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Abstract—In this paper, we introduce a classification

framework named twin margin hyperplanes distribution
machine with equality constraints (ETMDM). Unlike
traditional twin support vector machine (TSVM) constructs
boundary hyperplanes through quadratic programming with
inequality constraints, ETMDM determines two margin
hyperplanes by solving linear equations, thereby completely
eliminating inequality constraints. The margin hyperplanes
exploit the margin distribution information of all samples by
the margin mean and margin variance in large margin
distribution machine (LDM). And the margin mean and margin
variance are reconstructed by weighted linear loss and
optimization scheme. The reconstructed margin distribution
information can avoid suffering from the possible negative
infinity problem and improve the computational efficiency. The
experimental results on different types of datasets demonstrate
that our ETMDM has excellent classification accuracy but with
less computational time.

Index Terms—twin support vector machine, large margin
distribution, equality constraints, weighted linear loss

I. INTRODUCTION

UPPORT vector machines (SVMs), as excellent pattern
classification methods, have been widely applied [1-6].

For the standard SVM [7-8], the primal idea is to construct
two parallel boundary hyperplanes. For binary classification
problem, the two boundary hyperplanes separate the positive
and negative samples in the training dataset. And the distance,
defined as the margin, between them is maximized. The
purpose of the margin maximization is to minimize the
structural risk. It also provides a theoretical explanation for
the good generalization performance of SVM. Because of
this, many scholars have been convinced by SVM and carried
out in-depth research and expansion. Many variants of the
promoted SVMs have been proposed, such as structural
regularized SVM [9], L-0/1 soft-margin loss SVM [10],
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spheres-based SVM [11], pinball loss SVM [12],
local-to-global SVM [13], fuzzy SVM (FSVM) [14] and
graph FSVM [15].

Different from the standard SVM, twin support vector
machine (TSVM) [16] with non-parallel decision
hyperplanes is proposed. TSVM constructs a decision
hyperplane for the target samples and a boundary hyperplane
for the other samples. The positive and negative samples are
targeted in turn. So, TSVM generates two decision
hyperplanes. The two decision hyperplanes may not be
parallel, which means that they can be used for the
classification of cross-planes data. Another advantage is that
TSVM is 4 times faster than SVM. The reason is that TSVM
addresses two smaller quadratic programming problems
(QPPs) with inequality constraints. TSVM did not consider
the margin maximization until the twin bounded SVM [17]
was proposed. Since then, the different versions of TSVM
have been proposed, such as nonparallel SVM [18],
angle-based TSVM [19], truncated pinball loss TSVM [20],
L-1-norm loss-based projection TSVM [21], Indefinite
TSVM [22] and uncertainty-aware TSVM [23].

Although the margin maximization principle plays an
important role in the SVMs and TSVMs studies, it does not
guarantee the good generalization performance of the models.
Some studies have shown that the margin distribution is more
important [24-25]. The margin distribution focuses on the
potential distribution information of more samples in training
dataset, which can improve the generalization performance.
For this reason, Zhang et al. [26] proposed a new large
margin distribution machine (LDM). In LDM, the margin
mean and margin variance are used to describe the
distribution information of training dataset. Due to the
success of LDM, the models with margin distribution
optimization have been developed, such as cost-sensitive
LDM [27], adjustable LDM [28], unconstrained LDM [29],
Laplacian LDM [30] and twin bounded LDM [31].

However, the LDM suffers from low computational
efficiency. In terms of SVMs and TSVMs, there are some
models with high computational speed, such as LSSVM [32]
and LSTSVM [33]. The reason is that they solve the QPPs
with equality constraints. Therefore, one way to solve the
problem of low computational efficiency is to apply equality
constraints in LDM, such as least squares LDM-based
regression [34]. In this paper, we propose a novel twin
margin hyperplanes distribution machine with equality
constraints (ETMDM) for pattern classification. The
ETMDM has the following characteristics:

(1) The basic TSVM framework is reconstructed. Inspired
by LDM, the boundary hyperplanes in the original
framework are replaced by the margin hyperplanes in
ETMDM. Specifically, the margin mean and margin variance
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are reconstructed to generate the margin hyperplanes. The
margin hyperplanes not only contain the margin distribution
information, but also constrain the other samples to be on one
side.

(2) The margin distribution is optimized. By analyzing the
margin variance, we find that it has duplicate terms with the
objective function of TSVM. So, the terms of the margin
variance in ETMDM are reduced. In addition, some
redundant terms are eliminated.

(3) The equality constraints are adapted. In ETMDM, the
inequality constraints are removed. The decision hyperplanes
are generated by unconstrained optimization with quadratic
loss. The margin hyperplanes are generated by minimizing
the unconstrained margin variance and maximizing the
equality-constrained margin mean with linear loss. The
optimized margin mean can suffer from the negative infinity
problem. So, the linear loss of margin mean is limited by
weighted parameters.

II. RELATED WORKS

A. LDM
Consider a sample matrix 1 2[ , , , ]Tm x x x x and the

corresponding label vector 1 2[ , , , ]Tmy y y y , where
m nR x . Define the margin mean and margin variance as

follows:
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where 1nR w . LDM optimizes the margin distribution by
maximizing the margin mean and minimizing the margin
variance. This leads to the following QPP:
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where k represents the error variable for kx . 1c , 2c and 3c
are used to choose a trade-off among four terms in the
objective function. The first term embodies the margin
maximization principle. The second term with inequality
constraints is used to generate two parallel boundary
hyperplanes 1T

t w x and 1T
t  w x , where tx is a sample

vector. The last two terms mean that the margin distribution
is trimmed. The decision hyperplane 0T

t w x is driven by
both the two boundary hyperplanes and the last two terms. It
can be seen that the computational efficiency of LDM is low,
because it solves the QPP with inequality constraint.

B. TSVM
Let x be divided into two parts + + + +

1 2[ , , , ]T
m x x x x and

1 2[ , , , ]T
m

    x x x x , where +m m m  and
+[( ) ( ) ]T T Tx x x . And +x and x represent the positive

and negative sample matrices, respectively. When the target
samples are positive, TSVM solves QPP (4). Otherwise,
TSVM solves QPP (5).
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where 1nR w , 1nR w , 1 1b R  and 1 1b R  . j
 , i



represent the error variables. c and c are the trade-off
parameters. TSVM constructs two non-parallel decision
hyperplanes ( ) 0T

t b  w x and ( ) 0T
t b  w x . And

the corresponding boundary hyperplanes ( ) 1T
t b   w x

and ( ) 1T
t b  w x are constructed. In QPP (4), the target

samples are positive and the other samples are negative. The
first term requires the target samples are proximal to the
decision hyperplane ( ) 0T

t b  w x . The second term with
inequality constraints requires the other samples to be on one
side of the boundary hyperplane ( ) 1T

t b   w x . For
QPP (5), the similar conclusions can be obtained. Although
TSVM is four times faster than the standard SVM, the
computational efficiency is still not high enough.

III. ETMDM

A. Formulation
First, we present an immature linear model that is a

combination of TSVM and LDM, as follows
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where 1c
 , 2c

 , 3c
 , 1c

 , 2c
 and 3c

 are trade-off parameters.

  , ̂  ,   and ̂  can be derived from formulas (1) and (2).
The immature model inherits the excellent genes of TSVM
and LDM. But the immature model has the following
unresolved issues:

(1) It solves the QPPs (6) and (7) with inequity constraints,
which leads to low computational efficiency.

(2) It oversimplified the introduction of margin mean and
margin variance. For QPP (6),   and ̂  are optimized for

the decision hyperplane ( ) 0T
t b  w x . Their

optimization results in the decision hyperplane separating the
positive and negative samples. This does not meet the
original functional requirements of the decision hyperplane.
The same problem exists for QPP (7).
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(3) For QPP (6), ̂  has a similar function as the first item

of objective function. And ̂  has redundant functionality.

(a) (b)
Fig. 1. The margin hyperplanes and the decision hyperplanes.

To address the above issues, we optimize the immature
model. First, the margin hyperplane is proposed. Fig. 1(a)
shows the margin hyperplane ( ) 0T

t b  w x and decision

hyperplane ( ) 1T
t b  w x for positive samples. the

margin hyperplane is obtained by maximizing the margin
mean   and minimizing the margin variance ̂  .
Meanwhile, the margin hyperplane also fulfilled the
requirement that the negative samples be on one side. So, the
boundary hyperplane is not adopted here. This also produces
an excellent result that the newly optimized model no longer
contains inequality constraints.

The formulas for   and ̂  are as follows:
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̂ 
 represents the margin variance between the positive

and negative samples. Minimizing ̂ 
 means that the margin

distribution based on ( ) 0T
t b  w x is optimized.

Minimizing ̂ 
 drives the positive samples to cluster in the

margin direction, which tends to be the same as the effect of
minimizing the first term of the objective function in QPP (6).
So, ̂ 

 is can be removed. On one hand, minimizing ̂ 


drives the negative samples to cluster in the margin direction.
On the other hand, the negative samples are mainly required
to be on one side of ( ) 0T

t b  w x so as to be at least 1

away from ( ) 1T
t b  w x . Therefore, we consider ̂ 

 is
redundant and can be abandoned.

In addition, maximizing the margin mean   is equivalent
to
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As you can see, it is an optimization problem with linear
loss. the optimization problem may suffer the negative
infinity problem. The solution is to use the weighted linear
loss [35]. In other words, the target function in (12) is
modified to k kv   . kv

 is given by
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where meam  is the mean of all k
 with 1kv

  . It can be seen

from (13) that the excessively small k
 is ignored to avoid

the possible infinity problem.
The margin hyperplane ( ) 0T

t b  w x and the decision

hyperplane ( ) 1T
t b   w x for negative samples are

shown in Fig. 1(b). ̂ 
 and kv

 are given by
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After the above optimization, the linear ETMDM in this
paper can be derived as
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B. Solution to linear ETMDM
First, consider the solution of QPP (16). Substituting the

equality constraints and the formula (11) into the objective
function, we can get
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It can also be rewritten as
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where Y is a diagonal matrix with elements 1 2, , , my y y .
e and e are vectors of ones of appropriate dimension. Then,

setting the gradient of L with respect to w and b to be 0,
we can get
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Define [  ]  G x e , [  ]  G x e and [ ]G x e .
Rearranging (20) and (21) in matrix form leads to
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Finally, the solution to QPP (16) is obtained
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         
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(24)

In the same way, the solution to QPP (17) is gotten

   1

1 ( ) ,T Tc
b




     


 
   

 

w
Q I G Yv G e (25)

2 2

2 2

( ) 4 ( ) 4 ( )
4 ( ) ( ) 4 ( ) ( ) ,

T T T

T T T T

c m c m
c c

          

         

  

 

Q G G G G G G
G e e G G e e G

(26)

where I and I are identity matrixes of appropriate
dimensions.  is a minimal positive value that is used to
avoid the possible ill conditioning of Q and Q .

Once w , w , b and b are determined, a new sample
tx can be decided through the decision hyperplanes. The

decision function of linear ETMDM is as follows:

,
arg min | ( ) |,l

tl
class h

 
 x (27)

where ( ) 1T
t th b    x x w and ( ) 1T

t th b    x x w .
| | is the distance of point tx from the decision lanes.

The algorithm of linear ETMDM is summarized as
follows:

Algorithm 1:
1) Input the training dataset +[( ) ( ) ]T T Tx x x .

2) Set  v e and  v e . Choose the appropriate parameters

1c
 , 2c

 , 1c
 and 2c

 by using 5-fold cross validation method.

3) Calculate w , b , w and b by (23) and (25). Next,
calculate k

 and k
 by (16) and (17).

4) Calculate the mean meam  and meam  from k
 and

k
 ( 1,2, , )k m  , respectively. Then, obtain v and v by (13)

and (15).
5) Calculate the solutions w , b , w and b of (23) and (25)

with the new v and v .
6) Determines the class label of a new sample tx by (27).

C. Nonlinear ETMDM
In order to extend the linear ETMDM to the nonlinear case,

we consider the following kernel-generated decision
hyperplanes

( , ) 1, ( , ) 1,T T T T
t tb b        x x w x x w (28)

where (,) is a chosen kernel function. the kernel-generated
margin hyperplanes are

( , ) 0, ( , ) 0.T T T T
t tb b       x x w x x w (29)

The above kernel-generated hyperplanes are obtained by
the following QPPs

 

 

2

1 2
1 1

1 ˆmin (( ) , ) 1
2

. .  ( , ) , 1, 2,... ,

m m
T T
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b i k

T T
k k k

b c v c

s t y b k m
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 
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 
w

 x x w
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(30)
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 
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 
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 x x w

x x w
(31)

where
ˆ 2 ( ( , ) ) ( ( , ) )

2 ( ( , ) ) ( ( , ) )
4( ( , ) ) ( ) ( ( , ) ),

T T T

T T T

T T T T

m b b
m b b

b b

  

 

 

         


        
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  
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x x w e x x w e

x x w e e e x x w e
(32)

ˆ 2 ( ( , ) ) ( ( , ) )
2 ( ( , ) ) ( ( , ) )
4( ( , ) ) ( ) ( ( , ) ).

T T T

T T T

T T T T

m b b
m b b

b b

  

 

 

         


        

         

  

  

  

x x w e x x w e
x x w e x x w e

x x w e e e x x w e
(33)

After a similar derivation as in the linear case, the solutions
of (30) and (31) are represented as follows:

   1

1 +( ) ,T Tc
b




     


 
  

 

w
P I H Yv H e (34)
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1 ( ) ,T Tc
b
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

 
   

 

w
P I H Yv H e (35)

where
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2 2

( ) 4 ( ) 4 ( )
4 ( ) ( ) 4 ( ) ( ) ,
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T T T T

c m c m
c c
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(36)
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2 2
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( ) 4 ( ) 4 ( )
4 ( ) ( ) 4 ( ) ( ) .

T T T

T T T T

c m c m
c c

          

         

  

 

P H H H H H H
H e e H H e e H

(37)

[ ( , ) ],
[ ( , )  ],

[ ( , ) ].

T

T

T







  

  









H x x e
H x x e
H x x e

(38)

Similarly, a new sample tx can be decided through the
kernel-generated decision hyperplanes. The decision function
of nonlinear ETMDM is as follows:

,
arg min | ( ) |,l

tl
class h

 
 x (39)

where
( ) ( , ) 1
( ) ( , ) 1.

T T
t t

T T
t t

h b
h b









  

  

  

  

,x x x w
x x x w

(40)

The algorithm of nonlinear ETMDM is summarized as
follows:

Algorithm 2:
1) Input the training dataset +[( ) ( ) ]T T Tx x x .

2) Set  v e and  v e . Choose the kernel function
(,) and the appropriate parameters 1c

 , 2c
 , 1c

 and 2c
 by

using 5-fold cross validation method.
3) Calculate w , b , w and b by (34) and (35). Next,

calculate k
 and k

 by (30) and (31).

4) Calculate the mean meam  and meam  from k
 and

k
 ( 1,2, , )k m  , respectively. Then, obtain v and v by

(13) and (15).
5) Calculate the solutions w , b , w and b of (34) and

(35) with the new v and v .
6) Determines the class label of a new sample tx by (39).

D. Analysis of algorithms
Compared with other state-of-the-art algorithms, the

ETMDM has some advantages and disadvantages. They are
stated as follows:

(1) Although both TSVM and ETMDM solve for two
smaller QPPs, their computational efficiency is different. For
TSVM, the quadratic loss and the hinge loss are used in each
QPP. The solving speed for the target samples with quadratic
loss is fast, but the solving speed for the other samples with
hinge loss is slow. This is because the samples with hinge
loss are used to optimize the QPP with inequality constraints.
For ETMDM, all samples are used to optimize the QPP with
equality constraints. ETMDM used all samples with
weighted linear loss. So, the ETMDM has better
computational efficiency than TSVM. Furthermore, the
margin mean and margin variance are reconstructed to
generate the margin hyperplanes. And the reconstructed
hyperplanes are optimized by ETMDM to investigate the
margin distribution information of all samples. As a result,
the ETMDM has the margin distribution optimization, which
results in better generalization performance than TSVM.

(2) The margin distribution is considered for LDM and
ETMDM. LDM maximizes the margin mean and minimizes
the margin variance. ETMDM uses the same optimization
approach. But the difference is that the margin distribution is

trimmed. In the case of positive samples, the terms ̂ 
 and ̂ 



in the margin distribution are abandoned. Maximizing the
margin mean   is equivalent to the optimization problem
with linear loss. Further, the linear loss is weighted to avoid
suffering from the possible negative infinity problem. As a
result, the ETMDM achieves better performance than LDM.
In addition, ETMDM has the twin structure. So, it is more
suitable for the classification of cross-planes data than LDM.
Of course, LDM is far inferior to ETMDM in computational
efficiency. This is because LDM solves a large QPP with
inequality constraints using all samples.

(3) In terms of computational efficiency, although
ETMDM is higher than TSVM and LDM, it is lower than
LSSVM and LSTSVM. The reason is that LSSVM and
LSTSVM also solve the QPPs with equality constraints. Also,
ETMDM performs more matrix operations than LSSVM and
LSTSVM. This can be seen from Q , Q P and P .
Nevertheless, ETMDM is better than LSSVM and LSTSVM
in generalization performance. LSSVM and LSTSVM
employ the term with quadratic loss, which can replace some
terms of margin variance. In the case of positive samples, the
term with quadratic loss can tends to be the same as ̂ 

 . But
they do not take into account ̂ 

 . Moreover, they do not
embed the optimization of the margin mean. So, compared
with the ETMDM, they are not sufficient in mining the
margin distribution information.

IV. EXPERIMENTS

To demonstrate the performance of ETMDM, some
comparative experiments are performed on different types of
datasets, including UCI datasets [36], large-scale NDC
datasets [37] and industrial NEU dataset [38]. And our
ETMDM is compared with SVM, LDM, TSVM, LSSVM
and LSTSVM. All models are programmed and implemented
in MATLAB 2016b on a PC with Inter Core I7 CPU and
16GB RAM. Moreover, SVM, LDM and TSVM with
inequality constraints are solved by the QP solver in
MATLAB. For nonlinear case, the radial basis kernel
function 2 2

1 2 1 2( , ) exp( || || / )t t t t   x x x x is adopted for
all models. For brevity’s sake, the trade-off parameters are set
to the same ( 1 1=c c  and 2 2c c  ) for two QPPs in ETMDM.
The same process is done for TSVM and LSTSVM. The
trade-off parameters in all models are selected from
{10 | 4, 2, , 4}i i     and the kernel radius  is chosen

from {2 | 2, 1, ,6}i i     . In order to determine the optimal
parameters, the five-fold cross validation technique and grid
searching method are used for parameter selection. Once the
optimal parameters are determined, they are used to train the
final decision functions.

A. UCI datasets
Tables I and II report the brief information of binary and

multiclass UCI datasets [36]. The binary datasets are used to
testing the performance of six models for linear and nonlinear
cases. The multiclass datasets are used to further demonstrate
the robustness of ETMDM in generalization performance. In
order to realize multiclass classification, the binary
classification models are combined with binary tree model.
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The testing results are shown in Tables IIII, IV and V. The
“accuracy” represents the mean and standard deviation of the
five-fold accuracies. The “time” represents the total CPU
time for training and testing. The win/tie/loss results are used
to compare the performance between the ETMDM and one of
the other five models. The highest accuracies are emphasized
in bold. In addition, Fig. 2 shows that the performance
comparison of linear and nonlinear ETMDMs in accuracy
and time. And according to Table V, the ranks of six models
in terms of accuracy and CPU time are listed in Table VI.

TABLE I
THE BRIEF INFORMATION OF BINARY UCI DATASETS

Dataset Features Samples
Australian (Da) 14 690

Blood (Db) 5 748
Diabetes (Dc) 8 768
German (Dd) 24 1000

Heart (De) 12 270
Haberman (Df) 3 306
Ionosphere (Dg) 34 351

Liverdisorder (Dh) 6 345
Sonar (Di) 60 208
Vote (Dj) 16 435

Wdbc (Dk) 30 569
Wpbc (Dl) 33 198

TABLE II
THE BRIEF INFORMATION OF MULTICLASS UCI DATASETS

Dataset Features Samples Classes
Glass (D0) 10 214 6
Wine (D1) 13 178 3
Zoo (D2) 17 101 7
Air (D3) 65 359 3

Balance (D4) 5 625 3
Iris (D5) 5 150 3

Libras_movement (D6) 90 360 15
Soybean (D7) 36 47 4
Vowel (D8) 11 528 11
Vehicle (D9) 19 846 4

It can be seen from Table III that the linear ETMDM wins
on six datasets in terms of accuracy. Compared with SVM
and TSVM, the ETMDM achieves better generalization
performance through the reconstructed margin hyperplanes.
The advantage of the margin hyperplanes is that they
investigate the margin distribution information of all samples.
LDM does not outperform ETMDM in generalization
performance, because it does not adopt the twin structure.
LSSVM and LSTSVM are not sufficient in mining the
margin distribution information, resulting in lower accuracies
than ETMDM. The win/tie/loss results further validate the
superiority of ETMDM. It can also obtain from Table III that
the ETMDM is much shorter than LDM, SVM, and TSVM in
terms of CPU time for all binary datasets. This is because that
ETMDM solves two small QPPs with equality constraints,
while LDM, SVM, and TSVM address the large QPP with
inequality constraints. Compared with LSSVM and
LSTSVM, the ETMDM doesn’t have the advantage in CPU
time. The reason is that LSSVM and LSTSVM also solve the
QPPs with equality constraints. Also, the ETMDM performs
more matrix operations than LSSVM and LSTSVM. Even so,
the CPU time of ETMDM is also very short. In summary, our
linear ETMDM has good classification accuracy and
computational efficiency.

From Table IV, it can be seen that the accuracies of
nonlinear ETMDM are obviously better than LDM, TSVM,
SVM, LSTSVM and LSSVM on most binary datasets.
Combining the results in linear and nonlinear cases, it is
confirmed that the ETMDM has better generalization
performance. The CPU time of nonlinear ETMDM is also
shorter than that of LDM, TSVM and SVM, but longer than
that of LSTSVM and LSSVM. This is consistent with the
conclusion in linear case.

TABLE III
THE TESTING RESULTS OF SIX LINEAR MODELS ON BINARY UCI DATASETS

Dataset
ETMDM

Accuracy (%)
Time (s)

LDM
Accuracy (%)

Time (s)

TSVM
Accuracy (%)

Time (s)

SVM
Accuracy (%)

Time (s)

LSTSVM
Accuracy (%)

Time (s)

LSSVM
Accuracy (%)

Time (s)

Da 86.66±2.03
0.0095

85.22±1.98
0.3138

86.66±1.77
0.0717

85.51±1.64
0.6762

86.81±2.04
0.0048

85.07±1.77
0.0120

Db 77.68±0.87
0.0091

76.20±0.25
0.1149

77.01±1.12
0.1551

76.20±0.25
0.1465

77.45±0.98
0.0048

77.81±1.18
0.0119

Dc 76.43±2.32
0.0088

65.75±1.65
0.0992

76.43±1.76
0.1767

75.90±3.63
0.5993

76.69±1.62
0.0043

65.75±2.93
0.0143

Dd 77.00±2.35
0.0117

76.00±0.84
0.3661

76.60±2.18
0.2516

74.80±3.64
0.6664

76.80±2.04
0.0040

75.90±2.13
0.0222

De 74.84±2.43
0.0072

73.53±0.48
0.0266

75.49±2.49
0.0249

73.53±0.48
0.0241

74.52±2.59
0.0037

75.54±3.10
0.0045

Df 82.96±4.60
0.0064

80.74±4.16
0.0330

81.48±4.54
0.0238

80.37±3.23
0.0382

82.96±4.74
0.00029

81.11±3.19
0.0044

Dg 89.17±3.80
0.0069

79.20±2.37
0.0564

90.30±3.07
0.0364

88.88±2.48
0.1191

88.87±4.10
0.0030

81.19±3.35
0.0055

Dh 70.14±5.47
0.0064

58.26±1.08
0.0488

69.86±3.09
0.0258

66.96±9.09
0.1003

70.14±3.25
0.0038

66.96±5.97
0.0054

Di 78.85±2.74
0.0069

75.44±4.89
0.0228

75.93±6.49
0.0225

78.39±5.15
0.0290

77.85±5.26
0.0030

75.47±4.67
0.0032

Dj 94.71±3.42
0.0078

93.12±2.95
0.0329

94.50±3.08
0.0753

93.58±3.18
0.1547

94.50±3.08
0.0030

94.04±3.17
0.0055

Dk 97.71±0.71
0.0082

90.32±4.17
0.0557

96.31±1.29
0.0811

97.89±1.31
0.3273

97.71±0.43
0.0033

93.31±2.15
0.0079

Dl 82.35±4.95
0.0071

79.31±2.78
0.0207

80.34±7.34
0.0251

76.28±0.82
0.0297

80.35±3.40
0.0031

79.85±2.76
0.0046

Win/Tie/Loss - 12/0/0 8/2/2 11/0/1 7/3/2 9/0/3
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TABLE IV
THE TESTING RESULTS OF SIX NONLINEAR MODELS ON BINARY UCI DATASETS

Dataset
ETMDM

Accuracy (%)
Time (s)

LDM
Accuracy (%)

Time (s)

TSVM
Accuracy (%)

Time (s)

SVM
Accuracy (%)

Time (s)

LSTSVM
Accuracy (%)

Time (s)

LSSVM
Accuracy (%)

Time (s)

Da 87.24±2.29
0.0432

87.24±2.75
0.2692

86.95±2.89
0.1307

86.38±1.68
0.3720

87.10±2.67
0.0312

86.23±2.71
0.0192

Db 79.42±3.26
0.0503

76.74±0.74
0.1083

79.15±2.75
0.1834

76.60±0.71
0.3537

79.41±2.42
0.0275

78.88±2.36
0.0156

Dc 77.73±1.93
0.0524

74.87±0.56
0.2276

77.21±2.21
0.1883

76.69±2.12
0.4752

77.61±1.98
0.0330

76.95±3.01
0.0178

Dd 76.00±3.38
0.1022

72.50±1.41
0.1919

76.00±3.27
0.3514

75.20±3.46
0.8754

75.00±2.81
0.0712

76.60±2.80
0.0294

De 75.83±3.08
0.0127

73.87±1.62
0.0200

75.17±2.30
0.0267

74.18±2.17
0.0642

75.15±2.53
0.0073

74.19±2.56
0.0054

Df 82.59±4.16
0.0115

80.00±4.60
0.0360

82.96±3.59
0.0262

80.74±4.48
0.0400

82.22±4.48
0.0086

81.11±4.89
0.0052

Dg 96.01±1.67
0.0154

87.46±2.13
0.0585

95.43±3.05
0.0671

94.87±1.15
0.0767

93.15±1.68
0.0165

92.02±1.72
0.0050

Dh 74.78±3.38
0.0134

59.13±1.42
0.0233

74.49±4.16
0.0391

72.17±5.90
0.0727

74.49±3.38
0.0095

73.62±2.96
0.0055

Di 90.41±3.34
0.0117

83.67±3.10
0.0213

89.44±2.36
0.0292

88.93±2.00
0.0267

90.41±3.34
0.0127

90.36±2.74
0.0044

Dj 95.62±2.34
0.0239

92.88±2.73
0.0741

95.40±2.05
0.0598

94.50±3.08
0.1347

94.94±2.55
0.0146

94.72±2.34
0.0055

Dk 98.07±0.36
0.0354

95.25±1.08
0.0662

97.89±1.31
0.1499

97.71±0.90
0.2795

97.54±1.04
0.0332

97.89±0.90
0.0099

Dl 80.82±1.06
0.0100

79.34±3.42
0.0224

81.37±3.03
0.0263

81.33±1.85
0.0255

80.39±4.45
0.0075

81.33±1.85
0.0049

Win/Tie/Loss - 11/1/0 9/1/2 11/0/1 11/1/0 10/0/2

TABLE V
THE TESTING RESULTS OF SIX MODELS ON MULTICLASS UCI DATASETS

Dataset
ETMDM

Accuracy (%)
Time (s)

LDM
Accuracy (%)

Time (s)

TSVM
Accuracy (%)

Time (s)

SVM
Accuracy (%)

Time (s)

LSTSVM
Accuracy (%)

Time (s)

LSSVM
Accuracy (%)

Time (s)

D0 70.12±7.61
0.0490

55.11±8.94
0.0656

68.22±4.36
0.0932

65.42±5.20
0.0795

62.79±4.36
0.0267

62.15±0
0.0225

D1 98.87±1.38
0.0243

93.83±2.06
0.0330

98.87±1.38
0.0412

97.19±2.52
0.0324

98.87±1.38
0.0122

97.75±0
0.0101

D2 96.00±5.83
0.0293

95.00±5.48
0.0523

96.00±5.83
0.0833

94.05±4.91
0.0548

95.00±5.48
0.0335

95.00±5.48
0.0297

D3 97.77±1.88
0.0477

82.15±2.53
0.0988

96.09±1.88
0.0991

96.11±1.02
0.1205

95.83±1.75
0.0414

98.33±1.62
0.0267

D4 91.84±0.57
0.0867

90.09±1.73
0.1314

91.52±0.93
0.5111

91.84±0.29
0.5378

91.84±0.57
0.0414

91.52±0.93
0.0224

D5 98.67±1.63
0.0144

96.00±3.27
0.0262

98.00±1.63
0.0386

97.33±2.49
0.0317

97.33±3.89
0.0125

97.33±2.49
0.0104

D6 87.49±2.72
0.2518

70.27±3.68
0.4490

86.36±3.48
0.5643

86.08±3.08
0.5599

86.90±3.29
0.2283

87.19±2.97
0.1459

D7 100±0
0.0181

100±0
0.0289

100±0
0.0377

100±0
0.0216

100±0
0.0160

100±0
0.0137

D8 95.83±0.47
0.1465

21.79±2.38
0.4932

93.56±1.96
0.9405

63.76±14.31
0.9437

97.17±1.17
0.1094

97.93±1.20
0.0786

D9 84.40±2.05
0.1548

60.75±1.42
0.5612

83.22±1.76
0.5423

80.03±3.28
1.0063

84.63±1.83
0.1022

85.46±1.19
0.0596

Win/Tie/Loss - 9/1/0 7/3/0 8/2/0 5/3/2 5/2/3

In addition, as shown in Fig. 2(a), the CPU time of
nonlinear ETMDM is longer than that of linear one, because
the nonlinear kernel requires extra computing time. However,
it can be observed from Fig. 2(b) that the accuracies of
nonlinear ETMDM are better than those of the linear one on
nine of twelve binary datasets. This means that the ETMDM
with nonlinear kernel has more outstanding performance.

In view of the above experimental conclusions, Table V
only shows the testing results of nonlinear models with better
performance for multiclass datasets. In terms of accuracy, we
observe from Tables V and VI that the ETMDM performs
better on seven of ten datasets and achieves the best average

rank. The results of win/tie/loss show that the ETMDM wins
compared to any of the other nonlinear models. Thus, we can
confirm that the ETMDM is superior in accuracy for
multi-class datasets. In terms of CPU time, the ETMDM is
also excellent, but inferior to LSSVM and LSTSVM with
equality constraints. For the average rank of CPU time, the
same conclusions are obtained. This is because it requires
more matrix operations to obtain higher accuracy.
Combining the test results in accuracy and CPU time for
two-class datasets and multi-class datasets, we draw the
conclusion that the ETMDM is robust in generalization
performance and strong in computational performance.
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(a) (b)
Fig. 2. Performance comparison of linear and nonlinear ETMDMs.

TABLE VI
THE RANKS OF SIX MODELS ON MULTICLASS UCI DATASETS

Dataset
Ranks (Accuracy / CPU time)

ETMDM LDM TSVM SVM LSTSVM LSSVM
D0 1/3 6/4 2/6 3/5 4/2 5/1
D1 2/3 6/5 2/6 5/4 2/2 4/1
D2 1.5/1 4/4 1.5/6 6/5 4/3 4/2
D3 2/3 6/4 4/5 3/6 5/2 1/1
D4 2/3 6/4 4.5/5 2/6 2/2 4.5/1
D5 1/3 6/4 2/6 4/5 4/2 4/1
D6 1/3 6/4 4/6 5/5 3/2 2/1
D7 3.5/3 3.5/5 3.5/6 3.5/4 3.5/2 3.5/1
D8 3/3 6/4 4/5 5/6 2/2 1/1
D9 3/3 6/5 4/4 5/6 2/2 1/1

Average rank 2/2.8 5.55/4.3 3.15/5.5 4.15/5.2 3.15/2.1 3/1.1

B. NDC datasets
In this subsection, the experiments on large-scale datasets

are performed. The NDC datasets [37] with different
numbers of data points are used to explore the computational
efficiency and classification accuracy. The NDC datasets are
divided into training and testing samples according to Table
VII.

TABLE VII
THE BRIEF INFORMATION OF NDC DATASETS

Dataset Training samples Testing samples Features
NDC-500 500 100 32
NDC-1K 1000 200 32
NDC-2K 2000 400 32
NDC-3K 3000 600 32
NDC-4K 4000 800 32
NDC-5K 5000 1000 32

NDC-10K 10000 2000 32

The testing accuracies for six nonlinear models are
presented in Table VIII. It can be seen that the ETMDM
achieves the best accuracies on six of seven NDC datasets.
Moreover, the accuracy of ETMDM is better than the other
five models on NDC-500, NDC-1K and NDC-10K datasets.
For NDC-4K dataset, the accuracy of ETMDM is only lower
than that of LDM. The win/tie/loss results are recorded in the
last row of Table VIII. It is easy to see that the ETMDM wins
compared to any of the other models. Therefore, we can
conclude that our ETMDM has advantages over other models
for large-scale datasets in terms of classification accuracy.
There are some reasons to explain this conclusion. Firstly, the

ETMDM explores the margin distribution information of
samples more comprehensively. Secondly, the ETMDM
adopts the twin structure model to improve the adaptability of
data distribution. Thirdly, the weighted linear loss is used to
avoid suffering from the possible negative infinity problem.

It can also be observed form Table IX that the CPU time of
ETMDM, LSSVM and LSTSVM is significantly shorter than
that of LDM, SVM and TSVM. The reason is that the LDM,
SVM and LDM are solved by using QP solver, while the
ETMDM, LSSVM and LSTSVM are solved by solving a
linear equation system. Compared with LSSVM and
LSTSVM, the ETMDM needs to spend more time to
calculate the margin distribution information. Thus, the CPU
time of ETMDM is longer than that of LSSVM and
LSTSVM.

Table X shows that the ranks of six models in terms of
accuracy and CPU time. It can be seen that the ETMDM
achieves the best average rank in terms of accuracy. In terms
of CPU time, the ETMDM is also excellent, but inferior to
LSSVM and LSTSVM with equality constraints. Fig. 3
shows the CPU time of six models for different numbers of
data in NDC datasets. It can be seen that the larger the
number of data, the longer the CPU time of each model
becomes. Moreover, with the increase of the number of data,
the CPU time of SVM, LDM and TSVM increases more
significantly. This means that the models with inequality
constraints are not suitable for large-scale dataset in terms of
computational efficiency. Because LSSVM, LSTSVM and
ETMDM employ equality constraints, they are suitable for
large datasets.
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TABLE VIII
THE ACCURACIES AND RANKS OF SIX MODELS ON NDC DATASETS

Dataset ETMDM
Accuracy (%)

LDM
Accuracy (%)

TSVM
Accuracy (%)

SVM
Accuracy (%)

LSTSVM
Accuracy (%)

LSSVM
Accuracy (%)

NDC-500 97.00 92.00 92.00 92.00 96.00 96.00
NDC-1K 99.00 96.50 97.50 97.00 98.00 97.00
NDC-2K 99.75 99.25 99.75 99.75 99.75 99.75
NDC-3K 99.17 97.67 99.00 98.83 99.00 99.17
NDC-4K 99.12 99.25 99.12 99.12 99.12 98.25
NDC-5K 99.50 97.90 99.10 98.20 99.50 99.40

NDC-10K 99.60 99.10 99.30 99.20 99.50 99.50
Win/Tie/Loss - 6/0/1 5/2/0 5/2/0 4/3/0 5/2/0

TABLE IX
THE CPU TIME OF SIX MODELS ON NDC DATASETS

Dataset ETMDM
Time (s)

LDM
Time (s)

TSVM
Time (s)

SVM
Time (s)

LSTSVM
Time (s)

LSSVM
Time (s)

NDC-500 0.0337 0.0780 0.1209 0.2333 0.0369 0.0135
NDC-1K 0.1454 0.2971 0.3977 0.6195 0.1308 0.0466
NDC-2K 0.8075 1.4022 2.1526 4.0086 0.4873 0.2303
NDC-3K 2.1445 3.4338 4.5345 12.0435 1.0591 0.6092
NDC-4K 4.4963 8.3894 7.0301 16.3773 1.9264 1.4276
NDC-5K 8.1525 16.8471 21.0774 37.1381 5.5806 2.5196

NDC-10K 39.7305 96.6157 67.7052 208.7702 28.7949 17.3366

TABLE X
THE RANKS OF SIX MODELS ON NDC DATASETS

Dataset
Ranks (Accuracy / CPU time)

ETMDM LDM TSVM SVM LSTSVM LSSVM
NDC-500 1/2 5/4 5/5 5 /6 2.5/3 2.5/1
NDC-1K 1/3 6/4 3/5 4.5/6 2/2 4.5/1
NDC-2K 3/3 6/4 3/5 3/6 3/2 3/1
NDC-3K 1.5/3 6/4 3.5/5 5/6 3.5/2 1.5/1
NDC-4K 3.5/3 1/5 3.5/4 3.5/6 3.5/2 6/1
NDC-5K 1.5/3 6/4 4/5 5/6 1.5/2 3/1

NDC-10K 1/3 6/5 4/4 5/6 2/2 3/1
Average rank 1.8/2.9 5.1/4.3 3.7/4.7 4.4/6 2.6/2.1 3.4/1

Fig. 3. The CPU time of six models for different numbers of data on NDC
datasets.

C. NEU dataset
In this subsection, we further investigate the ETMDM for

real data collected from industrial production lines. The NEU
dataset from Northeastern University surface defect database
[38] is selected. There are six kinds of typical surface defects
of the hot-rolled steel strip in NEU dataset, i.e., crazing (CZ),
inclusion (IN), patches (PH), pitted-surface (PE),
rolled-in-scale (RD) and scratches (SH). Moreover, these
defects are described by 35-dimensional features. 3781 defect

samples are used in this experiment and are randomly divided
into training samples and testing samples. And Training
samples and testing samples accounted for 75% and 25% of
the total, respectively. In addition, the binary tree technique is
used to solve the multi-class classification problem of NEU
dataset.

To highlight the testing result of each type of defect, the
confusion matrices are presented for six models, as shown in
Fig. 4. The testing accuracy of each type of defect can be seen
from the diagonal of the confusion matrix. The ETMDM
achieves the best accuracies for SH, IN and RD defects.
Although the ETMDM is not the best for PH, PE and CZ
defects, the difference in accuracy between it and other
models is very small. However, it can be seen from Table XI
that the average accuracy rank of ETMDM is the best. This
shows that the ETMDM has advantage in total classification
accuracy compared with other models. Fig. 5 shows the total
accuracies and total CPU time for all models on NEU dataset.
The total accuracies of ETMDM are much higher than those
of LDM, SVM and LTSVM. And in terms of total CPU time,
the ETMDM has obvious advantages over LDM and SVM.
Compared with TSVM, the ETMDM is significantly better in
total CPU time, along with slightly better in total accuracy.
The ETLDM and LSSVM have their own advantage and
disadvantage in performance. In summary, our ETMDM also
has excellent performance for industrial dataset.
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(1) ETMDM (2) LDM (3) TSVM

(4) SVM (5) LSTSVM (6) LSSVM
Fig. 4. The confusion matrices for six models.

TABLE XI
THE ACCURACY RANKS OF SIX MODELS ON NEU DATASET

Defects
Ranks

ETMDM LDM TSVM SVM LSTSVM LSSVM
SH 1 6 2 4 5 3
IN 1 6 3 2 5 4
PH 2.5 5 2.5 6 4 1
RD 1 6 2 5 4 3
PE 3.5 3.5 3.5 6 1 3.5
CZ 2.5 5 2.5 6 1 4

Average rank 1.9 5.3 2.6 4.8 3.3 3.1

Fig. 5. Total accuracies and total CPU time for six models on NEU
dataset.

D. Face datasets
To further verify the robustness of ETMDM, the experiments
are carried out on two face datasets. These two face datasets
are ORL[39] and Yale[40]. The ORL dataset contains 40
people, with 10 face images for each person, totaling 400
images. They have different facial details, light brightness
and facial expressions. The size of each image is 112*92. In
the experiment, we randomly select 5 images for each person
as training samples, and the remaining ones are used as test
samples. Therefore, there are 200 images for training and 200
images for testing respectively. The Yale dataset contains 15
people, with 11 face images for each person, totaling 165
images. They have different postures and different lighting
conditions. The size of each image is 137*147. In the
experiment, we randomly select 6 images for each person as

training samples, and the rest are used as test samples.
Therefore, there were 90 and 75 images for training and
testing respectively. Furthermore, the binary tree technique is
also used for multi-category classification. the experiments
are conducted on ETMDM and the other five comparison
models, and the final results are shown in Table XII. The
experimental results show that on two face datasets, the
ETMDM algorithm proposed in this paper achieves the
highest classification accuracy compared with the other five
algorithms. It further indicates that our model has strong
generalization performance.

TABLE XII
THE ACCURACIES OF SIX MODELS ON FACE DATASETS

Models ORL Yale
ETMDM 98.33 93.91

LDM 97.99 92.81
TSVM 98.03 90.96
SVM 97.71 92.31

LSTSVM 97.28 91.37
LSSVM 96.32 92.56

E. USPS dataset
The USPS dataset [41] consists of grayscale handwritten
digit images ranging from 0 to 9. Each number contains 1,100
images, and the size of each image is 16*16. Here we select 6
different groups of images and conduct a binary classification
experiment using the one-vs-one method. In the experiment,
550 samples were used for training and the rest for testing.
The classification results are recorded in Table XIII. It can be
seen from the experimental results that in most cases,
ETMDM is better than the other five algorithms. This
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indicates that our ETMDM has robust classification
performance.

TABLE XIII
THE ACCURACIES OF SIX MODELS ON USPS DATASETS

Models 0 vs 1
(%)

1 vs 2
(%)

3 vs 8
(%)

4 vs 7
(%)

5 vs 8
(%)

6 vs 9
(%)

ETMDM 99.82 98.91 97.70 99.03 99.82 99.94
LDM 99.76 98.67 97.76 98.67 99.64 99.88

TSVM 99.70 98.55 97.52 99.15 99.76 99.76
SVM 99.39 98.61 96.97 98.73 99.58 98.67

LSTSVM 99.03 98.65 96.97 98.46 99.33 98.70
LSSVM 98.73 98.11 97.64 98.06 99.17 98.97

V. CONCLUSIONS

In this paper, we present a novel model with equality
constraints, named as ETMDM, for pattern classification.
The ETMDM inherits the twin structure of TSVM. Instead of
boundary hyperplanes, the margin hyperplanes are adopted.
The advantage is that the ETMDM no longer requires
inequality constraints. Moreover, the margin hyperplanes are
used to capture the margin distribution information.
Although the margin mean and margin variance in LDM are
used to generate the margin hyperplanes, they are
reconstructed. For example, the weighted linear loss of
margin mean is employed to avoid the negative infinity
problem and some redundant terms of margin variance are
eliminated. For these reasons, the ETMDM is an optimized
model with excellent generalization performance and high
computational efficiency. The experiments on UCI datasets
show that the ETMDM is robust in generalization
performance. The experiments on NDC datasets indicate that
the ETMDM is suitable for large datasets. The testing results
on NEU dataset confirm that the ETMDM has excellent
performance for industrial data. In terms of computational
efficiency, the ETMDM does not outperform the models with
equality constraints. This is because it takes more time to
calculate the margin distribution information to obtain higher
accuracy. So, it is interesting to further improve the
computational efficiency of ETMDM in the future.
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