Engineering Letters

An Implementation of Self-study Exercise
Problems for Entry-level SQL-Python
Database Programming

Ni Wayan Wardani, Nobuo Funabiki, Putu Sugiartawan, Anak Agung Surya Pradhana, I Nyoman Darma
Kotama and I Nyoman Agus Suarya Putra

Abstract—Currently, SOL and Python are popular in many
universities and professional schools worldwide. SQL is an
effective domain-specific language used for relational database
management and querying. Python is a high-level, flexible pro-
gramming language well known for its abundance of libraries
and ease of use. When integrated, they provide a comprehensive
approach to study database management by students. This
study implements the grammar-concept understanding problem
(GUP) and the comment insertion problem (CIP) for the first-step
self-studies of entry-level SQL-Python database programming.
These problems are designed to understand the keywords and
behaviors of the given source code. In GUP, each question
asks to answer the corresponding key element in the given
code representing the defined grammatical idea. In CIP, each
question asks for the proper comment to be inserted in the
code’s corresponding place. A string matching with the correct
one automatically marks any answer. For evaluations of our
GUP/CIP approach for the first-step SQL-Python database
programming, we developed 18 instances each of GUP and CIP
for basic concepts. The approach was tested with 60 students
at the Indonesian Institute of Business and Technology, who
completed GUP and CIP exercises and assessed system usability
via the System Usability Scale (SUS), achieving a satisfactory
score of 84. Furthermore, surveys showed self-study enabled
flexible learning and practice, over 85% of students reporting
improved final exam grades. The findings suggest GUP and CIP
enhance self-paced database programming education.

Index Terms—Database programming, SQL, Python,
grammar-concept understanding problem, comment insertion
problem, self-study, usability evaluation.

1. INTRODUCTION

OWADAYS, database systems have been used in vari-
ous practical application systems to handle many data
efficiently. For them, database programming is the essential

Manuscript received April 17, 2024; revised June 13, 2025. This work
was supported by Okayama University and Indonesian Institute of Business
and Technology (INSTIKI).

Ni Wayan Wardani is Ph.D candidate of Information and Communication
System Department, Okayama University, Okayama, 700-8530, Japan, (e-
mail:pjSwle4c@s.okayama-u.ac.jp).

Nobuo Funabiki is a Professor of Information and Communication
System Department, Okayama University, Okayama, 700-8530, Japan (e-
mail:funabiki @okayama-u.ac.jp).

Putu Sugiartawan is a Ph.D candidate of Information and Communication
System Department, Okayama University, Okayama, 700-8530, Japan (e-
mail:p18z9yov @s.okayama-u.ac.jp).

Anak Agung Surya Pradhana is a Ph.D candidate of Information and
Communication System Department, Okayama University, Okayama, 700-
8530, Japan (e-mail:p44c722y @s.okayama-u.ac.jp).

I Nyoman Darma Kotama is a Ph.D candidate of Information and
Communication System Department, Okayama University, Okayama, 700-
8530, Japan (e-mail:p9363bg2 @s.okayama-u.ac.jp).

I Nyoman Agus Suarya Putra is an Assistant Professor of Business and
Creative Design Department, Indonesian Institute of Business and Technol-
ogy, Denpasar, 80225, Indonesia (e-mail:nyomansuarya@instiki.ac.id).

tool for the maintenance, migration, retrieval, integrity, and
security of data in the database. As a result, the compe-
tence of database programming is considered the inevitable
ability of data scientists and software engineers [1]. Many
universities and professional schools offer database program-
ming courses worldwide in response to this growing need
for qualified database programmers. SQL (Structured Query
Language) is the potent domain-specific language used for
managing and querying relational databases in database
programming [2].

On the other hand, Python is a versatile, high-level pro-
gramming language known for its simplicity and a huge
ecosystem of libraries [3]. They can work together to pro-
vide a complete solution for managing database data. Their
integration will offer a comprehensive approach to study
database management by students.

Previously, the grammar-concept understanding problem
(GUP) has been presented for self-study of fundamental
grammar concepts of Python programming [4]. A GUP
instance consists of a source code, a set of questions on
grammatical terms that appear in the code, and their correct
answers [5] [6]. Each question describes the grammatical
concept or meaning of a keyword, such as a reserved word, a
command, and a common library, that appears in the source
code and asks to answer it. Any answer from a student
is automatically marked by a string matching the correct
one stored in the answer interface. A student can continue
studying GUP instances until they reach the correct answers
to the questions.

In addition, the comment insertion problem (CIP) has
been presented for self-study of code reading in TCP/IP
network programming [7]. A CIP instance consists of source
code with blank comments, a set of comments to fill in the
blanks, and their correct answers. Again, a student’s answer
is marked by the string matching.

In this paper, we implement the GUP and the CIP for
the first-step self-studies of entry-level SQL-Python database
programming (SQL-Python). We selected 105 keywords for
SQL-Python and created the corresponding questions based on
their definitions. GUP and CIP are designed for novice learners
to start studying programming by understanding the keywords
and behaviors of the given source code. For evaluations of
our GUP/CIP approach for the first step of the SQL-Python
study, we created 18 GUP instances and 18 CIP instances
on fundamental topics. We assigned the final examination
within 180 minutes to 60 undergraduate students who took the
database programming course in two majors at the Indonesian
Institute of Business and Technology. Their solution results

Volume 33, Issue 8, August 2025, Pages 2939-2948

Engineering Letters

confirm the proposal’s validity in the SQL-Python study.

The remaining sections of this paper are organized as
follows: Section II overviews related works in literature. Sec-
tion III overviews the preparation of fill-in-the-blank questions.
Section IV presents GUP for database programming. Section V
presents CIP for database programming. Section VI overviews
the usability aspects of the proposed system. Section VII
evaluates the proposal. Section VIII concludes this paper with
future works.

II. LITERATURE REVIEW

In this section, we briefly introduce some related works in
literature.

In [2], A. Mitrovic presented SQL Tutor. Developing elec-
tronic tutors that mimic the benefits of one-on-one instruction
with a human tutor is the aim of the Intelligent Teaching
System (ITS) research. SQL Tutor is designed as a prac-
tice environment, presupposing that students have completed
courses on the fundamentals of database management. Thereby
complementing rather than replacing traditional education.
Although the system covers only the SQL SELECT statement,
other SQL statements might be covered using a similar method-
ology. Because queries lead to the significant challenges
among students, this emphasis on the SELECT statement does
not lessen the system’s significance. Additionally, SELECT
concepts are directly applicable to other SOL commands and
relational database languages.

In [8], Tung et al. introduced the Programming Learning
Web (PLWeb) as a comprehensive system designed to manage
programming exercises, assisting instructors in designing
tasks, and fsupporting student programming learning. Specifi-
cally, PLWeb includes an integrated development environment
(IDE) as a key feature to enhance the learning experience.

In [9], Alaoutinen et al. presented a student self-assessment
tool that can be used to motivate learning and monitor the
student’s progress. This tool offers a survey with questions
scaled based on Bloom’s new taxonomy. In addition, it provides
instructors a framework that is more objective than general
scales to assess the student’s level of knowledge acquisition.

In [10], Agha et al. introduced a SQL tutor designed for
novice students to learn database programming. This tutoring
system displays materials such as video, audio, and image files
to enhance the learning process.

In[11], Lavbic et al. built a method to support students’ SQL
learning. The system utilizes attempts by previous students at
completing SQL-related tasks. They used the Markov Decision
Process (MDP) to explore the states in search of the best hint
and to encode the knowledge derived from past data. The
authors parsed the SQL language and constructed the solution
steps to bridge the gap between raw queries and MDP states.
Their findings show that even after multiple steps guidance,
the hints are widely accepted and significantly reduce the time
required to find the correct answer.

In [12], Garner et al. discussed existing technologies to
improve students’ SQL learning. They introduced SQL in Steps
(SiS) as an online environment that combines a graphical user
interface with a textual representation to facilitate learning. SiS
allows users to easily identify and understand errors, easing the
transition from graphical to textual interfaces. The interface is
intuitive, and the close coupling between the user interface and
textual equivalent makes the transition seamless. Their study

involving first-year undergraduates confirmed the potential of
SiS in SQL learning.

In [13], Migler et al. examined students’ learning process in
an introductory database course. They studied 114 students’
efforts to solve 116 SQL lab exercises. They tracked how
well students understood the SQL concepts and the effort they
invested in completing database tasks.

In [14] and [15], Ala-Mutka et al. and Konecki highlighted
common challenges novice programmers face and explored ap-
proaches to programming education. Various tools have been
developed to support students in overcoming programming
obstacles. To address these challenges, ToolPetcha, proposed
by Queiros et al., is an automated tutoring tool designed to
enhance programming education [16].

In [17], Carbone et al. investigated internal factors influ-
encing students’ struggles with introductory programming
courses, focusing on motivation and problem-solving skills.
Their study at Monash University revealed that intrinsic,
extrinsic, and achieving motivation, alongside deficiencies
in skills like code tracking and debugging, significantly
impact student engagement and persistence in programming
education.

In [18], Piteira et al. explored challenges students encounter
in learning computer programming. This study identified
specific concepts that students find difficult when acquiring
programming skills. Based on this analysis, the authors
provided insights and recommendations to improve computer
programming education.

In [19], Nguyen et al. discussed the development of an
intelligent chatbot designed for educational purposes, par-
ticularly in programming courses. The authors introduces
the Integ-Rela model, which integrates multiple knowledge
domains to form a comprehensive knowledge base. This model
enables the chatbot to retrieve and provide relevant information
across programming-related topics effectively. Consequently,
the chatbot serves as a virtual tutor, helping students learn
programming concepts. The effectiveness of this system is
demonstrated through experiments, showing its potential as a
practical tool in online programming education.

In [20], Okonkwo et al. developed RevBot, a chatbot to help
students practice past exam questions in Python programming.
Using the Snatchbot Chatbot API, RevBot is designed to inter-
act with students, providing questions and answers for revision.
In their evaluation, assessed its effectiveness, indicating that it
can enhance students’ performance in Python programming.
The authors highlights the potential of RevBot as a effective
tool in programming education, especially for introductory
programming courses.

In [21], Ihantola et al. reviewed recent developments
in automated assessment tools designed for programming
exercises. The authors examined the key features and devel-
opment approaches, such as programming languages, learning
management systems, testing systems, resubmission restric-
tions, manual assessments, security measures, distribution
mechanisms, and customized functionalities for introductory
programming courses. The review highlights the strengths
and limitations of these tools in supporting programming
education.

In [22], Elgendy et al. presented a method using Genetic
Algorithms (GAs) for automatically generating test data for
ASP.NET web applications. The study introduces new genetic

Volume 33, Issue 8, August 2025, Pages 2939-2948

Engineering Letters

operators designed for the specialized architecture of web
applications, aiming to improve the execution efficiency and
code coverage in test data generation. The system developed
in this study uses static analysis to identify critical data-flow
elements in applications and then applies GAs to generate test
cases that effectively cover these elements, such as variables
or dependencies. The study demonstrates the system’s efficacy
through case studies on real-world ASP.NET projects and
empirical evaluation, highlighting its value in enhancing the
reliability of ASP.NET web applications.

In [23], Unal et al. conducted a qualitative study to explore ~
students’ perceptions of a collaborative learning environment.
They developed a educational platform utilizing technology for
web-based interactive problems. To evaluate this environment,
a semi-structured interview format was employed to gather stu-
dents’ opinions, and facilitating collaborative problem-solving
using dynamic web technologies. The findings suggested that
incorporating collaborative learning techniques focused on
problem-solving and leveraging dynamic web technologies
can enhance student engagement and problem-solving skills
in a community college settings.

In [24], Akhuseyinoglu et al. introduce Database Query
Analyzer (DBQA), a learning tool that uses interactive data
visualizations to demonstrate the effects of clauses and
conditions on SQL SELECT statements. In this study, the
tool was used to illustrate SQL query examples. Specifically,
DBQA provides result sets comparable to those maintained
by the database management system while the query is
being processed. Clauses in an SQL SELECT statement are
processed by DBQA in the following order (if applicable) upon
query submission: FROM, WHERE, SELECT, GROUP BY,
HAVING, and ORDER BY. DBQA modifies the result set
shown to the learner according to each clause and condition,
highlighting the clause currently being processed. The study
assessed DBQA’s impact on students’ comprehension of SQL
query processing.

In [25], Kenny et al. present an automated tutor for a
database skills training environment to help students improve
their SQL skills. Because SQL is a formal language, it is well-
suited for automated tutoring. They employ a virtual teaching
model for automated tutoring SQL, a query language, where
students are involved in a learning-by-doing process. As with
most structured languages, errors in SQL can be classified as
syntactical, semantic, or pragmatic, enabling detailed analysis.
The tutor system emulates this error classification by providing
scaffolding in the form of direction and feedback. The student
may view increasing levels of feedback, such as error alerts,
tips, and partial solutions, in line with guided discovery. The
study assessed the tutor’s impact on students’ SQL proficiency
through user testing with pre- and post-assessments, showing
improved performance.

In [26], Kakeshita et al. present pgtracer, a Moodle
plugin that supports programming instruction. Pgtracer gives
students fill-in-the-blank programming problems and gathers
student logs to assess the students’ comprehension level and
learning process. In their study, they use pgtracer to assign
homework to students in a real programming course. Every
week, they create fill-in-the-blank questions based on the
course material. Data analytics features offered by pgtracer
are used to analyze learner behaviors on the platform. The
analysis results are used to determine each student’s level of

understanding and to create the questions for the upcoming
weeks. The system provides instructors with analysis of
students’ accomplishments and activities to enhance coordina-
tion between homework and lectures. The teacher interviews
and student surveys provided insights confirming pgtracer’s
effectiveness.

In [27], Klug summarizes examples from library science
and academic literature of how SUS has been incorporated
into usability testing for websites, discovery tools, medical
technologies, and print materials. Additionally, the advantages
and difficulties of the SUS are discussed. The study also
explores optimal methods for applying the scale to usability
testing and interpreting usability complexity. Klug emphasizes
the need for tailored SUS applications to address domain-
specific usability challenges.

III. PREPARATION OF FILL-IN-THE-BLANK QUESTIONS

A. Course Outline

The experiment involved 60 first-year students at the
Indonesian Institute of Business and Technology, majoring in
Data and Information Management (MDI) or Computerized
Business Accounting (KAB). They studied database program-
ming using SQL in the core database course, which consisted
of 16 weekly 180-minute classes per semester. The database
curriculum spanned two semesters: the first covered the basic
theory of databases, while the second included a practicum
using SQL-Python. The course was taught by one instructor,
who delivered lectures and exercises, and supported by one
teaching assistant for the practicum.

Table I represents the course outline in the second semester.
We introduced SQL Python PLAS to the students in the middle
of July 2024 as a final examination.

TABLE 1
Course OUTLINE

Contents
Data definition language
Data definition language
Data manipulation language
Data manipulation language
Join tables (inner, left, and right join)
Join tables (cross, self, and full outer join)
Character and numeric functions
Mid examination
Date and aggregate functions
Order By, Group By, and Having
Set operation
Operator
Sql distinct
Sql As Alias
Sql view
Final examination

Week
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

IV. GRAMMAR-CONCEPT UNDERSTANDING PROBLEM FOR
SQL-PyTHON

In this section, we present the grammar-concept understand-
ing problem (GUP) for learning SQL-Python.

A. Definition of GUP

A GUP instance consists of questions, SQL-Python source
code, and the correct answers. Each question asks students to
respond to the matching element or keyword in the given source
code. It describes a fundamental grammar or library method

Volume 33, Issue 8, August 2025, Pages 2939-2948

Engineering Letters

in database programming that can be found in the code. It is
intended to help the student understand the meaning of each
significant element or keyword in the source code provided.

B. Keywords and Questions

A list of keywords and their corresponding questions must
be produced to generate GUP instances. We selected 118
keywords for SQL-Python with their questions. Table II
shows only a part of them due to space limitations. The
definition of each keyword is explained in the corresponding
question. A student needs to read the questions and answer the
corresponding keywords in the answer forms by understanding
the essential grammatical concepts in SQL-Python.

Table II includes the basic terms in database programming
that CRUD represents. CRUD stands for Create, Read, Update,
and Delete of databases, tables, or records. In addition, it
includes keywords to present the SOL functions for aggregate,
date, character, and numeric. For the course application, the
keywords for GUP instances should be selected correctly,
depending on the target database course by the curriculum [28].
By solving the provided GUP instances, a student is expected
to understand the meaning or behavior of each crucial keyword
in SQL-Python.

C. Example GUP Instance

TXT1 shows the sample SQL-Python source code of the
SQOL constraint. Students are expected to learn the meaning of
primitives or keywords that appear in this code.

TXT1: SQL-Python source code

#Create a table

cursor.execute (CREATE TABLE customer (
customer id INT NOT NULL,

customer code VARCHAR(20) UNIQUE,
customer name VARCHAR(50),

customer country VARCHAR(20)

DEFAULT “JAPAN” ,

CONSTRAINT CustomerPK

PRIMARY KEY (customer id)

)
#Create index
CREATE INDEX customer index

ON customer (customer code);

#Create a table

cursor.execute (CREATE TABLE product (
customer id INTEGER,

name VARCHAR(100),

FOREIGN KEY (customer id),

REFERENCES customer (id)

);

D. Input Files to Instance Generation

To create anew GUP instance, a teacher must select a source
code file containing the programming concepts students are
expected to learn. The system generates the associated GUP
instance files using the instance generation method. Before this
process, teachers must prepare a list of keywords paired with
their corresponding questions.

E. GUP Generation Procedure

The answer interface for a new GUP instance can be

generated through the following procedure:

1) Collect an SQL-Python source code from a textbook or
a website for students to study.

2) Extract the keywords into the list that correspond to the
keywords in Table II from the source code.

3) Select the relevant question from Table II for each
extracted keyword.

4) Discard the redundant pair of the question and the answer
if they are already selected for this source code.

5) Produce the GUP instance text file that contains the
source code, the related questions, and the correct
answers.

6) Generate the HTML/CSS/JavaScript files for the answer
interface on the web browser by running the generator
in [6] with this text.

F. GUP Instance Interface

Figure 1 shows the list of the 18 instances provided along
with the remark. If students can complete all the questions,
they are highlighted in green. If the remark status is still
’tried” with a yellow highlight, it means that students has not
answered all the questions in the instance correctly, and if the
instances are correct, then the remark status is ’completed’.
If students have not done any work, then there are no highlights.

Problems

No Problem Name

o a0

3 ALTER Table

Remark

4 Update, Delete, and Truncate a Table
5 Join Tables
Insert New Rows and Show Records
ORDER BY
Character Functions

Numeric Functions

10 Date Functions

1 Aggregate Functions

12 Group By and Having
13 Set Operation

14 Operator

15 SQL Distinct

16 SQLAS Alias

17 QL View

18 SQL Constraints

Fig. 1. GUP instance interface.

G. GUP Answer Interface

Figure 2 shows the answer interface to solve the GUP
instance at ID=2 in Table I. When a student enters an incorrect
answer in the interface, the corresponding input form is
highlighted with a red background. Otherwise, the correct
response is displayed on a white background. The student
can repeat the answer by submitting it until each question is
correct. The answer interface stores the answers correctly, as
well as the submission date and time each time the student
submits the answers.

V. CoMMENT INSERTION PROBLEM FOR SQL-PyTHON

In this section, we present the comment insertion problem
(CIP) for learning SQL-Python.

Volume 33, Issue 8, August 2025, Pages 2939-2948

Engineering Letters

TABLE II

KEYWORD AND QUESTION LIST
keyword question
connect Which function is used to create a connection object?
CREATE TABLE Which keyword is used to create a table?
INSERT INTO Which keyword is used to insert values into a table?
SELECT* Which keyword is used to show all data in a table?
WHERE Which keyword is used to filter specific tables to display?
ALTER TABLE Which keyword is used to modify the structure of a table?
UPDATE Which keyword is used to update existing records in a table?
ADD COLUMN Which keyword is used to modify a table with add a new attribute?
DROP TABLE Which keyword is used to delete a table?
ORDER BY Which keyword is used to sort the result?
DELETE Which keyword is used to delete records from an existing table?
SUM Which function is used to calculate the sum of a column?
IF Which function is used to execute different statements based on a condition?

Problem #2

#Create a Table

o1
02

1 cu CREATE TABLE employees (id INTEGER PRIMARY KEY, nome TEXT,

or
or
o
o

Questions

Q1. hich keyword is used to creste a
2
@3
Q4. How
s
06
7

Fig. 2. GUP answer interface.

A. Source Code with Comments

The source code for a CIP instance must have multiple
comments that adequately explain the essence or meaning of
the corresponding steps of the code. If the selected source
code has insufficient comments, the teacher should properly
add comments to the code. Each code block should have one
comment explaining the procedure so a novice student can
easily understand it. Then, every comment is removed and
blanked in the CIP instance. By requesting to fill in every
blank with the relevant comment in the provided source code,
a student is expected to comprehend all the blocks of the SOL-
Python source code.

B. CIP Generation Procedure

The answer interface for a new CIP instance can be
generated through the following procedure:

1) Collect a SQL-Python source code for students to study.

2) Add comments to the source code properly if current
ones are insufficient.

3) Remove and blank every comment in the source code.

4) Save each comment as the correct answer to each blank.

5) Generate the HTML/CSS/JavaScript files for the answer
interface on the web browser by running the generator
with this text.

6) Add the problem statement and the answer options to
the HTML file.

C. CIP Instance Interface

Figure 3 displays the list of the 18 CIP instances along with
the comment. A green highlight indicates that if the learner
can answer every question. If the remark state is still “tried”
with a yellow highlight, the student has not answered all of
the questions in the instance correctly; if all of the instances
are answered successfully, the remark status is “completed.”
No highlights appear if the students has not attempted any
instances.

Problems

No Problem Name Remark

e

3 ALTER Table

4 Update, Delete, and Truncate a Table

5 Join Tables

6 Insert New Rows and Show Records
ORDER BY

8 Character Functions

9 Numeric Functions

10 Date Functions

1 Aggregate Functions

12 Group By and Having

13 Set Operation

14 Operator

15 SQL Distinct

16 SQLAS Alias

17 SQL View

18 SQL Constraints

Fig. 3. CIP instance interface.

D. CIP Answer Interface

Figure 4 displays the web-based answer interface for a
sample CIP instance. The upper section presents the source
code with placeholders for comments, while the lower section
provides options for selecting appropriate comments. Students
must insert the correct comment into each placeholder by
choosing one option.

VI. UsABILITY

We conducted an SUS questionnaire for the students after the
experiment. John Brooke invented the SUS in 1986, creating
this ‘quick and dirty’ usability scale to evaluate practically
any kind of system. Table III represents the SUS questions for
students with the 5-point Likert scale.

In the SUS, a response point is the score a user assigns to
each of the ten questionnaire items, rated on a scale from 1,

Volume 33, Issue 8, August 2025, Pages 2939-2948

Engineering Letters

TABLE III
THE SUS STANDARD SCALE

The System Usability Service

Standard Version

Strongly Strongly
Disagree Agree
1 2 3 4 5

T think that I would like to use this system frequently.
I found the system unnecessarily complex.
I thought the system was easy to use.

I found the system very cumbersome to use.
I felt very confident using the system.

SPOXNAUN R LN

I think that I would need the support of a technical person to be able to use this system.
I found the various functions in this system were well integrated.

I thought there was too much inconsistency in this system.

I would imagine that most people would learn to use this system very quickly.

I needed to learn a lot of things before I could get going with this system.

#0ORDER BY

s ORDER BY age DESC.

ASC LIMIT 5 OFFSET 2

oyees WHERE NOT country= 'JP' ORDER BY name ASC"

Fig. 4. CIP answer interface.

meaning strongly disagree, to 5, meaning strongly agree, and
these scores are adjusted and summed to calculate the final
usability score.

To calculate the SUS score, each response point from the
ten SUS questions, rated from 1 for strongly disagree to 5 for
strongly agree, is adjusted by subtracting 1 for odd-numbered
items and subtracting the response from 5 for even-numbered
items, then the adjusted scores are summed and multiplied by
2.5 to produce a final usability score ranging from O to 100.

For example, if a user gives a response point of 4 for item
1, it becomes 4 - 1 = 3. If they give a response point of 3 for
item 2, it becomes S - 3 = 2. These adjusted points contribute
to the total score.

To determine the System Usability Scale assessment grades,
Table IV assigns grades based on percentile ranks, where a
score of 80.3 or higher receives an A, a score from 74 to
80.2 receives a B, a score from 68 to 73.9 receives a C, a
score from 51 to 67.9 receives a D, and a score below 51
receives an E, while Table V categorizes user acceptance, with
scores from 0 to 50.9 deemed not acceptable, scores from 51
to 70.9 considered marginal, and scores from 71 to 100 rated
as acceptable.

TABLE IV
SUS ScorE PERCENTILE RANK FOR ASSESSMENT GRADES
Grade Note
A Score >= 80.3
B Score >= 74 and <80.3
C Score >= 68 and <74
D Score >= 51 and <68
E Score <51
TABLE V
AcCEPTABILITY RANGES FOR USER ACCEPTANCE
SUS Score Note
0-50.9 Not acceptable
51-70.9 Marginal
71 -100 Acceptable

VII. EVALUATION

In this section, we evaluate the proposal through applications
to novice students of SQL-Python.

A. Evaluation Setup

For evaluations, we made 18 GUP and 18 CIP instances
using SQL-Python source codes for its basic concepts. These
were assigned them to 60 first-year undergraduate students
taking the database programming course in two majors,
Data and Information Management (MDI) and Computerized
Business Accounting (KAB), at the Indonesian Institute of
Business and Technology as the final examination in 180
minutes. Then, we analyze the correct answer rates and the
number of submission times by the students for verifications.
Table VI shows the topic, the number of questions for GUP,
and the number of comments for CIP.

B. Result Summary

Tables VII and VIII show the number of students, the
average correct answer rate and standard deviation (SD), the
average number of submission times, and its SD in each major
for GUP and CIP, respectively. Table VII suggests that for
GUP, the students in MDI solved the GUP instances better
than those in KAB, while Table VIII suggests that they were
similar for CIP. These students solved CIP very well with
the 100% average correct answer rate and the 1.57 and 1.67
average submission times. Clearly, for them, CIP is easier than
GUP.

C. Results for GUP individual instances

The results of the GUP individual instances are shown in
Figure 5 which consists of results for submission times and
correct answer rates.

Volume 33, Issue 8, August 2025, Pages 2939-2948

Engineering Letters

TABLE VI
OVERVIEW OF GUP AND CIP INSTANCES
. #of GUP #of CIP
ID topic .
questions comments
1 connection and create database 9 7
2 create a table 12 7
3 alter table 6 6
4 update, delete, and truncate a table 11 8
5 join tables 5 6
6 insert new rows, and show records 9 7
7 order by 6 5
8 character function 11 11
9 numeric function 10 10
10 date function 12 12
11 aggregate function 5 5
12 group by and having 2 2
13 set operation 3 3
14 operator 5 5
15 sql distinct 5 5
16 sql as alias 5 5
17 sql view 7 7
18 sql constraint 7 7
TABLE VII

REsuLT suMmMARY FOR GUP

majors #number of correct rate (%) #of submission
students ave SD ave SD
MDI 30 95.75 0.01 1.82 0.10
KAB 30 92.90 0.02 1.49 0.17

TABLE VIII
REsuLT suMMARY FOR CIP.

majors #number of correct rate (%) #of submission
’ students ave SD ave SD
MDI 30 100 0.00 1.57 0.14
KAB 30 100 0.00 1.67 0.08

1) Submission Times: Figure 5 illustrates the average
number of answer submission times for each GUP instance
by the students in MDI and KAB major students, respectively.
They show that the three GUP instances at (ID=12, 13, 14)
exhibit only one time to solve those instances for MDI students.
While, for KAB students, they exhibit at ID=10, 12, 13). The
GUP instance at ID=2 has the highest submission times, which
suggests that some students have difficulty solving it. MDI
students achieved an average submission times score of 1.82,

higher than KAB students’ score of 1.50.
2) Correct Answer Rates: Figure 5 illustrates the average

correct answer rates for each GUP instance by the MDI and
KAB major students, respectively. It shows that the five GUP
instances at (ID=5, 11, 12, 13, 14) exhibit 100% correct
answer rates for MDI students. For KAB students, it shows
four GUP instances at (ID=10, 11, 12, 14), which exhibit 100%
correct answer rates. MDI students were able to complete more
instances perfectly.

There were 1 GUP instance completed with the same
score between the two majors, namely ID=16. KAB students
had more difficulty working on instances compared to MDI
students, who, on average, had higher correct answer rates.
MDI students achieved an average correct answer rate score
of 95.75%, higher than KAB students at 94.04%. From the
correct answer rate scores, it can be observed that some MDI
students have difficulty in instances ID=2 and ID=4. Other
instances can be done well by achieving scores above 90%.
Meanwhile, KAB students have difficulty with (ID=1, 2, 3),
with rates below 90%.

D. Results for CIP Individual Instances

The results of the CIP individual instances are shown in
figure 6 which consist of results for submission times and
correct answer rates.

1) Submission Times: Figure 6 depicts the average number
of submissions time for each CIP instance by MDI and KAB
students, respectively. The results indicate that MDI students
solved six instances (ID=1, 3, 5, 11, 12, 13) with a single
submission, while KAB students solved five (ID=1, 3, 5, 11,
12). The CIP instances at ID=4 and ID=6 have the highest
submission times, suggesting that some MDI students have
difficulty solving it. For KAB students, CIP instances at ID=4
and ID=10 are suggested as the most difficult instances. MDI
students achieved an average submission times score of 1.57,
lower than KAB students at 1.79. This shows that MDI students
can solve all CIP examples more quickly.

2) Correct Answer Rates: Figure 6 shows that both MDI
and KAB students achieved a 100% correct answer rate across
all CIP instances, indicating the relative ease of these tasks
compared to GUP instances.

E. Results of Individual Students in MDI

Figure 7 illustrates the average correct answer rate and the
average number of submission times of the GUP and CIP
instances for each of the 30 first-year students in the MDI
major.

For GUP, two students achieved the correct rate above
90.00%, and 24 of the 30 achieved the correct rate above
95.00%. The best student at ID=1 could solve all instances
with a rate of 98.61% by 1.78 submissions for each instance.
On the other hand, the worst student at ID=28 could solve
only 91.79% of the questions where two instances were not
solved at all, namely, ID=2 with 67.00% and ID=4 with
71.00%, although the remaining instances were fully solved
with 100%. This student needs to put more effort into studying
database programming. The student in ID= 27 has the highest
submission times but achieves a 94.54% correct rate, which
means that this student studied it very seriously. For CIP,
all students achieved the 100% average correct rate. All the
students needed more than one submission time to complete
the CIP instances, with an average of 1.78 submissions for
each student.

For CIP, all students achieved the 100% average correct
rate. All the students needed more than one submission time to
complete the CIP instances, with an average 1.78 submissions
for each student.

F. Results of Individual Students in KAB

Figure 8 illustrates the average correct answer rates and the
average number of submission times of the GUP and CIP
instances for each of the 30 first-year students in the KAB
major.

For GUP, two of the 30 students achieved the average
correct answer rate above 95%. The best student at ID=1
could solve all the instances with 98.15% correctly with only
1.67 submissions for each instance on average. On the other
hand, the worst student at ID=22 achieved an 88.23% correct
answer rate. Four instances were not solved at all, whereas
the remaining instances were fully solved with 100%. This
student needs more effort in studying database programming.
The student at ID=8 has the highest submission times but

Volume 33, Issue 8, August 2025, Pages 2939-2948

Engineering Letters

Results of GUP individual instances for
submission times

3,50
2;2,93

2;2,90

3,00
2,50
2,00

150 14;1,00

10; 1,00
1,00
0,50

0,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Average of submission times in MDI Average of submission times in KAB

Results of GUP individual instances for correct
answer rates

120,00

4;87,58| |5:100,00 12; 100,00

100,00

20,00

3;82,22
60,00

40,00
20,00

0,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Average of correct answer rates in MDI Average of correct answer rates in KAB

Fig. 5. Results of GUP individual instances by students for submission times and correct answer rates.

Results of CIP individual instances for submission
times

3,50
3,00
2,50
2,00
1,50
1,00
0,50
0,00

4:2,87 10; 2,87

1;1,00 12;1,00

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Average of submission times in MDI Average of submission times in KAB

Results of CIP individual instances for correct
answer rates
120
100 18; 100%
80
60
40

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Average of correct answer rates in MDI Average of correct answer rates in KAB

Fig. 6. Results of CIP individual instances by students for submission times and correct answer rates.

Submission time results for individual student in MDI

2,50
27;2,11

200 | 4;167| 4;1,78 16;1,33

1,50

1,00

0,50

0,00

123456 7 8 9101112131415161718192021222324252627282930

Average of submission times in GUP Average of submission times in CIP

Fig. 7. Results of individual students in MDI.

achieves more than the 90% correct rate, which means this
student studied it seriously enough.

For CIP, the 30 students achieved the 100% average correct
rate. The best student at ID=13 and ID=16 could solve all
instances correctly with one single submission for any instance.
The worst students at ID=1 and ID=16 could solve them with
1.22 submissions on average.

G. Comparison of Correct Answer Rates between Problems

Tables IX and X compare the distribution of the number
of correct answer rates given by the students between GUP
and CIP. Out of the 60 students in the two majors, no student
achieved the correct answer rate of 100%, while 59 students
scored above 90%. Two students in the KAB major scored less

Correct answer rate results for individual student
in MDI

100,00%
99,00%
98,00%
97,00%
96,00%
95,00%
94,00%
93,00%
92,00%
91,00%
90,00%

1;98,61% 30; 100%

28;91,79%

12345678 9101112131415161718192021222324252627282930

Average of correct answer rate in GUP Average of correct answer rate in CIP

than 90%. The results suggest that the students need to put
more effort into studying SQL-Python.

By solving GUP and CIP instances, students in the two
majors could reinforce their understanding and review SQL-
Python concepts and principles to enhance their understanding.
It is emphasized that further improvements will be necessary
for all students to achieve a 100% score. In CIP, all students
in both majors achieved a 100% score in 180 minutes on the
final semester exam. The students found it easy to solve the
CIP questions by checking the provided answer choices.

H. Comparison of Submission Times between Majors

Tables XI and XII compare the distribution of submission
times between the two majors. For instance, all the students
in MDI submitted correct answers more than once, whereas

Volume 33, Issue 8, August 2025, Pages 2939-2948

Engineering Letters

Submission time results for individual student in

KAB
2,00
1,50
6; 1,50 8;1,83 26;1,83
1,00
1;1,22
0,50

0,00
12345678 9101112131415161718192021222324252627282930

Average of submission times in GUP Average of submission times in CIP

Fig. 8. Results of individual students in KAB.

TABLE IX
COMPARISON OF CORRECT ANSWER RATES IN GUP
range of correct # of students rate (%)
answer rate (%) MDI KAB MDI KAB
85-90 0 2 0 6.67
91-95 18 27 60.00 90.00
96-99 12 1 40.00 3.33
100 0 0 0 0
TABLE X
COMPARISON OF CORRECT ANSWER RATES IN CIP.
range of correct # of students rate (%)
answer rate (%) MDI KAB MDI KAB
85-90 0 0 0 0
91-95 0 0 0 0
96-99 0 0 0 0
100 30 30 100 100

all the students in KAB did. These students were confident in
their initial answers and might require small adjustments or
revisions to perfect them.

TABLE XI
COMPARISON OF SUBMISSION TIMES BETWEEN MAJORS IN GUP

range of # of students rate of students (%)
submission time MDI KAB MDI KAB
0-1 0 0 0 0
1.1-1.99 28 30 93.33 100
2-3 2 0 6.67 0
TABLE XII

COMPARISON OF SUBMISSION TIMES BETWEEN MAJORS IN CIP

range of # of students rate of students (%)
submission time ~ MDI KAB MDI KAB
0-1 0 0 0 0
1.1-1.99 30 30 100 100
2-3 0 0 0 0

1. Student Opinion

A survey was conducted among students enrolled in the
database programming module to assess their perceptions of
self-study exercises. Over 85% of students valued GUP and
the CIP exercises for introducing entry-level SQL-Python,
appreciating the ability to progress at their own pace. These
exercises allowed students to practice independently before the
final exam, receive immediate feedback on their performance,
and consult instructors during class if they encountered

Correct answer rate results for individual student
in KAB

105,00%

1;98,15% 30; 100%

100,00%
95,00%

90,00%
22;88,23%

85,00%

80,00%
12345678 9101112131415161718192021222324252627282930

Average of correct answer rate in GUP Average of correct answer rate in CIP

difficulties. Most experienced an increase in their grades on
the final exam. Most students feel that answering questions on
GUP is more challenging because there are no answer choices
like CIP. When asked about their thoughts, students expressed
no preference for traditional classes over self-study exercises.
This suggests that both methods are acceptable for learning
and exercise.

J. Analysis of SUS Questionnaire to the Students

The results of the usability test in Figure 9 were carried out
step by step in accordance with the SUS calculation guidelines.
The final SUS score from 30 respondents’ responses was 84,
in accordance with the SUS interpretation guidelines in Table
V. The score of 84 was interpreted as follows:

1) Interpretation with acceptability range. Referring to
Table V, the score of 84 is included in the Acceptable
range.

2) Interpretation using the Grade scale as in Table IV. The
score of 84 is included in grade A.

Figure 9 presents the percentage of responses to all re-
spondent statement items regarding the questionnaire that was
distributed. There are minor problems that occur from the
results of the tests that have been carried out, namely:

1) The percentage in the even statements, namely Q2, Q4,
Q6,Q8 and Q10, is 0%, which means that all respondents
do not find it complicated to use the system, they do
not need a technician to use the system, the system
is quite consistent for respondents, not confusing and
respondents quickly adapt to using the system.

2) In statement 1, 11.7% of respondents were hesitant to
use this system.

3) In statement 5, 5% of respondents doubted that the
system would work properly.

4) In statement 7, 21.7% of respondents were doubtful that
other people would quickly understand how to use the
system.

5) In statement 9, 10% of respondents doubted that there
would be no obstacles to using the system.

VIII. CoNCLUSION

This paper presented the grammar-concept understanding
problem (GUP) and the comment insertion problem (CIP) for
the first-step self-study of entry-level SQL-Python. For evalu-
ations, 18 GUP and 18 CIP instances were made using source

Volume 33, Issue 8, August 2025, Pages 2939-2948

Engineering Letters

90

SUS Scores by Each Student
90
85 85 85 85 85
83 83 83 83
80 78 78 78 80 78

100 95 o 93 95 P
s 78 83 g 80 80 . &

70
60
40
30
20
10
0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

of students

SUS scores
n
g

Fi

g.9. SUS Results.

codes for basic concepts and were assigned to 60 students
in the Indonesian Institute of Business and Technology. The
results confirmed their applicability to beginners in database
programming. Apart from that, testing the usability of SOL
Python PLAS for students using SUS got a score of 81 (grade
A), which is acceptable and suitable for beginner students to
start learning database programming with the SQL Python
language. A survey among database programming students
revealed that more than 85% appreciated GUP and the CIP
for the first-step self-studies of entry-level SQL-Python. With
a self-study, the student may continue with coursework when
they wish. Most experienced an increase in their grades on
the final exam. When asked about their thoughts, students
expressed no preference for traditional classes over self-study
exercises. This suggests that both methods are acceptable for
learning and exercise. In future work, we will generate other
database programming topics using several levels, namely
basic, intermediate, and advanced, consider different types of
problems suitable for novice students, and assess them through
application to students. Additionally, in the future, teachers
must prepare instructions for using the system appropriately
so that users can more quickly understand how to use the
system.

REFERENCES
[1] H. Rahmalan, S. S. S. Ahmad, and L. S. Affendey, “Investigation
on designing a fun and interactive learning approach for database
programming subject according to students’ preferences,” J. Phys.: Conf.
Ser., vol. 1529, no. 022076, 2020.
A. Mitrovic, “Learning SQL with a computerized tutor,” in Proc.
SIGCSE Tech. Symp. Comput. Sci. Edu., pp. 307-311, 1998.
A. Sharma, F. Khan, D. Sharma, S. Gupta, and F. Y. Student, “Python:
the programming language of future,” Int. J. Innov. Res. Tech., vol. 6,
no. 2, pp. 115-118, 2020.
E.E. Htet, S. H. M. Shwe, S. T. Aung, N. Funabiki, E. D. Fajrianti, and S.
Sukaridhoto, “A study of grammar-concept understanding problem for
Python programming learning,” in Proc. LifeTech, pp. 245-246, 2022.
S. T. Aung, N. Funabiki, Y. W. Syaifuddin, and H. H. S. Kyaw, “A pro-
posal of grammar-concept understanding problem in Java programming
learning assistant system,” J. Adv. Inf. Tech., vol. 12, no. 4, pp. 342-
350, 2021.
X. Lu, N. Funabiki, S. T. Aung, H. H. S. Kyaw, K. Ueda, and W. C. Kao,
“A study of grammar-concept understanding problem in C programming
learning assistant system,” ITE Trans. MTA, vol. 10, no. 4, pp. 198-207,
2022.
X. Lu, N. Funabiki, I. Naing, H. H. S. Kyaw, and K. Ueda, “A proposal
of two types of exercise problems for TCP/IP programming learning by
C language,” IEICE Tech. Report, NS2022-236, pp. 396-401, 2023.
S. H. Tung, T. Te Lin, and Y. H. Lin, “An exercise management system
for teaching programming,” J. Softw. vol. 8, no. 7, pp. 1718-1725, 2013.
S. Alaoutinen and K. Smolander, “Student self- assessment in a
programming course using Bloom’s revised taxonomy,” in Proc. ITiCSE,
pp. 155-159, 2010.

[2]
[3]

[4]

[6]

[7]

[8]
[9]

90,00%
80,00%
70,00%
60,00%
50,00%
40,00%
30,00%
20,00%
10,00%

0,00%

[10]

[11]
[12]
[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

Presentations of Questionner Results

0% 0%

Io% ||o%o%||o%o%‘|o%o%
Q2 Q3 Q4 as Qs Q7 a8 a9

w Strongly Disagree

Qi Q1o

Disagree mNeutral = Agree mStrongly Agree

M. I. E. Agha, A. M. Jarghon, and S. S. Abu-Naser, “SQL tutor for
novice students,” Int. J. Academic Inform. Syst. Res. (IJAISR), pp. 1-7,
2018.

D. Lavbi¢, T. Matek, and A. Zrnec, “Recommender system for learning
SQL using hints,” arXiv:1807.02637v1 [cs.Al], pp. 1-18, 2018.

P. Garner and J. Mariani, “Learning SQL in steps,” Syst., Cybern.
Inform., vol. 13, no. 4, pp. 19-24, 2015.

A. Migler and A. Dekhtyar, “Mapping the SQL learning process in
introductory database courses,” in Proc. SIGCSE, pp. 619-625, 2020.
K. Ala-Mutka, “Problems in Learning and Teaching Programming,” A
literature study for developing visualizations in the Codewitz-Minerva
project, pp. 1-13, 2004.

M. Konecki, “Problems in programming education and means of their
improvement,” DAAAM Int. Sci. Book, pp. 459-470, 2014.

R. A. Queiros, L. Peixoto, and J. Paulo, “PETCHA - a programming
exercises teaching assistant,” in Proc. ITiCSE, pp. 192-197, 2012.

A. Carbone, 1. Mitchell, J. Hurst, and D. Gunstone, “An exploration of
internal factors influencing student learning of programming,” in Proc.
Conf. Res. Pract. Inform. Tech. Ser., pp. 25-34, 2009.

M. Piteira and C. Costa, “Learning computer programming: a study of
difficulties in learning programming,” in Proc. ISDOC, pp. 75-80, 2013.
H. D. Ngyyen, T.-V. Tuan, X.-T. Pham, A. T. Huynh, V. T. Pham, D.
Nguyen, “Design intelligent educational chatbot for information retrieval
based on integrated knowledge bases,” IAENG Int. J. Comput. Sci., vol.
49, no. 2, pp. 531-541, 2022.

C. W. Okonkwo, and A. Ade-Ibijola, “Revision-Bot: A Chatbot for
Studying Past Questions in Introductory Programming,” IAENG Int.
J. Comput. Sci., vol. 49, no.3, pp. 644-652, 2022.

P. Thantola, T. Ahoniemi, V. Karavirta, and O. Seppild, “Review of
recent systems for automatic assessment of programming assignments,”
in Proc. Koli Calling, pp. 86-93, 2010.

I. T. Elgendy, M. R. Girgis, and A. A. Sewisy, “A GA-Based Approach
to Automatic Test Data Generation for ASP.NET Web Applications,”
TAENG Int. J. Comput. Sci., vol. 47, no.3, pp. 557-564, 2020.

E. Unal and H. Cakir, “Students’ views about the problem based collab-
orative learning environment supported by dynamic web technologies,”
Malaysian Online Journal of Educational Technology, vol. 5, no. 2, pp.
1-19, 2017.

Akhuseyinoglu, Kamil, Ryan Hardt, Jordan Barria-Pineda, Peter
Brusilovsky, Kerttu Pollari-Malmi, Teemu Sirkid, and Lauri Malmi. “A
Study of Worked Examples for SQL Programming,” In Proceedings of
the 27th ACM Conference on Innovation and Technology in Computer
Science Education Vol. 1, pp. 82-88, 2022.

Kenny, Claire, and Claus Pahl. “Automated tutoring for a database skills
training environment,” In Proceedings of the 36th SIGCSE technical
symposium on Computer science education, pp. 58-62, 2005.
Kakeshita, Tetsuro, and Miyuki Murata. “Application of Programming
Education Support Tool pgtracer for Homework Assignment,” Interna-
tional Journal of Learning Technologies and Learning Environments,
vol.1, no.1, pp. 41-60, 2018.

Klug, Brandy. “An overview of the system usability scale in library
website and system usability testing,” Weave Journal of Library User
Experience 1, no. 6, 2017.

Modul (online), https://instiki.ac.id/wpcontent/uploads/2022/02/Modul,
January 20, 2024.

Volume 33, Issue 8, August 2025, Pages 2939-2948

