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Abstract—This study proposes an improved Pelican
Optimization Algorithm (POA) based on the satiation strategy
of African vultures and mathematical distributions. Inspired by
the African Vulture Optimization Algorithm (AVOA), we
incorporate the satiation strategy of African vultures into the
exploration and exploitation phases of POA to enhance
population search capability and balance global exploration
with local exploitation. Additionally, eight different
mathematical distributions are embedded into the exploration
phase of POA to improve the diversity and randomness of the
search behavior, thereby preventing premature convergence to
local optima. The experimental evaluation employs 30
benchmark functions from CEC-BC-2017 and 12 benchmark
functions from CEC-BC-2022 to assess the performance of the
improved POA based on the satiation strategy and its further
enhancement incorporating mathematical distributions. The
validation across these two benchmark sets demonstrates the
effectiveness of the proposed improvements to POA.

Index Terms—Pelican optimization algorithm, African bald
eagle satiety rate, Mathematical distribution, Function
optimization

[. INTRODUCTION

n recent years, nature-inspired metaheuristic algorithms
have gained significant attention in solving complex
optimization problems due to their adaptability, robustness,
and high efficiency. These algorithms, inspired by biological,
physical, and social phenomena, mimic natural processes to
achieve an optimal balance between exploration and
exploitation. Among them, swarm intelligence-based
algorithms, such as Particle Swarm Optimization (PSO) [1],
Grey Wolf Optimizer (GWO) [2], and Pelican Optimization
Algorithm (POA) [3], have demonstrated remarkable
performance in various optimization tasks.
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The pursuit of improved search efficiency and
optimization performance has driven extensive research in
meta-heuristic algorithm development. Common
enhancement strategies include adaptive mechanisms [4],
chaotic mapping [5], dynamic weight adjustment [6] and
hybrid search techniques [ 7], all aimed at achieving a balance
between global exploration and local exploitation,
accelerating convergence, and mitigating premature
stagnation. Several advanced optimization algorithms have
integrated these strategies to enhance performance. For
instance, Ye et al. proposed the multi-strategy enhanced dung
beetle optimization algorithm (MDBQO), incorporating Latin
hypercube sampling and a differential mechanism to improve
search diversity and escape local optima [8] Qian et al.
introduced six spiral functions and two hybrid varants
{(SEB-CHOA) to address slow convergence [9], while Chaib
et al. enhanced the Crayfish Optimization Algorithm (COA)
using fractional chaotic maps and dimension learning-based
search techmiques [10]. Other notable contributions include
the improved Atom Search Optimization (IASO) [11], the
enhanced Whale Optimization Algorithm (IWOA) [12], and
the  Cauchy-Gaussian  mutation-based Grey  Wolfl
Optimization algorithm (CG-GWQO) [13], all demonstrating
significant performance improvements.

The Pelican Optimization Algorithm (POA) [3], a recently
introduced bio-inspired metaheuristic based on pelican
foraging behavior, has shown promising results in
optimization tasks. However, POA still suffers from
challenges such as premature convergence and an imbalance
between exploration and exploitation. To address these
limitations, various improvement strategies, including
adaptive mechanisms, chaotic mapping, and biologically
mnspired modifications, have been explored to enhance its
search efficiency and robustness [14].

Motivated by the success of the African Vulture
Optimization Algorithm (AVOA) [15], which effectively
utilizes the satiety strategy of African vultures to regulate
search behavior, this study introduces an improved POA by
integrating the African vulture satiety strategy and
mathematical distributions. The satiety strategy enhances the
exploration and exploitation phases of POA, improving
population diversity and search efficiency. Additionally,
eight different mathematical distributions are embedded in
the exploration phase to increase search randomness and
diversity, thereby preventing premature convergence to local

optima.
To ngorously evaluate the effectiveness of the enhanced
Pelican  Optimization Algorithm (POA), extensive

computational experiments were conducted using two widely
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recognized benchmark test suites: the CEC-BC-2017 [16]
and CEC-BC-2022 [17] benchmark functions. Specifically,
30 benchmark functions from CEC-BC-2017 and 12
benchmark functions from CEC-BC-2022 were emploved to
assess the algorithm’s performance across diverse
optimization landscapes, including unimodal, multimodal
and composite functions. These benchmark functions are
designed to simulate real-world optimization challenges by
incorporating features such as complex landscapes, deceptive
local minima, and varying degrees of separability.

The experimental results demonstrate that the proposed
enhancements significantly improve POA’s optimization
capability, effectively mitigating premature convergence
while achieving a well-balanced trade-off between global
exploration and local exploitation. Additionally, the modified
algorithm exhibits accelerated convergence rates and
enhanced solution accuracy, highlighting its robustness in
solving both high-dimensional and complex optimization
problems. These findings provide strong empirical evidence
supporting the efficacy of the improved POA in comparison
to its original counterpart, reinforcing its potential
applicability to a wide range of optimization tasks.

1. PELICAN OPTIMIZATION ALGORITHM (POA)

Pelican Optimization Algorithm (POA) [3] is an emerging
computational method inspired by the hunting behaviors of
pelicans in the natural environment. Recent studies indicate
that POA emulates the efficient strategies these birds employ
when searching for and capturing prey, reflecting a unique
dynamic balance between exploration and exploitation. This
algorithm 1s designed to adaptively adjust these two critical
components, thereby significantly enhancing its navigation
capabilities in complex optimization landscapes.

The operational mechanism of POA simulates a group of
pelicans foraging in their environment. In this model, each
pelican represents a potential solution to the optimization
problem, while the collective behavior of the group
contributes to the identification of the optimal solution. A
notable advantage of this algonthm 1s its ability to
dynamically adjust search parameters based on the fitness of
solutions, establishing a robust search mechanism that
effectively avoids local optima while converging toward
global optimality.

Compared to traditional optimization algorithms, the
Pelican Optimization Algorithm (POA) exhibits significant
advantages n both efficiency and solution quality,
demonstrating competitive performance across various
optimization tasks and aftracting considerable research
interest. [ts innovative framework enriches the field of swarm
intelligence and paves the way for its application and further
development in diverse domains such as engineering, data
analysis, and machine learning.

A. Population Initialization

During the population mitialization phase, POA generates
an initial set of solutions randomly distributed within the
search space. The process is mathematically represented as
follows:

Xij = [j + rand - (uj — Ij), i=12,-Nj=1,
2, m 1

In POA, the pelican population is represented by the

following matrix of individuals:

x xlm
X = I “ = 11 x} x (2)
i xN;- XN by

where, X denotes the population matrix of pelicans, with X;
representing the i-th pelican.

The objective function values for the pelican population
are expressed through the objective function vector, as shown
in Eq. (3).

AR IS
r=|F, = F(%Q) (3)
F.N W<l F(XN) N1

where, F represents the objective function vector for the
pelican population, with F; denoting the objective function
value of the i-th pelican

B. Phase 1: Approaching Prey

In the exploration phase, pelicans identify the location of
their prey and subsequently move towards it. The movement
towards the prey position 1s modeled by Eq. (4).

y fxiytrand-(p—1-x;) F, <F,
LT x;; +rand - (xi,j - Pj)

where, x! is the new state of the i-th pelican in the j-th
dimension based on the first stage. I 1s a random number
equal to 1 or 2.

4

else

In POA, if the objective function value at a given position
improves, the pelican’s new position is accepted for a valid
update. This update process is represented by Eq. (5).

Pl Pl ,
X, = X{* Fi*<F;
X; else

)

where, F{'is the objective function value based on the new
position X1 of the i-th pelican after the update in the first
stage.

C. Phase II: Surface Flight

In the developmental phase, the hunting behavior of
pelicans is modeled to enhance the local search and
exploitation capabilities of the POA. The mathematical
representation of this process 1s given by Eq. (6), where (R =
0.2).

xf}z =x£,}-+R-(1——) (2-rand — 1) x;; (6)

At this stage, valid updates are employed to either accept
or reject the new pelican positions, as described by Eq. (7).

X% FP? < F,
Xi — L t J
X else

Y

where, X7?2 is the new position of the i-th pelican.
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III. POA BASED ON AFRICAN VULTURE SATIETY RATE
STRATEGY AND MATHEMATICAL DISTRIBUTION

A. African Vulture Satiety Rate Strategy

In this study, the satiety rate strategy of the African vulture
from AVOA was incorporated into the optimization process
of the pelican optimization algorithm, leading to the
development of a new variant, the Adaptive Pelican
Optimization Algorithm (APOA).

To align with the proposed enhancement, the original
African vulture satiety rate formula was modified. The
updated formula and its variation with the number of
iterations are presented as follows:

—hx(sinz(nx i )+ (ﬂx i )—1)
= 2  maxit cos 2  maxit
(®)
A= 2 Xrand) X zx (1 — i )ta )

maxit

where, A represents the satiety rate of African vultures, ¢
denotes the current iteration number, and maxitt is the
maximum number of iterations.

The variables z and / are randomly generated within the
ranges [-1,1] and [-2,2], respectively, while rand is a random
number between 0 and 1. When the absolute value of 4
exceeds or equals 0.5, it is incorporated into the exploration
phase of POA, enhancing the balance between exploration
and exploitation. After normalization, the formulation is
given as follows:

pl xi_j + rand . (p] = (A + 05) » xi‘j), Fp < F}
i = (10)

x;; +rand - (xi,j — pj) else

When the absolute value of vulture satiety rate 4 is less
than 0.5, it is introduced into the development stage of POA.
The value (1-#/T) in the original algorithm decreases with the
increase of iteration times. In this paper, the (1-#/7) parameter
is changed to nonlinear decrease and random disturbance
caused by vulture satiety is added in the decreasing process,
so it balances the exploration and development of the
algorithm and speeds up the convergence speed. The
improved formula after normalization is as follows:

pz = . . . . _ .
X =X+ R-2 |A]- (2 rand — 1) x;;

(1)

B. POA Based on Mathematical Distribution

The application of mathematical distribution is extensive
across various domains, with the uniform distribution being a
prevalent type that has been extensively researched and
analyzed by numerous academics. Beyond the uniform
distribution, there exists a plethora of other mathematical
distribution forms. This study focuses on a selection of
well-known and frequently utilized distributions to enhance
APOA further.

The distribution of these mathematical distributions within
the range (0,1) is depicted in Fig. 2. TABLE I provides the
specific expressions for these distributions. These
distributions were employed as substitutes for the random
distribution in the position update equation during the
exploration phase. The modified equation is presented below.
Eq. (12) represents the position update equation post the
incorporation of mathematical distribution; Eq. (13) signifies

the position update equation post the integration of the
African vulture satiety rate and mathematical distribution.

p_ [Xigt M- (pj—1-x;), F,<F;
0= (12)
X+ M- (xi,j - pj) else
pl xl-_j-l-M'(pj—(A+0.5)'xi_j), Fp < F]
ij = (13)
X+ M- (xl-,]- — pj) else

where, M represents different mathematical distributions.
The POA flow chart based on African vulture satiety rate
and Mathematical Distribution (AMPOA) is shown in Fig. 3.
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Fig. 1 African Vulture Satiety Rate trend with the number of iterations.
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Fig.3 Flow chart of AMPOA.

IV. SIMULATION EXPERIMENTS AND RESULT ANALYSIS

This section evaluates the proposed enhanced algorithm
through two comparative experiments. First, the improved
POA is tested on 30 benchmark functions from the
CEC-BC-2017 test suite, followed by validation on 12
benchmark functions from the CEC-BC-2022 test suite.
Section A presents the results for CEC-BC-2017, while
Section B analyzes the outcomes for CEC-BC-2022.

A. Improved POA to Solve CEC-BC-2017 Test Functions

To demonstrate the superiority of the POA after
incorporating the African condor satiety rate and
mathematical distribution, we utilized 30 benchmark
functions from the CEC-BC-2017 test suite [16]. All test
functions had a dimension of 30, with a maximum iteration
limit of 1000 and a population size of 30. The function range
for all tests was set to [-100, 100]. The selected functions
cover four categories: unimodal, multimodal, mixed and
compound functions.

To rigorously assess the performance of the improved
Pelican Optimization Algorithm (POA) incorporating the
African condor saticty rate and mathematical distributions, a
comprehensive set of comparative experiments was
conducted. The objective was to evaluate the effectiveness of
the proposed modifications relative to both the standard POA
and a variant that solely integrated the African condor’s
saticty rate. The experimental setup involved testing cach
algorithm on a set of benchmark functions, where each
function was configured with a dimensionality of 30. A
maximum of 1000 iterations per run was allowed, and each
algorithm underwent 30 independent runs to ensure statistical
reliability. The optimal solution obtained in each run was
recorded, and statistical analyses were subsequently
performed to facilitate a rigorous comparative evaluation of
the different POA variants. To ensure an objective and
comprehensive assessment, performance comparisons were
primarily based on two key statistical metrics: the mean and
variance of the obtained solutions. These statistical indicators
provide insights into both the stability and efficiency of the
optimization process. The detailed statistical outcomes are
summarized in Table II, while Fig. 4 illustrates the
convergence behavior of the different algorithms. The
empirical results clearly demonstrate that the enhanced POA
exhibits superior convergence characteristics across the
majority of test functions, highlighting its robustness in
solving complex optimization problems.

Through an in-depth analysis of the data from the
simulation charts and tables, several key observations can be
made. First and foremost, the adaptive POA (APOA)
incorporating the African condor’s satiety rate consistently
outperforms the standard POA across all tested benchmark
functions. Furthermore, when mathematical distributions are
integrated into APOA, an additional performance boost is
observed, affirming the efficacy of these enhancements in
improving the algorithm’s optimization capabilities.

Among all APOA variants incorporating mathematical
distributions, the version utilizing the Gamma distribution
emerges as the most effective. This variant consistently
achieves superior results in terms of mean and variance,
yielding the lowest values across optimization functions 4, 13,
14, 18, 25 and 30. Additionally, in terms of mean values, it
also demonstrates the best performance for test functions 1, 2,
7,15, 19 and 26. These findings provide compelling evidence
of its strong competitiveness and superior optimization
efficiency. The effectiveness of the Gamma distribution in
balancing exploration and exploitation contributes
significantly to the algorithm’s ability to achieve faster
convergence while maintaining solution accuracy. The
APOA variant enhanced with the Exponential distribution
also demonstrates commendable overall performance.
Although its effectiveness does not surpass that of the
Gamma-enhanced variant, it consistently ranks highly across
multiple benchmark functions. Notably, this variant achicves
the smallest mean and variance in optimization function 28,
as well as the smallest mean value in function 22. These
results indicate that the Exponential distribution plays a vital
role in maintaining stability and achieving efficient
convergence. In the second performance tier, the APOA
variants incorporating the Rayleigh and Weber distributions
exhibit notable improvements over the standard POA. These
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two modifications contribute to enhanced convergence
precision and acceleration. Specifically, the Rayleigh-
enhanced APOA attains the smallest mean values in
optimization functions 3 and 23, while the Weber-enhanced
variant achieves the lowest mean and variance in functions 11
and 12. Although these two variants do not reach the
optimization level of the Gamma-enhanced APOA, they
nonetheless provide sigmificant performance  gains,
reinforcing the utility of mathematical distributions in further
refining optimization algorithms. The third tier of
improvements includes APOA variants integrating (Gaussian
and Poisson distributions. Although these variants offer
better convergence performance compared to the standard
POA, their overall effectiveness 1s relatively inferior to that
of the higher-ranked distribution-based enhancements. The
Gaussian-enhanced APOA achieves the smallest mean values
in optimization functions 5, 16, 24 and 29, while the
Poisson-enhanced variant attains the lowest mean value for
function 20. While these results suggest moderate
improvements, the Gaussian and Poisson distributions appear
to be less effective in significantly enhancing the
optimization process when compared to the Gamma,
Exponential, Rayleigh, and Weber distributions. The final
tier consists of APOA variants incorporating Beta and
Geometric distributions. While these variants still exhibit
superior performance compared to the original POA and the
standard APOA, their overall optimization effectiveness
remains limited when compared to the other mathematical
distribution-based enhancements. In particular, for test
functions such as 8 and 21, their performance is even worse
than that of the original POA. These results suggest that Beta
and Geometric distributions may not be optimal for
enhancing the search and convergence capabilities of APOA.

The data presented in Table IT unequivocally demonstrate
that the incorporation of the African condor satiety rate,
combined with mathematical distributions, significantly
enhances the optimization performance of the improved POA
compared to the original algorithm. This validates the
effectiveness and feasibility of the proposed enhancement
strategies. Furthermore, among all tested variants, the
combination of the African condor satiety rate with the
Gamma distribution yields the best overall performance.
Given its demonstrated superiority in achieving both
enhanced convergence speed and solution accuracy, the
AMPOA (Adaptive POA with Gamma Distribution) variant
was selected for further experimentation, as it exhibits the
most promising potential for solving complex optimization
problems efficiently.

B. Improved POA to Solve CEC-BC-2022 Test Functions

To validate the enhanced POA’s effectiveness, we assess
its performance on 12 benchmark functions from the
CEC-BC-2022 test suite [17], a widely used framework for
evaluating optimization algorithms. These functions are

categorized into unimodal, multimodal, hybrid and
composition functions, providing a comprehensive
performance assessment. To further substantiate the

advantages of incorporating the enhanced Pelican
Optimization Algorithm (POA) with the African vultures
satiety rate and mathematical distribution, a series of rigorous
experiments were conducted using 12 benchmark functions
from the CEC-BC-2022 test suite, each with a dimensionality

of 20. In each experiment, the maximum iteration limit was
set to 1000 generations, with each algorithm being run 30
independent times to obtain reliable and consistent results.
The primary objective of these experiments was to capture
the optimal solutions achieved by each algorithm and to
perform a detailed statistical analysis for a robust comparison.
Specifically, we compared the original POA, the Adaptive
Pelican Optimization Algorithm (APOA) with the African
vultures satiety rate, and the APOA variants based on
mathematical distributions. To ensure a thorough and
objective evaluation, mathematical statistics were applied to
the experimental results, and the analysis focused on key
metrics such as the mean values and variances. This allowed
for a comprehensive understanding of the relative
performance of the algorithms across all test functions. The
results are summarized in Table III, and the convergence
behavior of each algorithm is visually represented in Fig. 5,
providing a clear comparison of the optimization processes.

In order to compare the differences between different
algorithms more intuitively, the stacked graph (Figure 6) 1s
introduced to show the average fitness value ranking of each
algorithm in all test functions. Each algorithm corresponds to
a graph, and the smaller the area in the graph represents the
greater the overall effect. From Fig. 6, it can be seen that the
improved POA has better convergence performance,
especially for most of the test functions. Notably, the APOA
variant based on the satiation rate of African vultures
consistently outperforms the original POA across all 12
tested functions, reinforcing the proposed enhancement. In
addition, the APOA variant combined with the mathematical
distribution method shows more significant improvement,
which further validates the effectiveness of the satiety rate
combined with the mathematical distribution strategy

Among all APOA variants incorporating mathematical
distributions, the version that integrates the Rayleigh
distribution emerged as the most effective enhancement. It
not only demonstrated the best performance in terms of both
mean and variance but also achieved the minimum values for
all three key metrics in test function 12. This variant also
delivered superior results in test functions 4, 5 and 7, proving
its robustness across a wide range of optimization tasks. The
APOA variant incorporating exponential distribution showed
commendable performance, achieving the minimum optimal
values for functions 1, 4 and 7, and the smallest mean values
for functions 2 and 8. While it did not surpass the Rayleigh
distribution wvariant in overall performance, it still
demonstrated a competitive edge. The second tier of
improvements involved variants that integrated Gaussian and
Gamma distributions.

Both of these variants achieved more precise convergence
and faster convergence speeds compared to the original POA.
While the Gaussian distribution variant did not outperform
the other variants in every test function, it consistently ranked
highly, reflecting its good stability across all benchmarks.
The Gamma distribution variant was particularly notable for
achieving the minimum mean and variance wvalues in
optimization functions 1 and 6, highlighting its potential in
specific optimization scenarios. The third tier comprised
variants that incorporated Poisson and Weibull distributions.
While these variants showed relatively stable performance,
they generally ranked in the middle of the overall
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performance spectrum. The Poisson distribution variant only
achieved the minimum mean value in optimization function
11, whereas the Weibull distribution variant excelled in
optimization function 9, obtaining both the minimum mean
and optimal values. Despite these improvements, the Poisson
and Weibull variants were outperformed by several other
distributions in terms of overall effectiveness.

In conclusion, the data presented in Table III clearly
demonstrate that integrating mathematical distributions into
the POA, particularly when paired with the African vultures
satiety rate, results in a substantial improvement in
optimization performance. The Rayleigh distribution-based
APOA variant outperformed all other algorithms,
showcasing the best balance between exploration and
exploitation, and proving the feasibility and effectiveness of
the proposed improvement methods. Based on these findings,
the Rayleigh distribution-based APOA variant was selected
for further experiments, confirming its potential as the most
effective approach for solving complex optimization
problems.

C. Time Complexity Analysis of RAMBPOA

In the RAMBPOA, the overall time complexity consists of
two main parts: the initialization phase and the iterative
optimization phase. The initialization phase involves
generating and binarizing an N X d population matrix and
evaluating the fitness of each individual once, for a cost of
O(Nd + Nt) . The optimization phase then runs for T
iterations; each iteration scans the population to find the
current best solution in O(N) and updates every individual
through feature selection, exploration, and exploitation steps.
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Fig. 4 Convergence curves of POA variants to solve the CEC-2017.
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Fig. 6 In-line stacked plots of improved POA to solve CEC-2022 functions.

TABLE II. MATHEMATICAL DISTRIBUTIONS BASED POAS TO OPTIMIZE THE CEC-2017 FUNCTIONS

Function POA APOA APOAbeta  APOAexp  APOAgam  APOAgau  APOAgeo  APOApoi  APOAray  APOAwbl
Ave  1.82E+10  1.63E+10 1.55E+10 1.03E+10 9.67E+09 1.48E+10 1.36E+10 1.25E+10  1.41E+10 1.03E+10
/i Std  6.26E+09  5.15E+09  4.69E+09 4.06E+09 3.83E+09 6.45E+09  3.60E+09  3.89E+09  3.50E+09  3.40E+09
Ave  426E+34  432E+33  4.97E+32 5.26E+26 3.16E+30 9.73E+31 4.31E+33 1.97E+33  6.72E+32  3.08E+31
s Std  9.35E+34  1.33E+34 1.53E+33 1.12E+27 5.32E+30 1.82E+32 1.08E+34  5.61E+33  2.12E+33  7.33E+31
Ave  785E+04  539E+04  3.19E+04 3.04E+04 3.33E+04 3.08E+04  3.20E+04  2.94E+04 291E+04  4.10E+04
£ Std  8.62E+03  1.18E+04  9.55E+03 7.44E+03 6.13E+03 6.74E+03  6.00E+03  8.62E+03  9.54E+03  9.26E+03
Ave 2885.98 2456.93 1926.32 1760.99 1095.25 1749.68 1925.07 1652.05 1477.26 1122.96
% Std 1405.86 2172.04 1048.58 1009.73 359.84 853.78 1077.64 942.41 1198.80 502.83
Ave 804.28 787.78 750.86 740.89 743.41 740.35 770.03 762.20 768.64 769.37
5 Std 3591 38.75 32.99 31.38 22.44 34.65 34.84 31.47 21.07 28.51
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Ave 679.18 676.83 665.99 661.60 662.93 664.11 659.35 661.79 663.53 663.50
Ji Std 8.99 732 482 1.84 540 517 6.40 730 3.64 4.99
Ave 1288.46 1252.13 1256.90 1234.53 1216.81 1286.79 1319.16 1243.14 123933 1277.77
fi Std 38.05 89.05 48.53 81.21 61.12 58.87 53.80 70.40 59.36 55.68
Ave 1001.45 994.06 976.66 972.91 976.61 998.85 104747 1005 .45 979.28 976.48
5 Std 12.37 26.52 21.74 13.85 20.55 20.14 56.79 37.87 21.92 22.44
Ave 5756.35 533213 5230.19 5419.06 5512.63 5196.13 8702.71 5970.17 5430.59 5516.96
% Std 241.04 621.29 909.84 360.87 68257 91755 349428 441.26 659.44 314.61
Ave 5593.49 5530.18 4923.42 5181.37 5223.61 4979.60 5031.85 5128.71 5260.97 5204.12
i Std 389.22 703.02 398.87 467.71 398.71 398.54 602.50 420.83 271.74 305.06
Ave 2605.24 236543 1579.72 1560.90 1597.10 1929.16 1886.58 1622 .45 1711.99 1523.72
Ji Std 755.22 817.75 267.29 145.40 253.90 69957 544.95 251.60 379.22 106.32
Ave 145E+0%  1.01E+09 7.98E+08 3.67E+08 1.61E+08 9.39E+08 1.00E+09 3.69E+08 6.37E+08 1.60E+08
fi Std 1.42E+09  1.24E+09 9.57E+08 431E+08 2A1E+08 9.74E+08 1.21E+09 3.29E+08 8.52E+08 2.36E+08
Ave  3.55E+07  1.29E+07 1.15E+07 1.61E+05 9.27E+04 6.32E+06 1.58E+06 211E+06 9.59E+05 1.75E+05
fi Std 6.20E+07 S A0E+07 4 .05E+07 2.09E+05 8.38E+04 1.80E+07 2.59E+06 8.53E+06  4.01E+06 3.67E+05
Ave 3.97E+04  1.94E+04 6 A9E+03 1.86E+03 1.69E+03 4.53E+03 1.72E+04 529E+03 1.92E+03 1.78E+03
Ju Std  4.91E+04 2 28E+04 941E+03 4.03E+02 1.02E+02 8.24E+03 2.91E+04 5.86E+03 4.22E+02 1.99E+02
Ave  9.93E+04  7.26E+04 3 A9E+04 2.02E+04 1.65E+04 2.46E+04 540E+04 384E+04 2.53E+04 1.66E+04
fis Std  6.28E+04  S25E+04 2.22E+04 8.00E+03 7.84E+03 1.04E+04 6.06E+04 215E+04 2.05E+04 6.91E+03
Ave 3156.74 3109.74 3088.19 2970.23 3076.34 2929.38 339229 335235 2947.79 3062.10
Jis Std 359.82 184.14 586.49 255.83 300.63 32222 336.96 468.13 254.69 187.26
Ave 2462.46 2401.77 2242.10 2144.57 220031 223231 2272.03 2263.72 2242.63 2200.07
fr Std 256.42 238.25 194.33 204.09 153.20 162.82 227.85 198.36 164.72 127.26
Ave  3.18E+05  2.77E+05 1.76E+05 6.46E+04 4.03E+04 1.41E+05 2.59E+05 1.87E+05 7.57E+04 7.17E+04
fi Std 1.84E+05  6.74E+05 1.91E+05 4.78E+04 2.14E+04 1.60E+05 2.70E+05 1.77E+05 6.18E+04 3.94E+04
Ave 1.25E+06  8.74E+05 4 19E+05 1.95E+05 1.88E+05 3.17E+05 4.93E+05 233E+05 5.10E+05 1.91E+05
S Std 1.22E+06  1.16E+06 4.33E+05 2.77E+05 2.52E+05 2.62E+05 5.51E+05 1.98E+05 6.45E+05 1.92E+05
Ave 2694.39 2652.40 2487.61 2500.18 2524.65 2463.92 253840 2451.67 2463.49 2567.84
fu Std 126.64 172.23 117.99 12541 134.72 12340 124.85 117.59 11942 110.52
Ave 2563.81 2538.34 2543.52 2532.99 2528.26 2530.05 2659.66 2613.48 2517.48 2510.35
f Std 37.50 80.96 45.70 101.68 106.56 88.52 53.13 55.02 104.26 13547
Ave 7019.05 6813 .44 5713.59 3733.79 3867.80 5243.37 5212.72 5567.02 4350.29 4660.27
f Std 812.64 1096.08 1695.48 966.09 1575.72 1590.02 193259 1573.52 1243.99 2010.93
Ave 3270.93 323239 312037 3089.09 3149.19 3014.41 3038.13 3078.63 3010.46 3146.05
f Std 114.18 114.4% 110.74 135.08 13578 74.20 103.44 101.7% §2.68 115.09
Ave 3367.88 334415 3251.19 3226.39 3245.49 3168.29 3180.05 321017 3182.43 3268.32
St Std 151.97 163.41 133.50 87.04 72.58 65.07 72.33 79.70 58.95 66.83
Ave 3366.64 3366.28 326726 3168.89 3059.50 3267.25 3240.79 322310 3225.95 3169.00
fo Std 211.12 198.42 194.30 164.96 53.38 221.63 103.71 132.52 216.65 13042
Ave 7947.87 7704 .64 7817.09 6217.89 6027.76 7464.22 7201.60 7060.75 6185.91 6558.00
fo Std 842.64 1446.20 1623 .40 1699.06 1901.17 1410.3% 1860.00 1487.29 1362.47 1817.79
Ave 3443.72 3417.97 339254 332888 3339.10 3354.44 341133 337370 3350.79 3316.39
Fr Std 67.37 104.75 69.21 80.26 60.95 56.15 8841 66.69 85.11 56.45
Ave 3986.56 3933.14 3920.68 3654.20 3665.97 3909.95 379477 382549 3817.61 3676.21
fa Std 314.92 335.07 37516 215.24 27416 399.98 215.59 367.13 229.08 262.00
Ave 4807.22 4736.22 4605.34 4452.24 4567.06 4404.93 4619.72 4542.16 4503.84 4762.38
S Std 430.89 442.56 338.53 334.97 39343 32377 321.98 419.35 401.39 293.39
Ave 8.64E+06  6.63E+06 5A48E+06 2.80E+06 1.21E+06 5.75E+06 4 86E+06 4 27E+06 2.72E+06 2.08E+06
o Std  5.95E+06  691E+06 4.65E+06 2.71E+06 1.01E+06 4 .94E+06 4.65E+06 343E+06 2.29E+06 2.53E+06
Friedman 9.70 837 6.03 3.03 297 4.73 6.67 537 4.17 3.97
Rank 10 9 7 2 1 5 8 6 4 3
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TABLE IIT. MATHEMA TICAT. DISTRIBUTIONS BASED ADAPTIVE POA TO OPTIMIZE THE CEC-2022 FUNCTIONS

Function POA APOA APOAbeta  APOAexp  APOAgam APOAgau  APOAgeo  APOApoi  APQOAray  APOAwb]

Best  365.05 32385 30027 30025 300.41 30211 316.88 309.62 304.51 302.93

fi Ave 1348.22 71046 37631 347.14 345.04 43225 455.01 518.90 377.23 356.01
Std 1201.80 50749 61.47 55.51 46.44 268.01 283.77 609.51 53.45 59.75

Best  406.54 400.82 40030 400.02 400.00 400.05 400.07 400.07 400.05 400.01

f2  Ave 499.01 430.88 426.12 401.45 407.04 407.82 429.75 413.57 403.03 400.58
Std 69.32 3146 40.82 2.93 16.03 22.31 3995 26.08 4.60 1.43

Best 621.13 610.94 60921 603.12 615.14 600.72 605.32 605.82 600.19 611.68

fa  Ave 639.26 636.51 624 .67 624.18 630.25 620.67 618.35 622.87 62047 62952
Std 11.09 13.35 11.26 13.14 7.12 12.51 919 7.29 14.44 8.72

Best 810.49 825.01 810.94 806.26 807.96 806.97 809.08 811.94 807.07 81145

fa  Ave 837.08 83637 820.54 815.76 816.37 816.07 819.41 820.15 815.57 818.54
Std 11.35 9.70 5.57 531 4.59 427 648 5.76 5.9%9 4.11

Best 102470 111847 924.04 928.01 987.04 97639 907.74 900.33 900.19 1094.67

fz Ave 153571 132332 1101.35 1147.79 1120.6% 1213.96 1155.78 1090.02 1101.11 1214.43
Std 238.87 143.97 12410 86.70 85.87 125.95 123.23 115.40 143.65 92.10

Best 1902.13 2000.15 1852.03 1823.59 1817.18 1829.35 1833 .26 1840.00 1816.67 1818.47

fe Ave 384487 3642.66 2334.99 1936.56 1850.06 2117.70 2680.70 1949.93 1874.33 1903.18
Std 229505 1919.28 122242 27915 28.21 952.99 183935 74.92 41.72 133.94

Best  2027.18 201647 2012.64 2005.33 2025.07 2008.13 2018.71 2020.37 2005.59 2022.54

f7 Ave 2075.58 2071.72 2038.61 2034.19 204742 2031.60 2036.97 2036.60 2030.69 2050.56
Std 2297 3325 13.27 15.45 16.28 12.91 11.51 17.21 16.09 16.22

Best 210285  2101.8% 2060.90 2074.57 2094.02 2077.99 205838 2085.59 2071.69 2058.18

fa Ave 2181.07 2147.46 2114.15 2107.34 2114.30 2109.46 2111.65 2109.37 2125.78 2116.27
Std 52.98 26.48 38.34 25.58 19.16 23.30 31.32 17.75 41.59 25.51

Best  2552.83  2368.83 2529.29 2529.28 252928 2529.28 252929 2529.29 2529.29 2331.02

fo Ave 2602.26 2552.43 2529.93 2529.30 252936 2535.31 2550.66 2533.07 2529.67 2509.67
Std 33.09 67.39 0.67 0.02 0.19 13.63 27.71 7.39 0.78 62.77

Best 250046 250035 2500.16 250040 250037 250045 2500.23 2500.47 2500.29 250043

fio  Ave 259492 258955 2529.44 2552.27 253082 2533.86 255477 2534.80 2541.76 2540.02
Std 218.48 188.72 55.08 58.55 53.74 58.42 61.45 60.44 57.15 55.07

Best  2615.63 2615.72 2421.53 2486.83 250952 2435.29 2504.77 2420.56 2410.48 2523.35

fi Ave 269439 2652.40 2487.61 2500.18 2524.65 2463.92 253840 2451.67 2463.49 2567.84
Std 126.64 172.23 117.9% 12541 134.72 12340 124.85 117.59 11942 110.52

Best 286231  2862.21 2860.14 2859.55 2860.51 2861.29 2862.97 2859.56 2859.46 2859.68

fi=  Ave 287396  2867.27 2867.51 2864.60 2864.53 2865.50 2866.08 2866.37 2863.79 2863.90
Std 15.36 6.41 6.14 2.77 2.62 326 237 5.56 1.28 1.96
Friedman 10.00 8.92 542 3.50 4.08 442 617 458 3.08 483

Rank 10 9 7 2 3 4 8 5 1 6

Hach wupdate involves constant-time arithmetic and
threshold on d -dimensional vectors plus a few fitness
evaluations, for O{d + t) per individual, giving O(N(d + t)
per iteration. Multiplying by the number of iterations yields
O(T x N(d + t)). If each fitness evaluation itself scans m
samples over d features then the total complexity can be
expressed as O(T X N x m X d).

V. CONCLUSION

This study proposes an enhanced Pelican Optimization
Algorithm (POA) that incorporates the African vulture
satiety strategy and multiple mathematical distributions to
improve optimization performance. Inspired by the African
Vulture Optimization Algorithm (AVOA), the satiety
strategy was integrated into both the exploration and
exploitation phases, enhancing the algorithm's search

capability and balancing global exploration with local
exploitation. This modification mitigates premature
convergence and helps the algorithm avoid local optima,
thereby improving solution quality.

Furthermore, to further diversify the search process and
introduce adaptive randomness, eight distinct mathematical
distributions were incorporated into the exploration phase.
These distributions were designed to regulate the step size
and movement patterns of the search agents, ensuring a more
comprehensive and diverse exploration of the search space.
By incorporating statistical distributions such as Gamma,
Exponential, Rayleigh, and Weibull, the improved POA
demonstrated a heightened ability to navigate complex,
multi-modal landscapes and avoid stagnation in sub-optimal
regions.

The effectiveness of the proposed enhancements was
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rigorously evaluated using two widely recognized benchmark
test suites: 30 benchmark functions from CEC-BC-2017 and
12 benchmark functions from CEC-BC-2022. Comparative
analyses based on statistical metrics, including mean values
and variance, confirmed that the improved POA consistently
outperformed the standard POA and its adaptive variants
across a wide range of test functions. The experimental
results provided strong evidence that the integration of the
African vulture satiety strategy, combined with mathematical
distributions, significantly enhances convergence speed,
solution accuracy and overall robustness in optimization
tasks.
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