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Abstract—Artistic text image segmentation is a crucial yet
challenging task in computer vision, characterized by intricate
font morphologies, non-rigid deformations, and low contrast
between text and background. Traditional segmentation tech-
niques, such as thresholding and edge detection, struggle to
handle the complexity of artistic text, while deep learning-
based methods, despite showing improvements, often lack fine-
grained boundary precision and generalization ability across
diverse styles. To address these limitations, we propose PAS-
Former (Progressive Artwork Segmentation Transformer), a
novel edge-aware segmentation framework that integrates hi-
erarchical feature extraction, self-attention mechanisms, and
adaptive edge refinement. PASFormer is composed of three
core components: TextEdgeSeg, which extracts multi-resolution
text features; CannyEdgeDetect, which enhances boundary
localization through traditional edge detection techniques; and
a hierarchical Transformer-based encoder-decoder, which fuses
semantic and boundary information for high-precision seg-
mentation. By leveraging a progressive learning strategy and
multi-task optimization, PASFormer effectively captures fine-
grained artistic text structures while preserving global semantic
coherence.

To evaluate PASFormers effectiveness, we conduct extensive
experiments on three benchmark datasets: ArtText, COCO-
Text, and ICDAR2019-ArT. Our model achieves significant
performance gains over existing approaches, with IoU improve-
ments of 10%-21%, a 12% increase in Dice coefficient, and
a 30% reduction in Hausdorff Distance compared to state-
of-the-art methods. Moreover, PASFormer maintains compu-
tational efficiency, achieving real-time inference speeds compa-
rable to CNN-based models, making it suitable for practical
applications. The results demonstrate that PASFormer not
only enhances segmentation accuracy in complex artistic text
scenarios but also generalizes well across varying font styles,
distortions, and background conditions. This work contributes
a robust and scalable solution for artistic text segmentation,
with potential applications in autonomous vision systems, digital
archiving, and intelligent document analysis. Future research
will explore further optimizations in computational efficiency
and adaptation to multi-lingual artistic text.

Index Terms—Artistic Text Segmentation, Edge-Aware Seg-
mentation, Multi-Scale Feature Fusion, Transformer-Based
Model

I. INTRODUCTION

RTISTIC text image segmentation constitutes a crucial
research topic within the field of computer vision, with
its core objective centred on achieving pixel-level precise
extraction of text regions exhibiting irregular morphologies
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such as curvature variations, projection distortions, and dec-
orative structures in complex scenes. This task poses mul-
tiple technical challenges. Firstly, artistic fonts demonstrate
high heterogeneity in glyph structures, including ligatures,
perspective distortions, and stylized embellishments, as well
as appearance attributes such as gradient colour, fill and
semi-transparent effects. Secondly, the low discriminability
between text and background in terms of colour space
and texture patterns further exacerbates the segmentation
difficulty. Lastly, the coexistence of multi-scale text instances
and their dense arrangement frequently leads to inter-instance
adhesion. Traditional methods based on threshold segmen-
tation, such as Otsus algorithm, or edge detection, such
as the Sobel operator, are inherently limited in handling
such complex scenarios due to their lack of semantic un-
derstanding. In recent years, deep learning-based solutions
have demonstrated significant improvements in robustness
by incorporating multi-level feature modelling and geometry-
adaptive mechanisms.

To address the challenge of scale variability in artistic
text, contemporary research primarily employs hierarchi-
cal feature fusion architectures. A representative example
is PSENet, which leverages a progressive scale expansion
strategy to construct a multi-stage binary mask prediction
network, effectively mitigating small-scale text omission
and inter-instance adhesion. The enhanced Atrous Spatial
Pyramid Pooling (ASPP) module facilitates dynamic recep-
tive field adjustment through multi-rate dilated convolutions,
thereby capturing cross-scale contextual information while
maintaining feature resolution[lll, 2]. Furthermore, U-Net and
its variants integrate encoder-decoder structures with skip
connections to achieve cross-layer fusion of low-level high-
resolution texture features, such as decorative shadows and
hollow structures, and high-level semantic features[3, H].
Improved architectures in this line of research have achieved
an F-measure of 89.7% on the ICDAR2019-ArT dataset. To
handle the non-rigid deformations of artistic text, deformable
convolutional networks (DCN) dynamically adjust convolu-
tional kernel sampling positions through learnable offsets,
demonstrating remarkable performance in curved text seg-
mentation tasks[S, A]. Building upon this, TextSnake intro-
duces a geometric analysis framework utilizing a centerline-
radius representation model to describe the topological struc-
ture of the curved text, achieving an Intersection over Union
(IoU) of 78.4% on the Total-Text dataset. Additionally,
Transformer-based architectures exploit self-attention mech-
anisms to establish long-range dependency models. Swin-
TextSeg employs a window partitioning strategy to effec-
tively capture global spatial relationships between text and
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background while reducing computational complexity[].

Current research predominantly adopts multi-task collabo-
rative optimization strategies to enhance boundary precision.
Notably, the joint learning framework Mask TextSpotter
v3[B, 9] extends Mask R-CNN[IO-IZ] by incorporating a
boundary-aware branch that sharpens edges via differentiable
morphological operations. Furthermore, energy function op-
timization techniques such as the DenseCRF post-processing
module construct energy functions constrained by colour
similarity and spatial proximity, effectively eliminating seg-
mentation noise. Adaptive weighting mechanisms are also
explored, as evidenced by the BCE-Dice hybrid loss function,
which dynamically adjusts weights to balance inter-class
sample distributions.

These advancements collectively contribute to the ongoing
progress in artistic text image segmentation, reinforcing its
significance as a pivotal research challenge in CV.

II. RELATED WORK
A. SegFormer

SegFormer[I3, T4] is a semantic segmentation model
that integrates Transformer architecture with a lightweight
design, demonstrating outstanding performance in artistic
text segmentation tasks. Its core advantages are as follows:

1) Hierarchical Transformer Encoder: Utilizing the Mix
Transformer (MiT) structure, SegFormer progressively ex-
tracts multi-scale features. The shallow layers preserve high-
resolution details such as text edge decorations, while the
deeper layers capture global semantics, enabling effective
differentiation between text and background.

2) Lightweight Decoder: The model employs a Multi-
Layer Perceptron (MLP) to fuse multi-level features, elim-
inating the need for complex upsampling operations. This
significantly reduces computational overhead and makes
SegFormer particularly suitable for mobile and edge de-
vice deployment. Multi-Scale Adaptability: By incorporating
Overlap Patch Embedding, SegFormer mitigates feature map
resolution loss, allowing it to handle variations in artistic
text size effectively. It demonstrates robustness in scenarios
with extreme perspective distortions and intricate decorative
strokes, ensuring accurate segmentation even under challeng-
ing conditions.

Leveraging the self-attention mechanism, SegFormer ef-
fectively captures long-range dependencies, addressing the
issue of colour ambiguity between artistic text and complex
backgrounds. For instance, it can successfully distinguish
gradient-filled text from visually similar backgrounds, en-
hancing segmentation accuracy. Additionally, its multi-scale
feature fusion capability enables simultaneous processing of
both coarse-grained text regions, such as overall glyph struc-
tures, and fine-grained details, including shadows and hollow
structures. This comprehensive approach significantly out-
performs traditional Convolutional Neural Network (CNN)-
based models such as U-Net, establishing SegFormer as a
state-of-the-art solution for artistic text segmentation.

B. Canny Edge Detection Operator

The Canny edge detection operator is a classical image
processing technique widely utilized for extracting edge

features in images[I3]. Its core procedure consists of four se-
quential steps: Gaussian filtering for noise reduction, gradient
computation, non-maximum suppression, and dual-threshold
hysteresis processing. While the Canny operator does not
directly participate in the forward inference of deep learning
models, it plays a crucial role in both the preprocessing and
post-processing stages of artistic text segmentation:

1) Preprocessing Enhancement: The original image can
be concatenated with the edge map generated by the Canny
operator to form a multi-channel input, thereby enhancing
the model’s sensitivity to text boundaries. For instance, in
low-contrast scenarios where light-coloured text overlays
a textured background, the Canny edge map accentuates
contour differences, guiding the model to focus on text
regions more effectively.

2) Post-processing Optimization: The segmentation results
produced by the model can be further refined using Canny
edge detection in conjunction with morphological operations
such as dilation and erosion or Conditional Random Fields
(CRF). This approach facilitates boundary refinement and the
restoration of broken decorative strokes, such as the "fibre"
strokes in calligraphy.

3) Weakly Supervised Training: The edge maps generated
by the Canny operator can serve as auxiliary supervision sig-
nals, enabling the design of edge consistency loss functions
that constrain the overlap between segmentation masks and
edge maps. This enhances the model’s ability to capture fine-
grained details.

The primary advantages of the Canny operator include its
computational efficiency and training-free nature, making it
particularly suitable for resource-constrained environments.
Additionally, it ensures good edge continuity, producing
single-pixel-width outputs that facilitate subsequent process-
ing. However, its limitations lie in its reliance on manually
tuned parameters such as Gaussian kernel size and high-low
threshold values, as well as its sensitivity to noise. Moreover,
it struggles to handle colour gradients or blurred edges,
such as shadowed text, necessitating integration with deep
learning-based approaches for optimal performance.

C. Contour Prediction Branch

The contour prediction branch is an advanced strategy
designed to enhance edge precision in segmentation tasks
within the deep learning era. By leveraging a multi-task
learning framework, this technique explicitly models text
boundary features to refine segmentation results. Its core
principle involves introducing a parallel contour prediction
branch into the primary segmentation network, such as U-
Net or SegFormer, thereby jointly optimizing both region
segmentation and edge localization[[[&]. The key components
of this approach are as follows:

1) Network Architecture: After the backbone network
extracts multi-scale features, the contour prediction branch
generates a boundary probability map using lightweight
convolutional layers, typically comprising 1x1 convolutions
followed by upsampling operations. Common feature fusion
strategies include direct feature concatenation, attention-
based weighting (where the contour probability map mod-
ulates segmentation features), or joint optimization via loss
function combination (e.g., Dice Loss + Binary Cross-
Entropy (BCE) Loss).
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2) Ground Truth Generation: The contour labels are typ-
ically generated from the ground truth masks through mor-
phological operations such as the difference between dilation
and erosion or edge detection algorithms like Canny. Alter-
natively, high-precision edges can be manually annotated to
ensure optimal accuracy. Loss Function Design: The contour
prediction branch commonly employs Binary Cross-Entropy
(BCE) Loss or edge-sensitive losses such as Focal Loss,
which emphasize classification weights for boundary pix-
els. Some models further incorporate geometric constraints,
ensuring topological consistency between the segmentation
mask and the predicted contours, thereby preventing logical
inconsistencies in the segmentation results.

3) The contour prediction branch offers several advantages.
Firstly, it enhances edge refinement by directly supervising
boundary regions, significantly mitigating the common issue
of broken decorative strokes in traditional models, partic-
ularly in hollow or shadowed text. Secondly, it improves
robustness against background interference by leveraging
edge features to distinguish text from visually similar back-
grounds, such as white text overlaid on a light-coloured
textured surface. This approach is efficient for segmenting
complex-edged fonts such as calligraphy and Gothic script,
as well as for handling low-contrast and small-sample sce-
narios.

When integrated with the Canny edge detection oper-
ator, the synergy between traditional and deep learning-
based methods can further optimize segmentation accuracy.
The Canny-generated edges can serve as supervision sig-
nals for training the contour prediction branch or as post-
processing refinements for segmentation results. This hybrid
approachcombining "traditional edge detection with deep
learning-based semantic segmentation"enables a complemen-
tary mechanism wherein weak supervision from Canny
assists training, while high-precision boundary predictions
from the contour branch refine inference results.

III. PASFORMER
A. Overall Process

This paper proposes Progressive Artwork Segmentation
Transformer(PASFormer), an edge-aware progressive seg-
mentation framework designed to address the challenges
of semantic segmentation in complex artistic text scenar-
ios. The structural overview of PASFormer is illustrated
in Figll. By integrating a multi-modal feature fusion ar-
chitecture, PASFormer jointly optimizes edge detection and
semantic segmentation features, achieving fine-grained seg-
mentation of artistic text. The overall architecture of PAS-
Former comprises three core components: a Multi-Scale
Edge Detection Module (TextEdgeSeg), an Adaptive Edge
Enhancement Module (CannyEdgeDetect), and a hierarchical
encoder-decoder network. These modules work synergisti-
cally through feature complementation, forming a unified
segmentation framework.

The TextEdgeSeg module extracts preliminary segmen-
tation features and generates a coarse prediction of text
regions, thereby laying the foundation for subsequent refine-
ment. Simultaneously, the CannyEdgeDetect module applies
Canny edge detection to capture text boundary information,
enhancing the model’s edge localization capability. These

two modules complement each other, providing a diverse set
of informative cues for high-precision text segmentation.

The encoder consists of stacked text segmentation blocks,
progressively extracting multi-scale features. The decoder
adopts a multi-path upsampling architecture, reconstructing
high-quality segmentation masks with fine-grained details.
Finally, through a Multi-Layer Perceptron (MLP) layer, PAS-
Former generates segmentation outputs with consistent reso-
lution and well-defined boundaries. This structured approach
ensures robust and accurate segmentation of artistic text in
complex and visually diverse environments.

B. TextEdgeSeg

As the fundamental feature extraction unit of the PAS-
Former framework, the TextEdgeSeg module adopts a multi-
resolution parallel processing strategy to achieve hierarchical
modelling of edge information. The structural overview of
TextEdgeSeg is illustrated in Fig.l. Specifically, the input
image undergoes multi-scale processing along four indepen-
dent feature extraction paths at spatial resolutions of 1/4, 1/8,
1/16, and 1/32. Each path integrates TEConv5 units based on
depthwise separable convolutions, where dilated convolution
kernels with a dilation rate of 5 are employed to capture
long-range contextual dependencies. The structural overview
of TEConvS5 is illustrated in Fig.B.

During the feature fusion stage, a progressive upsampling
strategy (x2, x4, x8) is applied to align cross-scale features.
The fused multi-resolution representations are then aggre-
gated via element-wise addition, enabling deep integration
of edge-related information. Finally, the Text Edge Segment
Head produces a primary segmentation mask with a spatial
resolution of HxW x 1, formulated as Equation (1):

4
Mipitial = 0 (COHV3X3 (@ Upsample(Fﬁ)) (1
i=1

Where o denotes the Sigmoid activation function, &
represents the feature fusion operation, and F; corresponds to
the feature map from the i-th processing layer. Designed with
lightweight efficiency, the TextEdgeSeg module maintains a
model parameter size of only 3.2M, ensuring computational
efficiency while achieving precise edge localization for artis-
tic text segmentation.

C. Hierarchical Transformer-Based Encoder

The encoder in PASFormer adopts a hierarchical Trans-
former architecture consisting of N cascaded Text Segmen-
tation Blocks (TSBs). The structural overview of TSBs is
illustrated in Fig.d. Each TSB is composed of an Efficient
Self-Attention (ESA) unit and a Mixed Feedforward Net-
work (Mix-FFN), with its computational process defined in
Equation(2):

Fiyu = MixFFN (ESA(LN(F},))) + Fin 2)

Where LN represents Layer Normalization, and ESA ap-
plies a spatial reduction strategy with a reduction ratio R to
reduce computational complexity.

A distinctive feature of the encoder is the incorporation
of an edge feature injection mechanism. This mechanism
dynamically fuses the boundary features extracted by the
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Fig. 1. The Structure of PASFormer

CannyEdgeDetect module with semantic features via channel
attention gating. This adaptive feature integration signifi-
cantly enhances the models boundary sensitivity, leading to
more precise text segmentation. Experimental results demon-
strate that this design improves the boundary IoU metric
by 6.8%, underscoring the effectiveness of integrating edge-
aware representations within the Transformer-based segmen-
tation framework.

D. Multi-Path Decoder Architecture

The decoder in PASFormer adopts a heterogeneous fea-
ture fusion strategy, incorporating multi-stage upsampling
branches and a cross-scale feature aggregation module. The
decoding process consists of the following steps:

1) Feature Dimensional Alignment: A 1x1 convolution is
applied to unify feature channels across different layers to a
typical dimension Cg,-

2)Progressive Upsampling: To reconstruct high-resolution
segmentation masks, a hybrid upsampling strategy combining
bilinear interpolation and 3(E3 transposed convolution is
utilized.

3) Feature Concatenation and Refinement: Features at
the same spatial scale are concatenated along the channel

dimension and further refined using Residual Convolution
Blocks (ResConvBlocks).

The final output layer employs a spatial attention mech-
anism to weight multi-scale features, formulated in Equa-
tion(3):

Mina = SA (Conlel (||kK:1Upsample(deeC))) 3)

Where SA denotes the spatial attention module, and ||
represents the channel concatenation operation. Experimental
evaluations on the COCO-Text dataset demonstrate that this
decoder architecture achieves a boundary F-score of 82.3%,
outperforming the baseline model by 9.1%.

PASFormer employs an end-to-end training strategy with
a multi-task joint optimization framework. The overall loss
function is defined in Equation(4):

£t0lal =\ Ldice + )\2£bce + >\3£edge “4)

Where Lg;.. represents the Dice loss, Ly, is the Binary
Cross-Entropy (BCE) loss, and L.g44. enforces edge consis-
tency constraints. The weighting coefficients A\ are learnable
parameters that dynamically balance the contributions of
each loss term. During the training phase, a progressive
learning strategy is adopted to mitigate gradient conflicts
in multi-task learning. Initially, the model prioritizes edge
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detection with A3 = 0.8, while in later stages, the focus
gradually shifts towards segmentation constraints, with Ag,\;
= 0.6. This dynamic optimization mechanism effectively
enhances convergence stability and improves segmentation
accuracy by leveraging complementary task synergies.

IV. EXPERIMENT SETTINGS
A. Training Setup

he proposed PASFormer framework is implemented based
on the MMSegmentation library. All experiments are con-
ducted on a computational platform equipped with four
NVIDIA RTX 3090 GPUs. The AdamW optimizer is utilized
for training, with an initial learning rate of 6 x 10~5 and
a weight decay of 0.01. The batch size is set to 4 for all
experiments.

During the training phase, data augmentation techniques
such as random cropping and flipping are applied to en-
hance generalization. Unlike existing methods that rely on
pretrained models for text region detection or character
recognition, the training of PASFormer does not incorporate
any additional datasets.

For Canny edge detection, the low and high thresholds are
set to 100 and 200, respectively.

To comprehensively evaluate the performance of the pro-
posed framework, two key metrics are employed:

» Conv_BN_Swish »

TEBaseConv_X

1) Foreground Intersection over Union (fgloU), which is
reported in percentage format. 2) Foreground Pixel F-score
(F-value), which is expressed in decimal format.

These evaluation criteria ensure a rigorous and objec-
tive assessment of PASFormers segmentation accuracy and
boundary precision.

B. Datasets

To evaluate the effectiveness of the proposed PASFormer
framework, three widely used datasets in text segmen-
tation research are considered: ArtText, COCO-Text, and
ICDAR2019-ArT. Each dataset presents unique challenges
and characteristics, making them suitable for different as-
pects of artistic text segmentation.

ArtText Dataset: The ArtText dataset is a synthetic dataset
specifically designed for artistic text segmentation tasks.
It was generated using computer graphics techniques to
simulate real-world artistic text appearances in complex
background environments, such as billboards, logos, and
posters. The dataset primarily addresses the challenges of
font variability (e.g., deformations, gradient colour fills, and
perspective distortions) and background interference in natu-
ral scenes. ArtText comprises approximately 50,000 synthetic
images, encompassing diverse artistic text styles, including

> Concat >

Conv_BN_Swish ——

Conv_BN_Swish

Fig. 3. The Structure of Conv5
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3D extruded fonts, shadowed text, and handwritten scripts.
The backgrounds are designed to mimic real-world scenes
such as urban streets, indoor environments, and natural
landscapes, with added random noise, blur, and occlusions
to enhance difficulty. The dataset provides pixel-level text
masks with precise character-boundary annotations, along
with metadata that includes font type, colour, and spatial
positioning. Due to its synthetic nature, ArtText is commonly
used for pretraining purposes or combined with real-world
datasets to enhance model robustness. It is particularly suit-
able for tasks such as artistic text generation, segmentation
in complex backgrounds, and font style transfer.

COCO-Text Dataset: The COCO-Text dataset is a real-
world dataset for text detection and segmentation, introduced
by Google Research in 2016 as an extension of the MS
COCO dataset. Unlike ArtText, COCO-Text consists entirely
of natural scene images, covering a wide range of real-world
text instances, including some artistic text elements such
as signage and graffiti. COCO-Text contains 63,686 images
(sourced from the COCO 2014 training set) with 145,859
annotated text instances. The dataset exhibits significant text
diversity, featuring horizontal, inclined, and curved text, pri-
marily in English, with a small proportion in other languages
such as Arabic and Chinese. Annotations include quadrilat-
eral bounding boxes (rather than pixel-level masks), along
with text content, readability, and font type classification
(e.g., artistic text vs. printed text). Since COCO-Text does not
provide pixel-level segmentation masks, it cannot be directly
used for fine-grained segmentation tasks. However, it serves
as a benchmark for coarse segmentation and text detection,
particularly for evaluating a model’s generalization ability
in real-world environments. It is often combined with high-
precision annotation datasets, such as Total-Text, for joint
training in segmentation tasks.

ICDAR2019-ArT Dataset: The ICDAR2019 ArT
(Arbitrary-Shaped Text) dataset is a real-world benchmark
dataset introduced as part of the ICDAR competition series.
It specifically targets the detection and segmentation of
arbitrarily shaped text. Released by the National University
of Singapore and other research institutions, this dataset aims
to advance segmentation techniques for irregular text shapes,
such as curved, distorted, and perspective-transformed text.
ICDAR2019-ArT consists of 10,166 training images and
an undisclosed number of test images sourced from
natural scenes, including street signs, advertisements, and

documents. A significant portion of the dataset contains
curved, perspective-distorted, and densely arranged text
instances, with some samples featuring artistic design
elements such as gradient fills and shadow effects. The
dataset provides two types of annotations:

1) Polygonal vertex coordinates precisely describe text
boundaries.

2) Pixel-level segmentation masks support end-to-end text
segmentation tasks.

Additionally, text recognition labels are provided, facili-
tating joint "detection-segmentation-recognition” tasks. Due
to the high variability in text shapes, segmentation models
must demonstrate strong boundary sensitivity and contextual
modelling capabilities to achieve optimal performance. The
ICDAR2019-ArT dataset is widely regarded as an author-
itative benchmark in the field of text segmentation and is
frequently used in academic research to evaluate models on
arbitrarily shaped text segmentation.

They are widely used in text detection, segmentation, and
optical character recognition (OCR) tasks. While ArtText
serves as a synthetic dataset for pretraining and augmen-
tation, COCO-Text is primarily utilized for text detection
benchmarking, and ICDAR2019-ArT remains a gold stan-
dard for arbitrarily shaped text segmentation in real-world
scenarios.

C. Evaluation Merits

Before introducing the evaluation metrics employed in this
paper, it is essential to define some preliminary concepts:
1) True Positive (TP): The number of correctly detected
text pixels. 2) False Positive (FP): The number of
background pixels incorrectly classified as text. 3) False
Negative (FN): The number of text pixels that were not
detected.

Based on these fundamental definitions, the evaluation met-
rics used for assessing artistic text segmentation performance
are described below.

1) Intersection over Union (IoU):IoU, also known as the
Jaccard Index, quantifies the degree of overlap between
the predicted and ground truth regions. It is defined in
Equation(5):

TP
TP+ FP+FN
IoU values range from O to 1, where higher values indicate
better segmentation accuracy.

2) Dice Coefficient (F1-score): The Dice Coefficient also
referred to as the F1 score in segmentation tasks, measures

the similarity between the predicted and actual text regions.
It is defined in Equation(6):

IoU

®)

2xTP

Dice = o TP+ FP T FN ©

Similar to IoU, the Dice coefficient ranges from O to 1, where

1 represents a perfect match between prediction and ground

truth, while O indicates no overlap. This metric is widely used

in text segmentation to evaluate the accuracy of predicted
masks.

3) Precision and Recall: Precision measures the proportion

of correctly predicted text pixels among all pixels classified
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as text. Recall quantifies the proportion of actual text pix-
els that have been correctly detected. They are defined in
Equation(7) and Equation(8):

. TP
Precision = TP+ FP (N
TP
Recall = m (8)

Both Precision and Recall range from O to 1. A higher
Precision indicates fewer false positives (fewer misclassified
background pixels as text), while a higher Recall suggests
fewer false negatives (fewer undetected text pixels). In
segmentation tasks, achieving an optimal balance between
Precision and Recall is crucial for model performance.

4) Hausdorff Distance: The Hausdorff Distance quantifies
the maximum deviation between the predicted and ground
truth boundaries, capturing the worst-case error in segmen-
tation. It is defined in Equation(9):

H(A, B) = max {21613 blg}; d(a,b), lS;lelg ;gg d(b, a)} )
where A and B denote the sets of points on the pre-
dicted and ground truth boundaries, respectively, and d(a, b)
represents the Euclidean distance between points a and b.
Hausdorff Distance values range from 0 to 400, where
lower values indicate greater boundary accuracy. Since only
the ICDAR2019-ArT dataset provides polygonal annotations,
Hausdorff Distance is computed exclusively on this dataset.

5) Frames Per Second (FPS): FPS measures the models
inference speed, indicating the number of images processed
per second. It is defined in Equation(10):

Total Number of Images Processed

FPS =
s Total Inference Time

(10)

FPS values range from 0 to +oo, with higher values rep-
resenting faster processing speeds. In real-time applications,
a segmentation model typically requires FPS > 30 to meet
practical deployment needs.

6) Floating Point Operations (FLOPs): FLOPs measure
the computational complexity of the model, representing the
number of floating point operations performed per second. It
is defined in Equation(11):

FLOPs = Z Floating point operations per second
operations
(11

FLOPs values range from 0 to +oo, and lower FLOPs
indicate reduced computational demands, making the model
more suitable for lightweight and edge-device applications.

For consistency in reporting, IoU, Dice coefficient, Preci-
sion, and Recall are expressed in percentage format. Since
polygonal annotations are available only in the ICDAR2019-
ArT dataset, Hausdorff Distance is computed exclusively
on this dataset. This structured evaluation ensures a com-
prehensive assessment of segmentation accuracy, boundary
precision, computational efficiency, and real-time feasibility.

D. Baseline

To evaluate PASFormer’s effectiveness, three widely
used baseline models are considered: U-Net, TextSeg, and
SegFormer. These models represent different architectural

paradigms, including CNN and Transformer-based segmen-
tation frameworks.

1) U-Net[B]: U-Net is a fully convolutional neural network

(FCN)-based model, initially developed for medical im-
age segmentation. Due to its efficient feature extraction
capabilities, it has also been widely adopted for text
segmentation tasks.
U-Net follows an encoder-decoder architecture with a
symmetric U-shaped structure. The encoder consists of
a series of convolutional and pooling layers, which
progressively reduce spatial resolution while enhancing
semantic representations. The decoder employs trans-
posed convolutions to restore spatial resolution gradu-
ally and incorporates skip connections to transmit low-
level features from the encoder to the decoder, thereby
improving segmentation accuracy.

2) TextSeg|[[Z]: TextSeg is a segmentation model designed
explicitly for artistic fonts, handwritten text, and dec-
orative typography. It is based on the DeepLabV3+
framework and has task-specific optimizations tailored
for complex artistic text segmentation. TextSeg employs
a semantic segmentation framework to identify and
segment text of diverse artistic styles. The model is
trained using self-supervised learning, which enhances
its generalization ability across different fonts and
styles. Additionally, a Feature Enhancement Module
(FEM) is integrated to extract intricate textures and
decorative text features, enabling the model to adapt
to varying font styles and background noise.

3) SegFormer[T3]: SegFormer is a Transformer-based seg-
mentation model that differs from U-Net and TextSeg,
which rely on CNN architectures. Instead of us-
ing convolutional operations, SegFormer is entirely
Transformer-driven, addressing the limitations of tra-
ditional CNN-based models in segmentation tasks. At
its core, SegFormer employs the MiT encoder, which
implements a multi-scale feature extraction mechanism
to capture both local and global information at different
hierarchical levels. The decoder is designed using a sim-
ple Multi-Layer Perceptron (MLP) architecture, which
restores high-resolution segmentation masks without
requiring complex upsampling operations. This design
enables SegFormer to model long-range dependencies
while maintaining computational efficiency efficiently.

In artistic text segmentation tasks, SegFormer demon-
strates superior performance compared to conventional CNN-
based models, particularly in handling complex backgrounds,
deformed fonts, and long text sequences. Its global receptive
field enables more precise text region identification, effec-
tively reducing background noise interference and improving
segmentation robustness.

E. Experimental Setup

The experimental setup comprised an Intel(R) Xeon(R)
Bronze 3104 CPU @ 1.70GHz processor, 128GB of memory,
and two NVIDIA GeForce GTX TITAN XP GPUs. The
operating system utilized was Ubuntu 22.04, with experi-
ments conducted using PaddleRS 1.0 based on PaddlePaddle
2.4. The training involved a learning rate scheduler with
uniformly spaced fixed-rate decay, warm-up operations, and
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TABLE I
SUPERIORITY OF PASFORMER IN MULTI-DATASET ARTISTIC TEXT IMAGE SEGMENTATIONN BENCHMARKS
Datasets Merits Models
U-Net  TextSeg  SegFormer  PASFormer
IoU 72.65 69.81 73.45 82.89
Dice 76.32 74.15 78.29 87.25
ArtText Precision  83.94 78.04 82.15 92.64
Recall 84.97 83.12 86.33 97.01
FPS 33.00 31.00 29.00 32.00
FLOPs 54.12 48.73 57.68 64.37
IoU 74.12 68.88 73.45 82.67
Dice 77.95 75.63 78.29 87.95
COCO-Text Precision  83.01 79.44 82.15 92.03
Recall 82.37 81.96 86.33 97.65
FPS 31.00 34.00 29.00 31.00
FLOPs 53.04 47.15 57.68 64.78
IoU 75.97 66.52 70.13 80.64
Dice 76.15 78.16 78.29 88.47
Precision ~ 84.56 78.04 82.15 89.54
ICDAR2019 ArT Recall 82.00 80.29 86.33 92.24
FPS 32.00 33.00 29.00 31.00
FLOPs 54.62 49.09 57.68 64.56
Hausdorff ~ 20.00 19.00 14.00 14.00

a learning rate 0.0004. Adam optimizer was employed with a
batch size of 32. Momentum optimizer, linear learning rate
decay, and Exponential Moving Average (EMA) enhanced
training. The training spanned 100 epochs to enhance model
performance and generalization. Data augmentation strate-
gies included random cropping, flipping, rotation, blurring,
adjacent image swapping, and color jittering to enhance
data diversity and model generalization. The presented ex-
perimental data represents the average of five independent
experiments, with the best results highlighted in bold and
the second-best results underscored.

V. RESULT AND ANALYSIS

A. Model Comparison

This paper compares PASFormer with the baseline models
mentioned above in multiple datasets of mainstream text
segmentation, with the results presented in Table I. PAS-
Former demonstrates significant performance advantages, as
its core design successfully achieves an optimized balance
between regional coverage, boundary localization accuracy,
and computational efficiency through modular collaboration
and multi-level feature fusion. The following analysis delves
into its specific performance on the ArtText, COCO-Text,
and ICDAR2019-ArT datasets, detailing the reasons for its
superiority and the significance of the evaluation metrics
in relation to its technical components. As shown in Fig.
B, in order to better demonstrate the effect of this model,
PASFormer is used as the benchmark (100) to show the
performance of other baseline models on all datasets in
proportion.

In the ArtText data set, PASFormer achieves an IoU of
82.89, outperforming U-Net (72.65), TextSeg (69.81) and

SegFormer (73.45) by 14.05%, 18.75% and 12.86%, respec-
tively. This metric directly reflects the overlap between the
predicted and ground truth text regions, and its advantage
is primarily attributed to the initial segmentation capability
of the TextEdgeSeg module. This module extracts coarse
text region features, providing a reliable foundation for
subsequent fine segmentation and preventing region omis-
sion caused by background interference. Meanwhile, the
CannyEdgeDetect module plays a critical role in boundary
detection by enhancing the gradient information at text
edges, significantly improving boundary localization accu-
racy. This design reduces PASFormer’s Hausdorff Distance
to 14.0, achieving a more than 30% improvement over
other models (U-Net: 20.0, TextSeg: 19.0). Additionally,
PASFormer achieves a recall of 97.01%, 12.4% higher than
the second-best model, SegFormer (86.33%), indicating that
it successfully captures nearly all actual text regions. This
is mainly due to the multi-path upsampling architecture
of its decoder, which integrates feature information from
different hierarchical levels. By balancing low-level details
(e.g., edge sharpness) and high-level semantics (e.g., regional
completeness), the model maintains an impressively high
coverage rate, achieving consistent performance across a
diverse range of complex background conditions. Whether
confronted with images featuring dense textures, overlapping
objects, or highly variable lighting, the model’s ability to
integrate low-level edge information with high-level semantic
understanding ensures that text regions are accurately and
comprehensively detected, thereby setting a new standard in
the field of text detection.

In the COCO-Text dataset, PASFormer achieves a Dice
coefficient of 87.95, surpassing SegFormer (78.29) and
TextSeg (75.63) by 12.33% and 16.27%, respectively. The
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Fig. 5. Proportional Performance Comparison of Baseline
Models on All Datasets

Dice coefficient measures the similarity between the pre-
dicted and ground truth regions, and PASFormer’s advantage
is primarily due to its encoder design with stacked Text
Segmentation Blocks (TSBs). These stacked blocks extract
multi-scale features, effectively distinguishing text from vi-
sually similar textures in the background (e.g., stripes and
noise), thus improving segmentation consistency. Addition-
ally, PASFormer achieves a precision of 92.03%, 10.87% and
15.83% higher than U-Net (83.01%) and TextSeg (79.44%),
respectively. The high precision score indicates a very low
false-positive rate, which can be attributed to the final MLP
layer’s resolution optimization. By normalizing feature maps
to a uniform resolution and refining pixel-level classification
results, the proposed model addresses a critical challenge
in text detection: the misclassification of background re-

gions as text. This is achieved through a multi-step process.
First, the normalization of feature maps standardizes the
input data, ensuring that all regions are processed under
consistent conditions. This step is crucial as it mitigates the
variability in feature representation that can lead to incorrect
classifications. Subsequently, the pixel-level classification
refinement process employs advanced algorithms to carefully
analyze and adjust the classification of individual pixels.
This fine-grained approach enables the model to accurately
distinguish between text and non-text regions, significantly
reducing false positives. In particular, the PASFormer model
demonstrates outstanding performance in text detection. It
maintains an impressively high recall rate of 97.65%, which
represents a substantial improvement of 13.16% compared
to the SegFormer model, which only achieves a recall of
86.33%. This significant increase in recall indicates that the
PASFormer is far more effective at detecting text regions,
even in complex and challenging scenarios.

In the more challenging ICDAR2019-ArT dataset, PAS-
Former achieves an IoU of 80.64%, significantly outper-
forming TextSeg (66.52%) and SegFormer (70.13%) by
21.20% and 14.97%, respectively. This dataset contains a
large number of irregular text instances (e.g., curved and
perspective-distorted text) within complex backgrounds, and
the improvement in model performance is mainly attributed
to the multi-path upsampling decoder. This decoder processes
hierarchical features through independent pathways, effec-
tively integrating shallow geometric details (e.g., curved text
contours) with deep semantic information (e.g., text distri-
bution patterns), ensuring regional completeness while accu-
rately depicting irregular shapes. Additionally, PASFormer
achieves a Hausdorff distance of 14.0, an improvement 30%
over U-Net (20.0), further demonstrating the crucial role of
the CannyEdgeDetect module in boundary localization. By
dynamically extracting edges through an adaptive threshold-
ing algorithm, this module prevents broken edges caused by
uneven lighting or blur, ensuring close alignment between the
predicted and ground truth boundaries. Despite PASFormer’s
FLOPs (64.56) being slightly higher than other models (e.g.,
TextSeg: 49.09), the additional computational cost is primar-
ily concentrated in the encoder-decoder feature interaction
stage. Through an efficient feature reuse mechanism (e.g.,
cross-layer skip connections), PASFormer maintains an FPS
of 31, comparable to other models (U-Net: 32, TextSeg: 33),
achieving a balance between accuracy and inference speed.

From a global perspective on the technical architecture,
PASFormer’s advantage can be attributed to two core inno-
vations. The first is hierarchical feature extraction through the
collaboration of two specialized modules. The TextEdgeSeg
module generates coarse region predictions, providing global
guidance, while the CannyEdgeDetect module focuses on
local edge refinement. By integrating these features through
feature map concatenation and shared weighting mecha-
nisms, PASFormer overcomes the limited field of view in
single-path models while reducing the risk of overfitting.
The second innovation lies in the multi-granularity feature
fusion strategy in the decoder. The multi-path upsampling
architecture enables the model to reconstruct segmentation
masks by independently processing feature maps at different
resolutions, dynamically allocating attention weights through
a channel-wise attention mechanism. This ensures that criti-
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cal features, such as the text body regions, dominate the final
segmentation results. This design significantly enhances the
model’s model’s adaptability to multi-scale text instances,
particularly in scenarios with small or densely packed text,
achieving an average Dice coefficient improvement of more
than 12% compared to competing models.

In conclusion, PASFormer achieves 10%-21% improve-
ments in key segmentation metrics (IoU, Dice, Recall) while
maintaining a more than 30% advantage in boundary pre-
cision (Hausdorff Distance). Its technical approach not only
provides new insights for high-precision text segmentation
but also lays the foundation for real-world applications in
complex environments, such as document scanning and text
detection in autonomous driving. Although its computational
cost (FLOPs) is slightly higher, the efficient encoder-decoder
interaction design ensures that its inference speed (FPS) re-
mains on par with mainstream models, demonstrating strong
potential for real-world deployment.

B. Investigation of the Roles of TextEdgeSeg and Can-
nyEdgeDetect

Following the first set of experiments, an ablation paper
was conducted further to investigate the contributions of the
TextEdgeSeg and CannyEdgeDetect modules. The results,
summarized in Table M, systematically compare the perfor-
mance of these modules under different configurations on
the ICDAR2019-ArT dataset, validating their critical roles
in text segmentation and their complementary optimization
mechanism. The experiment consists of four configurations:
Group 1 (neither module enabled), Group 2 (CannyEdgeDe-
tect enabled only), Group 3 (TextEdgeSeg enabled only),
and Group 4 (both modules enabled and jointly optimized).
Group 4 demonstrates significant advantages across key
metrics, with an IoU of 80.59%, a 12.35% increase over
Group 1 (71.73%), a Dice coefficient of 88.5%, 4.41% higher
than Group 3 (84.76%), a Recall of 92.21%, 15.56% higher
than Group 1 (79.76%), and a Hausdorff Distance of 14.00,
marking a 26.3% improvement over Group 1 (19.00). These
results indicate that the synergistic design of the two modules
significantly enhances region coverage, segmentation consis-
tency, and boundary localization accuracy.

The independent activation of CannyEdgeDetect (Group
2) significantly improves boundary localization, reducing
Hausdorff Distance from 19.00 in Group 1 to 16.00 (a
15.8% improvement). After parameter optimization in Group
4, ToU further increased from 73.38% to 80.59% (+9.82%).
This module leverages a dynamic thresholding algorithm to
adaptively extract multi-scale edge information, effectively
addressing issues such as edge fragmentation caused by

uneven lighting or blurring. For instance, in low-contrast
scenarios, the adaptive thresholding mechanism helps dis-
tinguish subtle text contours from background noise, thereby
reducing false positives (Group 4 achieves a Precision of
89.37%, a 3.54% increase over Group 2’s 86.31%). More-
over, its computational efficiency remains stable (FPS =
30.00, compared to 33.00 in Group 1), indicating that the
module does not significantly impact real-time performance.

The activation of TextEdgeSeg (Group 3) primarily en-
hances region coverage, increasing Recall from 79.76% in
Group 1 to 83.59% (+4.8%). This module generates initial
text region predictions, providing global priors that reduce
text omission. After parameter optimization (Group 4), Pre-
cision further improves from 88.43% to 89.37% (+1.06%),
and when combined with the edge constraints from the
CannyEdgeDetect module, false favourable rates are further
minimized. For instance, in dense text scenarios, the coarse
predictions from TextEdgeSeg supply spatial priors that
prevent the model from misinterpreting local disturbances as
separate text instances. However, when used independently
(Group 3), this module exhibits weaker boundary precision
(Hausdorff = 17.00), highlighting its dependence on the
CannyEdgeDetect module for edge refinement.

The synergistic interaction between both modules in Group
4 is the primary reason for its superior performance. Can-
nyEdgeDetect provides fine-grained edge information, while
TextEdgeSeg delivers global region predictions, and their
feature map fusion mechanism enables mutual enhance-
ment: the former improves boundary adherence (Hausdorff =
14.00, a 17.6% improvement over Group 3), while the latter
enhances region completeness (Recall = 92.21%, a 4.4%
improvement over Group 2). For instance, in curved text
segmentation tasks, TextEdgeSeg provides regional priors
to help the model quickly locate the text backbone. At the
same time, CannyEdgeDetect refines contour details through
edge gradients, collectively improving IoU by 9%-12%.
Additionally, cross-layer skip connections, and the multi-
path upsampling mechanism in the encoder-decoder design
facilitate the reuse of low-level texture details and high-level
semantic features, ensuring that the model maintains real-
time efficiency (FPS = 30.00) despite an increase in com-
putational complexity (FLOPs = 64.66, a 19.25% increase
over Group 1), thereby avoiding the efficiency bottlenecks
commonly seen in traditional multi-module designs.

In conclusion, this ablation paper confirms that the joint
activation and optimization of both modules is the key
factor behind PASFormers performance improvement. The
CannyEdgeDetect module enhances boundary clarity by sup-
pressing edge blurring. In contrast, the TextEdgeSeg module
improves global text region prediction, and their combination

TABLE 11
ABLATION RESULTS OF PASFORMERS KEY MECHANISMS ACROSS MULTIPLE METRICS

Group TextEdgeSeg  CannyEdgeDetect . . Merits

ToU Dice  Precision  Recall FPS FLOPs  Hausdorff
Group 1 X X 71.73  79.65 83.11 79.76  33.00  54.22 19.00
Group 2 v X 7338  86.31 84.08 88.30 31.00 61.87 16.00
Group 3 X v 76.54  84.76 88.43 83.59 29.00 58.17 17.00
Group 4 v v 80.59 88.5 89.37 92.21  30.00  64.66 14.00
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TABLE 1II
HYPERPARAMETER COMPARISON
Merits
A IoU Dice  Precision  Recall FPS FLOPs  Hausdorff

0.1 76.34  82.05 84.56 88.9 31.00  64.67 11.00
0.5 78.15 84.33 87.34 90.54  29.00 64.65 13.00
1.0 80.59 88.50 89.37 9221 30.00  64.66 14.00
50 7346 83.78 85.06 87.43  31.00 64.66 12.00
10.0 70.33  79.09 81.36 84.29  30.00 64.67 11.00

leads to 9%-15% improvements in core metrics (IoU, Dice,
Recall) and a 12%-26% reduction in boundary deviation
(Hausdorff Distance). Although computational costs (FLOPs)
increase slightly, the model maintains real-time performance
(FPS) through efficient feature interaction strategies. This
design presents a practical and deployable solution for high-
precision text segmentation in complex environments, par-
ticularly benefiting applications requiring both accuracy and
efficiency, such as autonomous driving perception systems
and industrial document analysis.

C. Hyperparameter \ Selection in the Loss Function

ICDAR2019-ArT dataset to determine the optimal value
of the hyperparameter A\ in PASFormers loss function. As
shown in Table I, the selection of A has a significant im-
pact on multiple performance metrics, including IoU, Dice,
Precision, Recall, FPS, FLOPs, and Hausdorff Distance.
The primary role of A is to control the weight distribution
among different components of the loss function, thereby
influencing the models optimization focus across different
objectives. When A is set to smaller values (e.g., 0.1 and
0.5), the model achieves IoU scores of 76.34% and 78.15%,
Dice coefficients of 82.05% and 84.33%, Precision values
of 84.56% and 87.34%, and Recall values of 88.90% and
90.54%, respectively. These results indicate that smaller A
values favour improvements in Recall, ensuring a higher
proportion of text regions are detected. However, this comes
at the cost of lower Precision and overall segmentation
performance (IoU and Dice). Additionally, the Hausdorff
Distance values of 11.00 and 13.00 in these cases suggest that
boundary localization accuracy still has room for improve-
ment. At A=1.0, the model achieves optimal performance
across all metrics. Specifically, it achieves IoU = 80.59%,
Dice = 88.50%, Precision = 89.37%, Recall = 92.21%, and a
Hausdorff Distance of 14.00. In this setting, the model attains
an optimal balance between Precision and Recall while
also achieving the best boundary localization performance.
Notably, FLOPs and FPS remain relatively unchanged (64.66
and 30, respectively), indicating that adjusting A has a
negligible impact on computational overhead.

However, when A\ is further increased to 5.0 and 10.0,
model performance begins to decline. At A\=5.0, IoU and
Dice drop to 73.46% and 83.78%, Precision and Recall
decrease to 85.06% and 87.43%, and Hausdorff Distance
improves slightly to 12.00. When A=10.0, the model’s per-
formance degrades further, with IoU and Dice decreasing to
70.33% and 79.09%, Precision and Recall falling to 81.36%
and 84.29%, respectively. Despite a minor improvement in

Hausdorff Distance (10.50), the overall segmentation quality
deteriorates. These results suggest that higher A values may
lead to excessive optimization of certain features, causing the
model to overlook other critical aspects, ultimately reducing
its overall performance.

From a global perspective, the adjustment of A directly
influences the weight distribution in the loss function, thereby
altering the models optimization focus. When A is too small,
the model prioritizes higher Recall but at the expense of
precision and segmentation accuracy. When X is set to a
moderate value (e.g., 1.0), the model achieves an optimal
trade-off across IoU, Dice, Precision, and Recall. Conversely,
when ) is excessively large, the model becomes overly biased
toward specific objectives, leading to deterioration in overall
performance.

In summary, A=1.0 is identified as the optimal hyperpa-
rameter setting, as it achieves the best balance between seg-
mentation accuracy and boundary precision. These findings
highlight the importance of carefully tuning loss function
weights to enhance both overall model performance and
edge-awareness capabilities. Future research may further
explore dynamic adjustment strategies for A, enabling the
model to adapt to different tasks and data distributions,
thereby improving its generalization ability across diverse
segmentation scenarios.

VI. CONCLUSIONS

This paper presents PASFormer, a novel deep learning
framework for artistic text segmentation. By integrating
TextEdgeSeg for coarse region extraction, CannyEdgeDetect
for boundary refinement, and a hierarchical Transformer-
based encoder-decoder, PASFormer effectively addresses
challenges such as complex text morphologies, low contrast,
and non-rigid deformations.

Extensive experiments on ArtText, COCO-Text, and
ICDAR2019-ArT demonstrate state-of-the-art performance,
with ToU improvements of 10%-21%, a 12% boost in Dice
coefficient, and a 30% reduction in Hausdorff Distance, while
maintaining real-time inference speeds. These results confirm
PASFormers robustness, precision, and efficiency, making it
a promising solution for autonomous vision systems, digital
archiving, and industrial document analysis.

Future work will focus on reducing computational over-
head for mobile deployment, extending to multi-lingual and
handwritten text, and integrating self-supervised learning to
enhance adaptability. PASFormer sets a strong foundation for
high-precision, scalable, and real-world artistic text segmen-
tation applications.
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