection outcomes and TDID metrics across comparative methodologies for the initial frame of Dataset 4.
Ground-truth targets are annotated with green circles.
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Fig. 6: Detection outcomes and TDID metrics across comparative methodologies for the initial frame of Dataset 5.
Ground-truth targets are annotated with green circles.

Fig. 7: Detection outcomes and TDID metrics across comparative methodologies for the initial frame of Dataset 6.
Ground-truth targets are annotated with green circles.
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Fig. 8: The first column shows the impact of different combinations of values for λ1 and λ2 on SNRG, while the second
column shows their impact on BSF. The values in the figure are all average values.
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Fig. 9: The ROC curves presented in the figure provide a performance comparison of different approaches with respect to
detection capability.
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TABLE I: Overview of Six Representative Infrared Sequences.

Datasets Background overview Target overview

Dataset 1 Complex urban background. The background brightness
varies greatly.

Small round target exhibiting low contrast relative to the
nearby area.

Dataset 2 Bright cloud-covered background containing rich texture
in specific sections.

A small round target, moving through the clouds.

Dataset 3 Ocean background. Complex artificial buildings near the
coast.

A circular target with a bright dot. Moves slowly in
sequence.

Dataset 4 Ground environment featuring significant clutter and
bright background interference.

The target is an airplane with a random motion
trajectory.

Dataset 5 Ground scene with heavy clutter. An airplane observed at a long imaging distance,
exhibiting significant size variation.

Dataset 6 Ground scene with heavy clutter. Complex artificial
buildings near the mountains.

A single target on the move.

TABLE II: Key parameter configurations for the comparison approaches employed during experimentation.

Comparison Method Acronyms Key Configuration Parameters

Max-median Filter MAXMED Structural dimensions: 5× 5

New-Top-hat Filter TOPHAT Structural Shape: disk; Size: 5× 5

Partial Sum of Tensor Nuclear Norm PSTNN Patch size: 40× 40; Sliding step: 40;

λ = 0.7/
√
max(n1, n2)× n3

Infrared Patch-Image with Accelerated Proximal Gradient Solver IPIAPG Patch size: 50× 50; Sliding step: 20

λ = 1/
√
max(m,n)

Total variation regularization and principal component pursuit TV-PCP Patch size: 50× 50; Sliding step: 20

λ1 = 0.005; λ2 = 1√
min(m,n)

; β = 0.025; γ = 1.5

Non-convex Rank Approximation Minimization NRAM Patch size: 50× 50; Sliding step: 10;

λ = 1/
√
min(m,n)

Low-rank approximation and multiple sparse LAMPS Patch size: 50× 50; Sliding step: 20

λ = 0.4; α = 0.01; β = 0.01;

4-D Tensor Ring model 4D-TR Patch size: 70× 70; Tenmporal size: N3 = 15;L = 2;

λ1 =
∑l

i=1
L√

max(
∏n+l−1

i=n Ni,
∏n−1

i=n+l Ni)

0.005, 0.0001}, and λ2 take values in {1, 2, 3} (here
the value of λ2 refers to the numerator in the equation
λ2 = 1√

min(m,n)
, while the denominator remains unchanged)

The average SNRG and BSF metrics under different settings
of λ1 and λ2 are reported in Fig. 8. The results suggest
several noteworthy observations. When the value of λ1 is
fixed, the average SNRG and BSF of most datasets show a
slight increase as the value of λ2 increases. However, when
the value of λ2 reaches 3, the average SNRG and BSF for
datasets 4 and 5 drop sharply. When λ2 is fixed, the average
SNRG and BSF of most datasets show a slight increase as
λ1 decreases. In general, when λ2 is set to 3, datasets 4 and
5 exhibit the worst detection performance, with a significant
number of false alarms.

In Eq. (5), Dα
xxi,j and Dα

y xi,j denote order-α derivatives
taken in the horizontal and vertical directions, respectively.
where α represents the fractional order, typically within
the range (0, 1). The choice of α significantly affects

the smoothness of gradient computation and denoising
performance. A lower value α generally produces smoother
gradients and reduces noise but may weaken the denoising
effect. In contrast, a larger α value improves edge
preservation but could not completely eliminate noise. We
investigated the impact of different values α on the SNRG
and BSF metrics of the proposed algorithm. As shown in Tab
III, the key findings can be summarized as follows: for the
SNRG metric, α = 0.4 yields the best performance across all
six datasets, with α = 0.2 as the second-best choice (except
for Dataset 5). For the BSF metric, α = 0.4 also performs
best (except for Dataset 2).

Next, the ROC curves for the nine methods evaluated on
six image sequences are presented. These curves illustrate
how the detection probability (Pd) varies with different
false alarm rates (Fa), reflecting the trade-off between
sensitivity and specificity. To further quantify performance,
the Area Under the Curve (AUC) for each method is
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TABLE III: BSF and SNRG indicators of each sequence under different α values

Datasets
α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6

BSF SNRG BSF SNRG BSF SNRG BSF SNRG BSF SNRG

seq1 125.891 226.302 125.884 226.289 125.925 226.362 125.889 226.296 125.849 226.225

seq2 52.803 101.08 52.802 101.078 52.806 101.086 52.802 101.078 52.807 101.069

seq3 66.379 91.745 66.304 91.640 66.454 91.848 66.257 91.575 65.879 91.053

seq4 11.309 22.604 11.301 22.588 11.311 22.609 11.288 22.563 11.247 22.481

seq5 12.186 24.359 12.179 24.344 12.22 24.427 12.203 24.392 12.176 24.338

seq6 24.870 49.37 1 24.861 49.353 24.872 49.375 24.803 49.328 24.822 49.264

TABLE IV: Comparison of SNRG Across Methods for Datasets 1–6

Methods
SNRG

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

MAXMED 6.054 9.384 2.059 2.293 1.718 5.146

TOPHAT 59.607 97.101 40.837 9.4426 10.098 35.586

IPIAPG 22.803 40.931 29.977 8.299 12.118 24.794

TV-PCP 12.013 26.931 11.431 14.396 19.049 39.602

NRAM 181.234 104.063 130.491 14.3914 15.634 22.545

PSTNN 37.001 76.923 40.096 6.775 10.097 35.586

LAMPS 197.972 100.912 136.029 12.711 18.679 47.489

4D-TR 220.986 99.188 73.947 21.804 22.661 41.565

OURS 224.469 103.835 107.523 22.097 24.796 44.671

TABLE V: Comparison of BSF Across Methods for Datasets 1–6

Methods
BSF

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

MAXMED 3.453 4.779 1.591 1.239 0.974 2.714

TOPHAT 32.163 48.697 29.471 4.731 5.056 17.903

IPIAPG 25.002 25.968 31.421 5.309 7.564 15.287

TV-PCP 14.175 18.263 11.086 7.366 9.641 22.112

NRAM 97.761 56.886 93.817 7.198 7.821 22.437

PSTNN 15.331 41.609 28.936 3.396 5.056 17.903

LAMPS 106.792 52.488 97.704 6.991 9.347 24.302

4D-TR 124.578 51.041 53.386 10.919 11.337 21.927

OURS 126.882 52.729 77.993 11.072 12.404 22.606

calculated and annotated in the figure. Generally, a higher
AUC indicates better detection capability. The ROC curves
and corresponding AUC values of all methods on six
sequences are shown in Figure 9. In most cases, the

proposed method achieves the highest AUC, demonstrating
superior overall detection by balancing Pd and Fa more
effectively. The six sequences feature complex, non-uniform,
and unsmooth backgrounds. The ROC curves confirm
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that the proposed model maintains robust and effective
performance in complex environments, highlighting its
practical utility. Additionally, While ROC curves depict
the PD–FA relationship, a thorough evaluation should also
include precision, recall, and the F1 score. Across these
measures, the proposed method consistently outperforms
baseline approaches in detection accuracy.

V. CONCLUSIONS

To improve IPI-based detection performance in complex
backgrounds, we propose a new infrared dim small
target detection framework integrating fractional-order
total variation regularization with a nonnegative L1-norm
constraint. This model effectively preserves the overall
background pixel distribution while retaining detailed edges
and corners. On six benchmark datasets, experimental
evaluations indicate that the proposed method effectively
reduces background clutter while enhancing target features.
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