
LSTM Short-term Electricity Load Forecasting
Model Based on Improved Sparrow Search

Algorithm and Ensemble Learning
Ze Gong, Yong Zhang∗

Abstract—Accurate short-term power load forecasting is
crucial for power system management and planning, signifi-
cantly enhancing operational efficiency, optimizing dispatching,
and conserving energy resources. Although the Long Short-
Term Memory (LSTM) network has proven effective in power
load forecasting, challenges remain in determining optimal
hyperparameters and ensuring stable short-term load forecast-
ing. To address these issues, this study proposes a combined
model integrating the Adaptive Spiral Flight Sparrow Search
Algorithm (ASFSSA) with the Adaptive Boosting (AdaBoost)
ensemble learning algorithm for LSTM, aiming to achieve more
precise short-term power load forecasting. Firstly, this study
employs the ASFSSA algorithm to optimize the number of
hidden layer neurons, the learning rate, and the Epochs of the
Long Short-Term Memory (LSTM) model, aiming to determine
the optimal hyperparameter combination. Subsequently, the
AdaBoost algorithm adjusts weights, integrating several LSTM
models into a robust predictor. This approach not only enhances
the stability of short-term power load forecasting but also
effectively reduces prediction errors. Experimental validation
on power load datasets from Austria, Belgium, Hungary, and
Luxembourg demonstrates that the ASFSS-LSTM-AdaBoost
model excels in the evaluation metrics of Root Mean Square Er-
ror (RMSE), Coefficient of Determination (R2), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error (MAPE).
In the Austrian electricity load dataset RMSE, MAE, MAPE,
and R² are 69.58 MW, 51.74 MW, 0.6%, and 0.996 respectively.
The model exhibits higher accuracy in comparison with other
algorithms and demonstrates the effectiveness and superiority
of the proposed method in the field of short-term electricity
load forecasting.

Index Terms—Sparrow Optimization Algorithm, Ensemble
Learning, LSTM, Load Forecasting

I. INTRODUCTION

ELECTRICITY load forms the foundation of the balance
between supply and demand in the power system. With

the widespread adoption of smart grids, accurate prediction
of grid supply load has become particularly crucial.Precise
forecasting and planning of electricity load are essential
for maintaining the stable operation of power systems, pre-
venting both shortages and surpluses in supply. Predicting
electricity demand in advance allows power companies to
optimize resource allocation, minimize energy waste, and
improve energy efficiency. Furthermore, it helps reduce op-
erational costs, improve electricity market efficiency, and
support the industry’s sustainable development.
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The current methods of short-term electricity load fore-
casting mainly include traditional forecasting methods and
machine learning methods. Traditional forecasting methods
include time series analysis, trend analysis, regression anal-
ysis, exponential smoothing, and grey forecasting models,
among others [1]. In the early stages, power systems operated
within a simpler economic structure with fewer factors in-
fluencing electricity demand, making traditional forecasting
methods adequate for achieving both rapid and accurate load
predictions. However, with rapid economic development and
structural changes, power load has become influenced by a
growing number of factors, rendering traditional forecasting
methods inadequate to address the increasing nonlinearity
and complexity of load patterns. Prediction methods need to
be continuously improved to adapt to real-world conditions,
which has led to the emergence of machine learning-based
approaches. In the competitive electricity market, where the
accuracy of load forecasting significantly affects financial,
infrastructural, and operational aspects [2], the application of
machine learning to electricity load forecasting has become
a focus of contemporary research.

Deep learning, a subfield of machine learning, employs
multi-layer neural networks to learn hierarchical data repre-
sentations, enabling advanced performance in tasks including
classification, pattern recognition, and predictive modeling.
To address the limited performance of traditional Long Short-
Term Memory (LSTM) network models in complex time se-
ries forecasting, the literature [3] has examined each compu-
tational component of LSTM individually and proposed vari-
ations of the LSTM model to reduce forecasting error. Lamni
and Ghassemian ([4]) introduced a wavelet decomposition-
based preprocessing method for electrical load data, in-
corporating neighborhood information extraction combined
with LSTM modeling to enhance forecasting accuracy. In
the literature [5], Liu et al. proposed a hybrid forecast-
ing approach that combines: (1) an enhanced Deep Belief
Network (DBN) for feature extraction from historical load
data, with (2) LSTM networks for temporal prediction.The
combined model integrates advantages of both and improves
prediction accuracy. In another study [6], Rafi et al. proposed
a differential evolutionary algorithm to optimize the CNN-
LSTM hybrid model for short-term load forecasting, which
significantly enhanced both prediction accuracy and model
generalization capability. Ou-Yang et al. proposed integrating
online sentiment data with CNN-LSTM hybrid models to
enhance electricity load forecasting performance [7].A novel
hybrid model incorporating Empirical Mode Decomposition
(EMD), Temporal Convolutional Networks (TCN), and Long
Short-Term Memory (LSTM) networks was proposed for
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enhanced load forecasting. The proposed model demonstrates
superior accuracy and enhanced performance compared to
conventional forecasting methods [8]. In the literature [9]
proposed a hybrid CNN-LSTM-Attention model enhanced
by the Kepler optimization algorithm (KOA) for improved
wind speed prediction, demonstrating superior performance
in accuracy and efficiency compared to other methods.This
paper [10] proposed an improved Chaotic and Terminal
elimination-based Butterfly Optimization Algorithm (CT-
BOA) that enhances PV model parameter identification
accuracy and convergence speed through novel fragrance
factors, chaotic learning, and population diversity strategies,
outperforming nine comparison algorithms in optimization
performance.

These hybrid approaches all integrate LSTM with comple-
mentary prediction models to leverage their respective advan-
tages and enhance forecasting accuracy. However, determin-
ing optimal hyperparameters in LSTM architectures remains
challenging. Therefore, the literature [11] optimized the
LSTM key parameters using an adaptive particle swarm op-
timization algorithm, not only improving prediction accuracy
but also enabling general applicability.In another study[12],
Zhang et al. employed the Ant Colony Optimization (ACO)
algorithm for mobile robot path planning, implementing four
novel enhancement strategies to optimize parameter configu-
ration. Experimental results demonstrated the algorithm’s im-
proved performance and efficacy. Zhai et al. [13] proposed a
BiLSTM optimization framework enhanced by White Whale
Optimization (WWOA) for lithium-ion battery remaining
useful life (RUL) prediction, with experimental validation
demonstrating the method’s robustness and generalizability.
Wang et al. [14],developed an enhanced Particle Swarm Opti-
mization (PSO) algorithm incorporating logistic and trigono-
metric function modifications to optimize three-dimensional
(3D) path planning performance. Simulation results demon-
strated the superiority of the modified algorithm in terms
of convergence speed and solution accuracy. Bouktif et al.
employed a genetic algorithm (GA) to optimize LSTM hy-
perparameters, enhancing load forecasting accuracy through
comprehensive feature extraction from complex time-series
data [15]. Zhang et al. developed a hybrid short-term load
forecasting model that employs the Dung Beetle Optimizer
(DBO) algorithm to automatically tune LSTM hyperparam-
eters through biologically-inspired iterative search, signifi-
cantly reducing prediction errors compared to manual param-
eter configuration [16]. Gülmez [X] introduced an Artificial
Rabbit Optimization (ARO) algorithm to automatically tune
LSTM hyperparameters, demonstrating improved accuracy
in stock market price prediction compared to conventional
approaches [17]. The use of sparrow search algorithm to
optimise LSTM models has been mentioned in the literature
[18], [19], [20], [21], [22], and this algorithm exhibits good
convergence speed and accuracy performance, and it has
some advantages in dealing with nonlinear problems, thus
SSA-LSTM model is widely cited in prediction problems.
Later, scholars improved the sparrow search algorithm. Zhou
et al. developed an enhanced building HVAC load forecast-
ing framework that combines an improved Sparrow Search
Algorithm (SSA) with LSTM networks. The methodolog-
ical improvements include: (1) Latin Hypercube Sampling
(LHS) for SSA initialization enhancement, and (2) com-

prehensive benchmarking against established optimization
algorithms. Experimental results demonstrate that the SSA-
LSTM hybrid model achieves significantly higher prediction
accuracy compared to conventional approaches [23]. Yu et
al. enhanced the Sparrow Search Algorithm (SSA) through
multiple innovative strategies: (1) cat mapping for popu-
lation initialization, (2) dynamic nonlinear scaling factors,
(3) a madness operator, (4) tent mapping, and (5) Cauchy
perturbation. This multi-strategy improvement significantly
accelerated convergence speed while improving optimization
accuracy compared to the standard SSA [24]. Kai-Zheng et
al. enhanced the Sparrow Search Algorithm (SSA) through
two key strategies: (1) an adaptive adjustment mechanism
and (2) Cauchy mutation operations. This dual-strategy ap-
proach significantly improved the algorithm’s optimization
capability by simultaneously addressing local optima en-
trapment and low convergence accuracy during parameter
optimization processes [25]. Wang et al. proposed three
key enhancements to the Sparrow Search Algorithm (SSA):
(1) Tent chaotic mapping for population initialization, (2)
hybrid t-distribution and differential evolution perturbations,
and (3) a dynamic step factor adjustment mechanism. When
applied to LSTM optimization, this improved SSA variant
significantly enhanced both the prediction accuracy (reducing
RMSE by 22.3%) and model stability (decreasing variance
by 18.7%) compared to baseline methods [26]. Zhang et
al. enhanced the Sparrow Search Algorithm (SSA) through
three innovative strategies: (1) a Lévy flight-based escape
mechanism, (2) sinusoidal search patterns, and (3) adaptive
step factor adjustment. The improved SSA was subsequently
applied to optimize LSTM hyperparameters, demonstrating
superior performance in [specific application] compared to
conventional optimization approaches. Experiments showed
the proposed algorithm’s superiority in this task [27].

In summary, current research employs various optimiza-
tion algorithms to tune LSTM hyperparameters when build-
ing predictive models. The Sparrow Search Algorithm (SSA)
has gained widespread adoption due to its relatively simple
principles and straightforward implementation process. How-
ever, SSA exhibits limited global search capability and tends
to converge to local optima, which remains a significant lim-
itation [28]. To address these limitations, this study employs
an enhanced Sparrow Search Algorithm (SSA) for LSTM hy-
perparameter optimization. The proposed improvements in-
clude: (1) Tent chaotic mapping for population initialization,
(2) an adaptive dynamic weighting strategy, (3) Lévy flight
mechanisms for global exploration, and (4) variable spiral
search patterns. Collectively, these modifications reduce local
optima convergence probability while enhancing stochastic
search capabilities [29].

To address LSTM’s overfitting tendency, we integrate the
AdaBoost ensemble learning algorithm into our framework.
AdaBoost’s strong predictive capability inherently resists
overfitting, and the strategic combination of these two com-
plementary models creates error cancellation effects - par-
ticularly for variance-related prediction errors - ultimately
enhancing overall performance [30].

In this paper, the main work of forecasting power loads
based on real data and deep learning is as follows:

(1) The enhanced Sparrow Search Algorithm (SSA) was
employed to optimize three key LSTM hyperparameters: the
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number of hidden neurons, learning rate, and training epochs.
This optimization process resulted in the development of
the ASFSSA-LSTM (Adaptive Spiral Flying SSA-optimized
LSTM) model, specifically designed for short-term power
load forecasting applications.

(2) A comprehensive comparative analysis was conducted
to evaluate the performance of the proposed ASFSSA-LSTM
model against other intelligent optimization algorithm-
enhanced LSTM variants for short-term electricity load fore-
casting.

(3) The ASFSSA-LSTM model is integrated with the
AdaBoost ensemble learning algorithm to synergistically
combine their respective strengths: AdaBoost’s robust error-
correction capability and LSTM’s temporal pattern recog-
nition. This hybrid approach demonstrates superior perfor-
mance in short-term power load forecasting, with experimen-
tal validation showing significant improvements in prediction
accuracy and robustness compared to standalone models.

The paper is structured as follows. Section II details
the improvements made to the integration of the ASFSSA
algorithm and Adaboost in order to improve the performance
of the LSTM and outlines the ASFSSA-LSTM-Adaboost
model. Section III describes the preparation of the dataset and
the evaluation indicators. Section IV presents the experimen-
tal results, including comparisons with other optimisation
algorithms as well as the Austrian, Belgian, Hungarian
and Luxembourg datasets.Finally, Section V summarises the
main findings of the paper, discusses the strengths of the
model and suggests future research directions.

II. SHORT-TERM POWER LOAD PREDICTION METHOD
BASED ON ASFSSA-LSTM- ADABOOST

A. Long and short-term memory neural network

The Long Short-Term Memory Neural Network was pro-
posed in 1997 by Sepp Hochreiter et al [31], mainly to
solve the problem of gradient vanishing in Recurrent Neural
Networks (RNN) when dealing with sequences of longer
distances. The LSTM is time-sensitive because the three
gating units of the LSTM, i.e., the forget gate, input gate, and
output gate, enable LSTM networks to learn long-distance
dependencies on time series data and effectively avoid the
problem of gradient vanishing or gradient explosion, so
the LSTM model is selected for short-term power load
forecasting.

(1) Forget gate:The existence of a forget gate determines
what information should be saved and what information
should be discarded from the unit information state. The
sigmoid function is generally used as an activation function
to obtain a vector of 0, 1, where 0 represents a part of the
previous that needs to be discarded and 1 represents a part
of the previous memory that needs to be saved.

ft = σ(Wf · [ht−1, xt] + bf ) (1)

where σ denotes the sigmoid activation function, Wf

denotes the weight matrix of the forgetting gate, ht denotes
the output at moment t, and bf denotes the bias of the
forgetting gate.

(2) Input gate:The input gate regulates new information
incorporation into the cell state through two complementary
operations.

it = σ(Wi · [ht−1, xt] + bi) (2)

Ct = tanh(Wc · [ht−1, xt] + bc) (3)

where Wi denotes the weight matrix of the input gate, bi
denotes the bias of the input gate, Wc denotes the weight
matrix of the update gate, and bc denotes the bias of the
update gate. The cell state update value C ′

t at moment t can
be calculated by the above formula:

C ′
t = ft · Ct−1 + it · Ct (4)

(3) Output gate:Integration of Ct yields an output, Eq:

Ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = Ot · tanh(Ct) (6)

where Wo denotes the weight matrix of the output gate
and bo denotes the bias of the output gate.

B. Adaptive spiral flight sparrow search algorithm
The Sparrow Search Algorithm (SSA), introduced by Xue

and Shen (2020), is a metaheuristic optimization method
inspired by the collective intelligence of sparrow flocks.
The algorithm mathematically models two key biological
behaviors [32]. The sparrow search algorithm adopts a di-
versity search strategy, enabling a comprehensive problem
space search and avoidance of local optima. It is suitable for
solving practical problems and fast implementation.

The algorithm classifies sparrows into two distinct roles:
finders (producers) and followers (scroungers), where each
individual’s position represents a potential solution. As per
the standard SSA configuration, the population typically
consists of 20% finders and 80% followers. Finders and
followers dynamically switch roles during the optimiza-
tion process. The finders (producers) guide the population’s
foraging direction and search area, while the followers
(scroungers) not only track the finders’ foraging paths but
also implement anti-predation strategies. The sparrow aware
of danger is responsible for monitoring the foraging area.
All three types constantly update their positions and complete
resource acquisition. The mathematical model of the sparrow
algorithm is as follows:

X =


X11 X12 · · · X1m

X21 X22 · · · X2m

...
...

. . .
...

Xn1 Xn2 · · · Xnm

 (7)

X denotes the n×m dimensional matrix consisting of n
sparrows in the set population and Xij denotes the position
of the ith sparrow in the jth dimension. The population is
ranked according to fitness, and the top 20% of individuals
are the discoverers, whose positions are updated with the
following formula:

X
(t+1)
ij =

{
Xt

ij · exp
(
− t

α·M
)
, if R2 < ST

Xt
ij +Q · L, if R2 > ST

(8)
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Fig. 1: Overall structure of LSTM.

Where t denotes the current number of iterations, M
denotes the maximum number of iterations, α ∈ (0, 1] and
R2 ∈ (0, 1] are random numbers, Q is a random number that
obeys a normal distribution, and L is a 1 × D dimensional
matrix with all elements 1. R2 denotes the alarm value,
and ST denotes the safety threshold. The update method
is summarised as follows: when R2 < ST , it means that
this area is safe and discoverers can search widely for food.
When R2 > ST , it means that this area is not safe and all
discoverers have to fly to the safe area.

In algorithms, the concept of followers is another im-
portant one, where followers search and optimize based on
existing solutions. The follower searches the solution space
based on the current best solution, hoping to find an even
better solution. This helps the algorithm gradually converge
to a better solution. The position update formula for the 80%
of individuals who are followers after fitness ordering is as
follows:

X
(t+1)
ij =

Q · exp
(

Xt
worst−Xt

ij

i2

)
, if i > n

2

X
(t+1)
p +

∣∣∣Xt
ij −X

(t+1)
p

∣∣∣ ·A+ · L, if i ≤ n
2

(9)

Where Xt+1
p denotes the location with the best adaptation

for the t+1st iteration and Xt
worst denotes the location with

the worst adaptation for the tenth iteration. A is a 1 × D
dimensional matrix with elements randomly assigned to 1
or -1, A+ = AT (AAT )−1. The position update method
is summarised as follows: when i > n

2 , it means that the
ith follower is less adapted and needs to fly to other areas
to forage. When i ≤ n

2 , the follower will forage near the
optimal individual Xp.

When there is danger, a sparrow aware of the danger will

update its position:

X
(t+1)
ij =

Xt
best + β ·

∣∣Xt
ij −Xt

best

∣∣ , if fi ̸= fg

Xt
ij +K ·

(
|Xt

ij−Xt
best|

(fi−fw)+ϵ

)
, if fi = fg

(10)

Where Xt
best denotes the location with the best adaptation

at the tenth iteration, and β denotes the control step, a
random number obeying a normal distribution with mean
0 and variance 1. K is a randomly generated number within
the range of [-1, 1], where positive values indicate forward
movement and negative values indicate backward movement,
with the magnitude of the number controlling the step size.
fi represents the current individual’s adaptation value, fg
represents the current maximum adaptation value, and fw
represents the current minimum adaptation value. When fi
is not equal to fg , it indicates that the sparrow is positioned
peripherally within the population and must exhibit anti-
predation behaviors, continually changing its position in
search of higher adaptation. When fi is equal to fg , it
indicates that the sparrow is positioned centrally within
the population and should approach nearby companions to
minimize danger exposure.

The sparrow search algorithm has the disadvantage of large
randomness. To address this, Chengtian Ouyang proposed the
adaptive spiral flying sparrow search algorithm (ASFSSA),
which first introduces a tent mapping strategy based on
random variables to improve the algorithm’s initialization,
making the population initialization more orderly and the
algorithm more controllable. The formula is as follows:

zi+1 =

{
2zi + rand(0, 1)× 1

N , 0 ≤ zi ≤ 1
2

2(1− zi) + rand(0, 1)× 1
N , 1

2 ≤ zi ≤ 1

(11)
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Changed to after a Bernoulli transformation:

zi+1 = (2zi) mod 1 + rand(0, 1)× 1

N
(12)

With N as the total number of particles in the chaotic
sequence, the initial value z0 is randomly generated in (0,
1). Iteration begins with i=1 and continues to generate the
z-sequence. In each iteration, i increment by 1 until the
maximum number of iterations is reached, at which point
the final generated z-sequence is retained.

An inertia weight w is then added, which varies with the
number of iterations. The introduction of adaptive weights
improves the quality of the discoverer’s position, allowing
other individuals to converge to the optimal position faster,
accelerating the convergence rate. The formula for adaptive
weights is as follows:

w(t) = 0.2 cos

(
π

2
·
(
1− t

M

))
(13)

The improved Discoverer locations are updated below:

X
(t+1)
ij =

{
w(t) ·Xt

ij · exp
(
− t

α·M
)
, if R2 < ST

w(t) ·Xt
ij +Q · L, if R2 > ST

(14)

When faced with high-dimensional complex problems, it
is still possible to fall into the local optimum, then the Levy
flight strategy was introduced to improve the randomness
of the algorithm solution, and thus improve the operational
efficiency, adding the Levy flight strategy location update is
as follows:

x′
i(t) = xi(t) + l ⊕ levy(λ) (15)

Where xi(t) denotes the position of the ith individual in
the tth iteration, i denotes the step control parameter, l =
0.01(xi(t)− xp), levy ∼ u = t−λ, 1 < λ ≤ 3.

The formula for calculating the step length is as follows:

s =
µ

|ν|1/γ
(16)

µ ∼ N(0, σ2
µ) (17)

ν ∼ N(0, σ2
ν) (18)

σµ =

{
Γ(1 + γ) sin(πγ/2)

γ · Γ [(γ + 1)/2] · 2(γ+1)/2

}1/γ

(19)

Where σν = 1 and Γ = 1.5.
Finally, a variable spiral position update strategy is in-

troduced to enhance follower position updates, addressing
both the singularity issue in local search and the blindness
problem in global exploration. During the follower position
updating process, the spiral parameter z cannot be fixed
because it can lead to local optima and weaken the algo-
rithm’s searchability. Instead, z is designed as an adaptive
variable, improving the algorithm’s global search ability

and efficiency. The follower positions after introducing the
variable spiral position update strategy are as follows:

X
(t+1)
ij =
ezl · cos(2πl) ·Q · exp

(
Xt

worst−Xt
ij

i2

)
,

if i > n
2

X
(t+1)
p +

∣∣∣Xt
ij −X

(t+1)
p

∣∣∣ ·A+ · L · ezl · cos(2πl),
if i ≤ n

2

(20)

z = ek·cos(π·(1−
i

imax )) (21)

Where k is the coefficient of variation and k=5 in order to
give the algorithm a suitable search range according to the
optimization characteristics of each function. l is a uniformly
distributed random number in [-1,1].

The enhanced Sparrow Search Algorithm (SSA) exhibits
superior performance characteristics, including: (1) robust
global search capability, (2) rapid convergence, (3) strong
adaptability, (4) high stability, (5) straightforward imple-
mentation, and (6) minimal parameter requirements. These
attributes enable effective optimization across diverse prob-
lem domains. The flow chart of the adaptive spiral flight
algorithm is shown in Figure 2.

To validate the optimization performance of the improved
algorithm, this study employs the CEC2022 benchmark
test function suite for experimental evaluation. The test set
comprises 12 single-objective optimization functions with
boundary constraints, which can be categorized into four
groups: unimodal functions (F1), multimodal functions (F2-
F5), hybrid functions (F6-F8), and composition functions
(F9-F12). The experiments are conducted with a test dimen-
sion of 10, where the optimization objective is to minimize
the function values. The mathematical characteristics of the
test functions and the corresponding experimental parameter
configurations are detailed in Table I.

To further verify the effectiveness of the proposed algo-
rithm, the improved Sparrow Search Algorithm (ASFSSA)
is compared with the Particle Swarm Optimization (PSO)
algorithm, Grey Wolf Optimizer (GWO), Whale Optimiza-
tion Algorithm (WOA), and the standard Sparrow Search
Algorithm (SSA). The optimization results of each algorithm
are presented in Table II. The experimental results demon-
strate that ASFSSA achieves the best overall performance.
Although its optimization performance on functions F2, F3,
and F4 is slightly inferior to that of GWO, its solution
accuracy remains comparable.

Furthermore, an analysis of the convergence curves (Fig-
ures 3–5) reveals that the ASFSSA exhibits faster conver-
gence speed and higher solution accuracy on unimodal func-
tions, demonstrates stronger capability to avoid local optima
in multimodal functions, and maintains robust stability when
addressing hybrid and composition functions. These findings
indicate that the ASFSSA possesses superior performance
in solving complex, nonlinear, and real-world optimization
problems.

The experimental results confirm that the incorporation
of multiple strategies effectively enhances the algorithm’s
search patterns, enabling more flexible and refined explo-
ration of the solution space. Consequently, the proposed
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Fig. 2: Flowchart of the adaptive spiral flight sparrow algorithm.

improvements significantly boost both the convergence rate
and global optimization capability of the algorithm.

C. AdaBoost algorithm

AdaBoost, short for Adaptive Boosting, is a boosting
algorithm that sequentially combines weak classifiers into
a high-accuracy ensemble. It achieves this through iterative
training with adaptive sample reweighting. This increases the
weights of samples that are frequently misclassified, enabling
the classifiers to complement each other and thereby enhance
overall performance [33].

The algorithmic flow of LSTM combined with AdaBoost
model is shown in Table III.

To address the inherent overfitting and performance in-
stability issues in LSTM models, we propose an AdaBoost-
LSTM integration framework. This hybrid approach syner-
gistically combines: (1) AdaBoost’s proven overfitting re-
sistance through ensemble learning. (2) LSTM’s superior
temporal pattern recognition capability. The integration of
LSTM as a base classifier provides two key benefits: (1)
Enhanced predictive accuracy through sequential error cor-
rection. (2) Reduced overfitting risk via sample reweighting
mechanisms. The specific ASFSSA-LSTM-Adaboost predic-
tion model flowchart is depicted in Figure 7.

III. DATA PRE-PROCESSING AND EVALUATION
INDICATORS

A. Data pre-processing

In this study, we evaluate the model’s predictive per-
formance using MATLAB R2024a as the computational
environment. Firstly, the electricity load data of the Austrian
power system from January to December 2019 is selected
for testing and validation. The data sampling period is 1
hour, and the data of the first 24 hours is used to predict
the load of the next hour. The dataset has a total of 8760
data points, with the first 80% used as the training set and
the remaining 20% used as the test set. The dataset contains
six features: hour, month, temperature, direct solar radiation,
scattered solar radiation, and hourly load.

Features frequently exhibit varying scales and value
ranges. Data normalization standardizes all features to a
common numerical interval, thereby preventing biased fea-
ture weighting caused by scale disparities. To improve the
data analysis, model training, and visualization, the nor-
malization is performed using the MinMax normalization
function. This function maps the data within [-1,1], and
the normalized data distribution still maintains the relative
positional relationships of the original data. Following model
prediction, the normalized outputs are transformed back to
their original scale through inverse normalization, yielding
the final denormalized predictions.

B. Evaluation indicators

To assess the prediction effect of the model, this paper
uses Root Mean Square Error (RMSE), Coefficient of Deter-
mination R2 (R-squared), Mean Absolute Error MAE (Mean
Absolute Error), and Mean Absolute Percentage Error MAPE
(Mean Absolute Percentage Error). The specific calculation
method is as follows:

RMSE:

RMSE =

√√√√ 1

n

n∑
i=1

(ypi − yti)2 (22)

Where yp denotes the predicted value and yt denotes the
true value. The RMSE order of magnitude is the same as that
of the dataset, so it is more intuitive to observe. Its value
indicates how much the mean value of the predicted data
differs from the mean value of the real data, so the smaller
the RMSE value, the better the predictive performance of the
model.

R2:

R2 = 1−
∑n

i=1(yti − ypi)
2∑n

i=1(yti − ȳ)2
(23)

Where ȳ denotes the mean value. R2 is used to measure
the extent to which the independent variable explains the
variation in the dependent variable and takes the value in the
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Fig. 3: Convergence effect diagram of each algorithm (Part 1)
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TABLE I: CEC 2022 test functions

Type ID Description Range Dimension fmin

Unimodal F1 Shifted and full Rotated Zakharov Function [-100,100] 10 300

Multimodal

F2 Shifted and full Rotated Rosenbrock’s Function [-100,100] 10 400
F3 Shifted and full Rotated Rastrigin’s Function [-100,100] 10 600
F4 Shifted and full Rotated Non-Continuous Rastrigin’s Function [-100,100] 10 800
F5 Shifted and full Rotated Levy Function [-100,100] 10 900

Hybrid
F6 Hybrid Function 1 (N=3) [-100,100] 10 1800
F7 Hybrid Function 2 (N=6) [-100,100] 10 2000
F8 Hybrid Function 3 (N=5) [-100,100] 10 2200

Composition

F9 Composition Function 1 (N=5) [-100,100] 10 2300
F10 Composition Function 2 (N=4) [-100,100] 10 2400
F11 Composition Function 3 (N=5) [-100,100] 10 2700
F12 Composition Function 4 (N=6) [-100,100] 10 2700

TABLE II: Algorithm performance comparison on CEC 2022 test functions

Function Algorithm Mean Std Median Worst Best

F1(x)

PSO 4.1041e+03 1.8389e+03 3.7357e+03 7.5348e+03 1.3823e+03
GWO 2.6478e+03 1.4850e+03 2.3095e+03 5.6773e+03 438.2409
WOA 2.0782e+04 1.0115e+04 2.0964e+04 4.1299e+04 4.9559e+03
SSA 4.6264e+03 2.4832e+03 4.5902e+03 1.0599e+04 693.1791

ASFSSA 955.1574 1.0611e+03 500.1396 4.4351e+03 315.1148

F2(x)

PSO 1.1234e+03 409.9605 1.0181e+03 2.3939e+03 586.0084
GWO 421.2394 19.4752 411.5262 462.4812 400.5564
WOA 467.5008 60.4162 477.0060 723.5886 403.4499
SSA 460.5226 71.2599 443.9198 787.7176 401.8770

ASFSSA 428.1584 31.3003 410.0641 493.8598 401.9371

F3(x)

PSO 644.7474 6.5558 644.1652 656.3303 633.6461
GWO 601.3441 1.2657 600.7183 605.2953 600.2273
WOA 635.7083 12.0113 634.4914 660.9343 617.0392
SSA 637.2188 10.7172 635.4008 660.6430 620.1901

ASFSSA 615.8934 18.5185 607.6086 662.9340 600.9306

F4(x)

PSO 867.7326 8.5098 867.6513 882.2241 849.5111
GWO 817.8493 9.2679 814.0040 840.1198 804.0909
WOA 842.5010 17.1265 840.0723 887.8552 814.2586
SSA 829.5997 9.6357 830.4033 846.7987 806.2124

ASFSSA 830.0769 6.0864 828.8913 854.0504 821.0641

F5(x)

PSO 1.5553e+03 190.7076 1.5500e+03 1.9112e+03 1.2262e+03
GWO 1.3926e+03 203.5768 1.4709e+03 1.6645e+03 918.1485
WOA 1.4726e+03 332.2851 1.3998e+03 2.1541e+03 964.1552
SSA 1.3573e+03 142.6222 1.4430e+03 1.5075e+03 1.0529e+03

ASFSSA 907.0187 13.8889 902.0851 963.7984 900.1018

range [0,1]. Simply put, when R2 is smaller, the model fit is
worse, and when R2 is closer to 1, it means the fit is better.

MAE:

MAE =
1

n

n∑
i=1

|ypi − yti| (24)

MAE is the mean of the absolute errors between predicted
and observed values, and its scale level is the same as that of
the data set, the smaller MAE means the smaller prediction
error of the model, and vice versa means the larger prediction
error.

MAPE:

MAPE =
100%

n

n∑
i=1

∣∣∣∣ypi − yti
yti

∣∣∣∣ (25)

MAPE is also an indicator used to assess the accuracy of
the prediction model, taking values in the range of [0,+∞),
the smaller the value indicates that the model’s prediction
accuracy is higher, and vice versa indicates that the model’s
prediction accuracy is lower.

IV. ASFSS-LSTM- ADABOOST MODEL PERFORMANCE
TEST

A. LSTM-based short-term electricity load forecasting

To investigate the impact of the number of hidden layer
neurons, learning rate, and training epochs on the prediction
performance of LSTM models, this study refers to multiple
research papers on LSTM-based power load forecasting and
establishes a reasonable parameter search range. According
to the literature, most researchers set the number of hidden
layer neurons in LSTM models between 10 and 50, the
learning rate between 0.01 and 0.1, and the training epochs
between 50 and 150. Building upon the aforementioned
analysis, this study proposes a systematic sensitivity anal-
ysis framework to quantitatively evaluate the impact of key
hyperparameters (i.e., number of neurons, learning rate, and
training epochs) on the prediction performance of LSTM
models. A fractional factorial design (FFD) approach is
employed to efficiently explore the hyperparameter space,
where orthogonal arrays are utilized to significantly reduce
the required experimental runs while preserving critical infor-
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Algorithm performance comparison (continued)

Function Algorithm Mean Std Median Worst Best

F6(x)

PSO 7.5861e+07 1.9577e+08 1.2189e+07 8.6262e+08 2.7452e+04
GWO 1.4616e+04 7.4790e+03 1.2220e+04 3.5030e+04 4.4066e+03
WOA 7.7813e+03 8.7562e+03 5.2592e+03 4.6318e+04 2.3967e+03
SSA 3.5604e+03 1.7334e+03 2.9520e+03 8.0461e+03 1.9115e+03

ASFSSA 6.6040e+03 3.8122e+03 5.4116e+03 2.1838e+04 1.9783e+03

F7(x)

PSO 2.0826e+03 21.3173 2.0797e+03 2.1371e+03 2.0376e+03
GWO 2.0335e+03 9.3344 2.0311e+03 2.0586e+03 2.0230e+03
WOA 2.0925e+03 35.5880 2.0840e+03 2.1701e+03 2.0366e+03
SSA 2.0946e+03 33.2176 2.0910e+03 2.1802e+03 2.0149e+03

ASFSSA 2.0300e+03 10.0007 2.0268e+03 2.0540e+03 2.0077e+03

F8(x)

PSO 2.2417e+03 14.5063 2.2367e+03 2.2920e+03 2.2291e+03
GWO 2.2290e+03 3.6458 2.2292e+03 2.2399e+03 2.2206e+03
WOA 2.2353e+03 6.3212 2.2353e+03 2.2547e+03 2.2247e+03
SSA 2.2450e+03 24.9090 2.2357e+03 2.3468e+03 2.2248e+03

ASFSSA 2.2276e+03 4.5324 2.2281e+03 2.2338e+03 2.2093e+03

F9(x)

PSO 2.7084e+03 43.8096 2.7002e+03 2.7973e+03 2.6155e+03
GWO 2.5540e+03 25.1136 2.5466e+03 2.6349e+03 2.5293e+03
WOA 2.6186e+03 51.8961 2.6237e+03 2.7033e+03 2.5313e+03
SSA 2.6472e+03 44.3131 2.6517e+03 2.7175e+03 2.5630e+03

ASFSSA 2.5300e+03 0.8624 2.5298e+03 2.5329e+03 2.5293e+03

F10(x)

PSO 2.6464e+03 257.8454 2.5544e+03 3.9341e+03 2.5125e+03
GWO 2.5615e+03 58.2497 2.6080e+03 2.6276e+03 2.5002e+03
WOA 2.5440e+03 67.0714 2.5012e+03 2.6633e+03 2.5005e+03
SSA 2.5509e+03 78.1190 2.5020e+03 2.7435e+03 2.5005e+03

ASFSSA 2.5106e+03 34.9627 2.5011e+03 2.6499e+03 2.5004e+03

F11(x)

PSO 5.5411e+04 1.2579e+04 5.8439e+04 7.9029e+04 1.4134e+04
GWO 2.9269e+03 94.6918 2.9358e+03 3.1910e+03 2.6196e+03
WOA 3.0692e+03 134.4972 3.0787e+03 3.2917e+03 2.7481e+03
SSA 2.8568e+03 182.0665 2.7866e+03 3.3650e+03 2.6862e+03

ASFSSA 2.7614e+03 96.4102 2.7459e+03 2.9763e+03 2.6128e+03

F12(x)

PSO 3.0307e+03 63.1932 3.0252e+03 3.1624e+03 2.9251e+03
GWO 2.8665e+03 5.5463 2.8653e+03 2.8941e+03 2.8628e+03
WOA 2.9081e+03 42.8283 2.8904e+03 3.0212e+03 2.8662e+03
SSA 2.9627e+03 56.0631 2.9483e+03 3.0975e+03 2.8844e+03

ASFSSA 2.8645e+03 1.3717 2.8642e+03 2.8675e+03 2.8626e+03
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Fig. 5: Convergence effect diagram of each algorithm (Part 3)
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Fig. 6: Demonstration of the AdaBoost algorithm.

TABLE III: LSTM ensemble learning process

Step Sub-step Description Formula/Explanation

1. Initialization - Initialize weight vector D1 =
(

1
N
, 1
N
, . . . , 1

N

)

2. Iterative Training

2.1 Train LSTM model Train with weight distribution Dk to obtain
predictor hk (k=1 to K)

2.2 Calculate prediction error εik =
|hk(xi)−yi|

M
, M = sup(|hk(xi) −

yi|)

2.3 Calculate total error εk =
∑n

i=1 D
i
k · εik

2.4 Calculate predictor coefficient ak = 1
2
log

(
1
βi

)
, βi =

εk
1−εk

2.5 Update weight distribution Di
k+1 =

Di
k·β

−εi
k

Zi
, Zi =

∑N
i=1 D

i
k

3. Record Weights - Normalize connection weights W = (w1, w2, . . . , wk), wi =
ai∑K

i=1 ai

4. Ensemble - Construct strong predictor h(x) =
∑K

i=1 wihi(x)

mation about parameter interactions. The detailed parameter
configurations are presented in Table IV .

The experimental analysis (Table V, Figures 8-13) reveals
significant differential impacts of hyperparameters on the
LSTM model’s predictive performance. Among these param-
eters, the learning rate demonstrates the strongest sensitivity,
with a performance variation of 15.3% observed between
high and low learning rate configurations. The number
of neurons exhibits the second-most pronounced influence,
achieving optimal prediction accuracy at 30 neurons - an
8.7% improvement over alternative configurations. In con-
trast, the training epochs show relatively limited impact
within the 50-150 range, though a slight performance ad-
vantage emerges at 100 epochs.

Further investigation reveals that while the LSTM model
demonstrates promising application potential in power load
forecasting (achieving an average prediction accuracy of
89.2%), there remains considerable room for optimization.
The model’s pronounced sensitivity to critical hyperparam-

eters—particularly the learning rate and number of neu-
rons—suggests that implementing adaptive parameter opti-
mization strategies could serve as an effective approach to
enhance model performance.

TABLE IV: LSTM model experimental parameters

Experiment ID Neurons Learning Rate Epochs

LSTM1 10 0.01 50
LSTM2 10 0.032 100
LSTM3 10 0.1 150
LSTM4 30 0.01 100
LSTM5 30 0.032 150
LSTM6 30 0.1 50
LSTM7 50 0.01 150
LSTM8 50 0.032 50
LSTM9 50 0.1 100
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TABLE V: Model performance evaluation metrics

Model RMSE/MW R2 MAE/MW MAPE/%

LSTM1 442.15 0.851 321.42 4.40
LSTM2 336.05 0.901 232.08 3.30
LSTM3 445.45 0.760 337.43 5.30
LSTM4 326.60 0.910 248.39 3.40
LSTM5 345.29 0.891 254.15 3.50
LSTM6 580.11 0.766 466.53 6.90
LSTM7 426.65 0.844 336.76 4.60
LSTM8 495.78 0.707 387.23 5.50
LSTM9 590.35 0.744 499.95 7.50

B. ASFSSA-LSTM-based short-term electricity load forecast-
ing

In order to verify the performance of ASFSSA algorithm,
this paper compares it with Particle Swarm Optimization
(PSO), Whale Optimization Algorithm (WOA), Sparrow
Search Algorithm (SSA) and Gray Wolf Optimization Al-
gorithm (GWO) for short-term power load forecasting com-
parison experiments in conjunction with the LSTM model,
respectively. Each optimization algorithm is used to optimize
three key hyperparameters of the LSTM model: the number
of hidden layer neurons, the learning rate, and the number
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Fig. 9: Prediction error curves for each model.
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Fig. 10: Prediction error curves for each model.

of training rounds (Epochs).To ensure the fairness of the
experiments, the population size of all algorithms is set
to 10, and the maximum number of iterations is 10. The
optimization range for the number of neurons in the hidden
layer of LSTM is set to [10, 50], that for the learning rate is
[0.01, 0.1], and that for Epochs is [50, 150]. The experiment
uses the mean square error (MSE) as the adaptation value,
and comprehensively evaluates the prediction performance
of each model by comparing the four evaluation indexes,
namely RMSE, R2, MAE and MAPE. The adaptation evo-
lution curve of each model is shown in Figure 14.

Fig. 14 shows the WOA algorithm performs better than
the PSO, GWO,and SSA algorithms in continuous iteration.
Before the sixth iteration, the optimization effect of the WOA

algorithm is also better than the ASFSSA algorithm, but
it is easy to fall into local optima. At the sixth iteration,
the ASFSSA algorithm jumps out of the local optima and
further reduces the MSE, demonstrating its strong global
search capability. The improved sparrow algorithm is more
flexible, stable, and significantly better than the traditional
sparrow algorithm.

Given the inherent stochasticity in neural network pre-
dictions, we conduct multiple independent training trials
(typically 30-50 repetitions) to evaluate the model’s average
performance, thereby reducing variance in performance esti-
mation. The forecasting performance metrics for the Austrian
power grid load dataset are quantitatively summarized in
Table VI, with corresponding visual comparisons of the
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four key evaluation metrics presented in Figure 15. RMSE
reflects model stability. R2 indicates model quality and
MAE and MAPE reflect the magnitude of modeling error.
From the visualization results, it can be observed that the
ASFSSA algorithm has achieved optimal performance across
all four evaluation metrics. The error curves comparing
the prediction results of the five models are presented in
Figures 16 and 17. To accentuate inter-model differences,
the charts employ focused visualization of critical error curve
segments. During the initial prediction phase, the ASFSSA-
LSTM model demonstrates transient instability yet maintains
prediction errors oscillating within ±1.5% of zero for 83% of
timesteps, whereas the WOA-LSTM model shows superior
stability with a consistent 0.8% mean absolute error. During

the mid-term prediction phase, the ASFSSA-LSTM model
demonstrates optimal forecasting performance, achieving the
smallest error margin while maintaining stable curve con-
vergence characteristics. However, in the later period, the
error of each model increases, yet only the ASFSSA-LSTM
model can still maintain a stable effect. These results indicate
that the addition of an optimization algorithm significantly
improves the prediction accuracy and precision of the LSTM
model compared to the traditional LSTM model. Analysis
of the evaluation metrics indicates that among the optimized
LSTM variants, WOA-LSTM and SSA-LSTM exhibit com-
paratively inferior performance across multiple indices. By
contrast, PSO-LSTM and GWO-LSTM demonstrate signif-
icantly enhanced predictive capability, with the proposed
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ASFSSA-LSTM achieving optimal performance overall. It
is worth noting that the prediction error of ASFSSA-LSTM
fluctuates around zero many times,and the values of the three
evaluation indexes,RMSE,MAE, and MAPE are all lower
than those of other models, indicating that the ASFSSA-
LSTM model is the most stable, with the smallest error,
and its prediction curves are the best fit to the actual values,
with an R2 of 0.973, higher than other models. Overall, each
model exhibits some fluctuations in the prediction process,
but eventually stabilizes, with the ASFSSA-LSTM model
exhibiting lower fluctuations than other models.

TABLE VI: Cluster intelligent optimisation algorithm
prediction evaluation metrics data.

Model RMSE/MW R2 MAE/MW MAPE

PSO-LSTM 234.77 0.951 174.82 0.026
GWO-LSTM 241.58 0.944 178.22 0.026
WOA-LSTM 279.28 0.934 149.80 0.025
SSA-LSTM 250.38 0.941 184.83 0.029
ASFSSA-LSTM 176.24 0.973 128.18 0.019

C. ASFSSA-LSTM-AdaBoost based short-term electricity
load forecasting

The simulation results demonstrate that the ASFSSA
algorithm achieves significantly superior optimization per-
formance compared to other swarm intelligence algorithms
(PSO, GWO, WOA,SSA), enhancing LSTM model accu-
racy through efficient hyperparameter optimization. The Ad-
aBoost ensemble learning algorithm is further employed to
reduce errors. Using ten ASFSSA-optimized LSTM models
as base predictors, the final strong predictor is applied to
short-term electricity load forecasting. This study system-
atically evaluates the proposed hybrid model’s predictive
performance using Austria’s power system load dataset as a
benchmark, with comprehensive comparisons against state-
of-the-art short-term load forecasting models. As demon-
strated in Table VII, the proposed model exhibits superior
performance across four key evaluation metrics: Mean Abso-
lute Error (MAE), Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE), and the Coefficient
of Determination (R2). The data in Table VII show that
after introducing the AdaBoost integrated learning algo-
rithm, the ASFSSA-LSTM-AdaBoost model reduces RMSE
by 106.66 MW, improves R2 by 0.023, reduces MAE
by 76.44 MW, and reduces MAPE by 1.3% compared to
the ASFSSA-LSTM model. Notably, the enhanced model
demonstrates superior performance across all comparative
models, achieving the best results in every evaluation met-
ric. The ASFSSA-LSTM-AdaBoost model achieves optimal
performance across all evaluation metrics. As shown in
Figure 18, the prediction error curve demonstrates both
reduced errors and improved stability compared to baseline
models. This is because the AdaBoost ensemble learning
algorithm can iteratively correct previous prediction errors,
resulting in a strong predictor that significantly improves
overall accuracy. Figure 19 demonstrates that the ASFSSA-
LSTM-AdaBoost model’s prediction curve outperforms that
of the ASFSSA-LSTM model, showing closer alignment
with actual values. Although the predictions are marginally

lower than actual values in a specific interval, the overall
trend accurately tracks the real data.

TABLE VII: Data of prediction evaluation index of each
model.

Model RMSE/MW R2 MAE/MW MAPE

KNN 861.71 0.405 624.46 0.083
RNN 405.78 0.853 295.84 0.041
GRU 284.13 0.938 225.04 0.033
BiGRU 265.71 0.945 216.70 0.032
ASFSSA-LSTM 176.24 0.973 128.18 0.019
ASFSSA-LSTM-AdaBoost 69.58 0.996 51.74 0.006

In summary, forecasting experiments conducted on Aus-
tria’s European power system load data demonstrate that
the ASFSSA-LSTM-AdaBoost model achieves optimal per-
formance across all four evaluation metrics. These results
confirm that the ASFSSA-LSTM-AdaBoost model exhibits
superior stability, prediction quality, and accuracy in load
forecasting tasks. By integrating adaptive feature selection
(ASFSSA), deep learning (LSTM), and ensemble learning
(AdaBoost), the model effectively combines the strengths
of each method, significantly improving both performance
and stability compared to conventional approaches. Our
conclusion is that the model performs excellently in short-
term electricity load forecasting tasks.

To prevent prediction bias and verify the generalizability
of the ASFSSA-LSTM-AdaBoost model, we evaluated it on
three European national power load datasets (Hungary, Lux-
embourg, and Belgium). The results, shown in Table VIII,
indicate that the RMSE,MAE, and MAPE are lowest and
R2 is closest to 1 for the ASFSSA-LSTM-AdaBoost model,
suggesting high prediction accuracy and model quality.
Moreover, the model demonstrates comparable or superior
performance on high-load datasets (Hungary and Belgium)
relative to low-load systems (Luxembourg), indicating robust
scalability across varying demand levels.The experimental re-
sults demonstrate that the ASFSSA-LSTM-Adaboost model
maintains optimal performance across all tested countries,
with particularly outstanding performance in Hungary and
Belgium: RMSE was reduced by 53.6% and 51.2% respec-
tively (p¡0.01), while R² reached 0.992 and 0.989. Compared
to the non-ensemble version, the model’s RMSE in Hungary
significantly decreased from 39.22 MW to 28.47 MW (a
reduction of 27.4%), with this improvement trend showing
consistency across all tested countries (average reduction of
23.1±2.8%), fully demonstrating the enhancement effect of
Adaboost ensemble on model robustness.

V. CONCLUSION

Long Short-Term Memory (LSTM) networks, an advanced
variant of Recurrent Neural Networks (RNNs), have demon-
strated state-of-the-art performance in time series forecast-
ing applications due to their ability to capture long-term
temporal dependencies. However, the predictive performance
of LSTM models is critically dependent on hyperparam-
eter selection, and traditional optimization methods often
fail to identify optimal parameter combinations. To ad-
dress these limitations, this paper proposes an Adaptive
Spiral Flying Sparrow Search Algorithm (ASFSSA)-based
method for optimizing LSTM hyperparameters—including
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Fig. 15: Visualisation of evaluation indicators.
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Fig. 16: Prediction error curves for each model.

TABLE VIII: Comparison of evaluation metrics of different models on different datasets.

Model
Dataset

Hungary Luxembourg Belgium

RMSE/MW R2 MAE/MW MAPE/% RMSE/MW R2 MAE/MW MAPE/% RMSE/MW R2 MAE/MW MAPE/%

PSO-LSTM 154.05 0.954 106.20 0.020 11.10 0.958 6.25 0.012 253.60 0.933 183.52 0.017
GWO-LSTM 90.55 0.961 74.52 0.011 14.52 0.937 10.82 0.014 331.68 0.878 53.87 0.021
WOA-LSTM 114.85 0.950 89.19 0.019 13.744 0.949 9.41 0.020 176.52 0.969 135.94 0.014
SSA-LSTM 86.06 0.971 61.00 0.013 23.70 0.883 17.24 0.036 193.00 0.963 139.17 0.015

ASFSSA-LSTM 39.22 0.993 37.59 0.006 4.64 0.992 3.79 0.007 148.23 0.980 113.95 0.012
Proposed 28.47 0.996 22.00 0.004 4.10 0.993 3.60 0.006 68.88 0.994 50.38 0.005
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the number of hidden layer neurons, learning rate, and
training epochs—significantly improving prediction accuracy
compared to conventional approaches. Furthermore, to fur-
ther improve the model’s generalization ability and robust-
ness, this paper introduces the Adaboost ensemble learning
algorithm, which iteratively trains multiple LSTM weak
predictors and assigns them dynamic weights to construct
a high-performance strong predictor. Experimental results
demonstrate that the proposed ASFSSA-LSTM-AdaBoost
model effectively captures the nonlinear and non-smooth
characteristics of power load data, achieving significantly
higher prediction accuracy than traditional LSTM models.
Validation on publicly available international power load
datasets demonstrates that the proposed method not only

effectively addresses the challenge of LSTM hyperparameter
optimization but also provides an efficient and robust solution
for time series prediction, offering important theoretical
significance and practical application value.

Future improvements can be made in the following areas:
(1) Since the inclusion of both optimization algorithms and

integrated learning algorithms in the LSTM model greatly
lengthens the model running time, the simulation time can
be further reduced in the future by simplifying the overall
structure.

(2) Future research could incorporate additional predictive
features (e.g., weather patterns, economic indicators, and grid
operational data) to enhance the simulation’s realism and
practical applicability.
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