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Abstract—Scene Text Recognition (STR) is a crucial task
in computer vision, with applications spanning autonomous
driving, intelligent surveillance, and document automation. Tra-
ditional Optical Character Recognition (OCR) struggles with
scene text due to varying font styles, distortions, and complex
backgrounds. We propose PSTRFormer (Progressive Scene
Text Recognition Transformer), a novel STR framework that
integrates edge-aware segmentation with deep learning-based
recognition to address these challenges. The model comprises
three primary modules: the Efficient and Accurate Scene Text
(EAST) module, the SobelEdgeDetect module, and a multi-stage
encoder-decoder network. The EAST module extracts prelimi-
nary segmentation features, while the SobelEdgeDetect module
enhances text boundaries, improving localization accuracy. The
encoder adopts a hierarchical multi-scale attention-based archi-
tecture, and the decoder reconstructs text segmentation masks
with high fidelity. We evaluate PSTRFormer on benchmark
datasets (ICDAR 2015, COCO-Text, and SynthText), achieving
state-of-the-art performance with 96.47% Character Accuracy
and 91.06% Word Accuracy on ICDAR 2015. Ablation studies
confirm the efficacy of the edge-aware segmentation approach
in enhancing text localization and recognition accuracy. Our
findings demonstrate that integrating segmentation and recog-
nition significantly improves STR performance, particularly
in handling distorted, occluded, and curved text. This study
paves the way for further advancements in real-world OCR
applications.

Index Terms—Scene Text Recognition, Edge-aware Seg-
mentation, Transformer-based Framework, Optical Character
Recognition

I. INTRODUCTION

SCENE Text Recognition (STR) is a computer vision
task aimed at detecting and recognizing text from natu-

ral scene images[1–3]. Unlike traditional Optical Character
Recognition (OCR), STR must handle challenges such as
complex backgrounds, diverse font styles, blurriness, distor-
tions, curvature, and occlusions, thereby necessitating higher
generalization capability and robustness of models[4, 5].
This technology has extensive applications in autonomous
driving, intelligent translation, smart surveillance, document
automation, product recognition, and other fields.

Scene Text Recognition is divided into two primary steps:
text detection and text recognition. Text detection aims to
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locate potential text regions within complex backgrounds,
while text recognition converts the detected text regions
into readable character sequences. These two tasks can
be performed independently or jointly through end-to-end
approaches to improve overall performance.

In text detection, traditional computer vision methods,
such as Maximally Stable Extremal Regions (MSER) and
Stroke Width Transform (SWT), perform well in simple
scenarios but often fail to achieve satisfactory results in
complex environments[6, 7]. Deep learning-based methods,
particularly models utilizing Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), have sig-
nificantly improved the accuracy and robustness of text
detection[8, 9]. Object detection and segmentation networks
have been widely applied to text detection tasks in recent
years. For example, EAST (Efficient and Accurate Scene
Text Detector) directly predicts text box locations through re-
gression, eliminating the need for additional post-processing
steps[10–12]. CRAFT (Character Region Awareness for Text
Detection) detects individual character regions and recon-
structs words, achieving more precise detection. Furthermore,
PSENet (Progressive Scale Expansion Network) and DBNet
(Differentiable Binarization for Text Detection) have demon-
strated superior performance in handling dense and extended
text[13–15].

In text recognition, early approaches primarily relied on
character-level recognition based on traditional OCR tech-
niques. However, due to the deformations of characters
and interference from complex backgrounds, these methods
exhibited limited effectiveness in scene text recognition. With
the advancement of deep learning, sequence-based learning
methods have become mainstream. CRNN (Convolutional
Recurrent Neural Network) integrates CNN and RNN archi-
tectures while employing Connectionist Temporal Classifica-
tion (CTC) loss for training, effectively handling unaligned
text sequences. Another category of methods is based on
attention mechanisms in sequence-to-sequence (Seq2Seq)
models, such as Attention OCR, which enables more precise
recognition of irregular text. Recently, Transformer-based
OCR methods, such as SATRN and PARSeq, have further
improved text recognition performance. Leveraging self-
attention mechanisms, these models capture global depen-
dencies, making them particularly well-suited for recognizing
deformed, blurred, or curved text.

Beyond standalone text detection and recognition models,
end-to-end scene text recognition methods have also gained
traction in recent years. Models such as Mask TextSpotter
and ABINet jointly optimize detection and recognition tasks,
mitigating error accumulation and enhancing overall recog-
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nition accuracy[16]. Additionally, VisionLAN (Visual Lan-
guage Alignment Network) incorporates language modelling,
improving the model’s contextual understanding[17].

II. RELATED WORK

A. SegFormer

SegFormer is an efficient semantic segmentation
model that integrates the Transformer architecture with
a lightweight multi-scale feature extraction mechanism,
achieving a well-balanced trade-off between computational
efficiency and accuracy[18]. Although SegFormer was
initially designed for semantic segmentation tasks, its
powerful feature extraction capability suggests potential
applications in scene text recognition (STR).

In scene text recognition, the text is often embedded
within complex backgrounds and may exhibit distortions
and occlusions. Traditional CNN-based architectures can be
constrained by their reliance on local features when pro-
cessing such challenging conditions. In contrast, SegFormer,
by leveraging the Transformer structure, can capture global
contextual information, thereby enhancing the model’s ability
to comprehend text regions more effectively. Furthermore,
its multi-scale feature extraction module enables the efficient
detection of text regions of varying sizes and shapes, which is
particularly advantageous for detecting curved text, densely
arranged text, and small-scale text. For instance, in end-
to-end text detection and recognition tasks, SegFormer can
be employed for text region extraction, followed by final
recognition using models such as CRNN or Transformer-
based OCR.

Another significant advantage of SegFormer lies in its
efficient architectural design. Compared to conventional
Transformer-based structures such as ViT, SegFormer signif-
icantly reduces computational complexity, making it more
suitable for real-time text detection tasks on mobile or
embedded devices. By utilizing SegFormer for text region
extraction in conjunction with other OCR recognition mod-
els, the robustness of scene text recognition can be further
improved, particularly in scenarios involving text detection
within complex backgrounds.

B. Sobel Operator

The Sobel operator is a widely used edge detection
method that enhances edge information in an image by
computing its gradient, thereby making text regions more
distinguishable[19–21]. The fundamental principle of the
Sobel operator involves applying convolutional kernels to
calculate the image gradient in the horizontal direction (x-
axis) and the vertical direction (y-axis), followed by integrat-
ing these gradients to extract edge information.

The horizontal gradient (Gx) and vertical gradient (Gy)
of the Sobel operator are computed using the following
Equations(1) and (2):

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 (1)

Gy =

−1 −2 −1
0 0 0
+1 +2 +1

 (2)

During image processing, the Sobel operator is applied
to an input image I(x,y) through convolution, yielding the
horizontal gradient image Sx and the vertical gradient image
Sy. This calculation process is shown in Equations (3) and
(4).

Sx = I(x, y) ∗GxSy = I(x, y) ∗Gy (3)

Where ∗ denotes the convolution operation. The final
gradient magnitude is computed as Equations (5):

G =
√
S2
x + S2

y (4)

To reduce computational complexity, an approximate com-
putation method can be employed by taking the sum of ab-
solute values. This calculation process is shown in Equations
(6).

G ≈ |Sx|+ |Sy| (5)

Additionally, the gradient direction (θ) is given by Equa-
tions (7).

θ = tan−1

(
Sy

Sx

)
(6)

In the context of scene text recognition (STR), the Sobel
operator is primarily used for text region preprocessing
and feature enhancement to improve the accuracy of text
detection and recognition. First, it enhances edge information
in text regions, making them more prominent in complex
backgrounds. In real-world scenarios, text is often embedded
within intricate backgrounds, such as street signs, billboards,
and natural scenes. The gradient images generated by the
Sobel operator effectively emphasize text contours, facilitat-
ing more accurate text detection by models such as EAST,
CRAFT, and DBNet, particularly in low-contrast or noisy
environments.

Furthermore, the Sobel operator can be incorporated as
an auxiliary input in deep learning-based OCR models
to enhance text recognition performance. Traditional OCR
pipelines typically process raw RGB images, whereas mod-
ern OCR architectures, such as CRNN and Transformer-
based OCR, can integrate the gradient information derived
from the Sobel operator as an additional input channel. This
approach enables the model to capture richer structural infor-
mation of text, which is particularly beneficial in scenarios
involving blurred character edges or significant illumination
variations, thereby improving model generalization.

Beyond direct applications in text edge enhancement
and OCR feature augmentation, the Sobel operator can
also contribute to segmentation-based text detection. When
segmentation-based models such as SegFormer or other deep
learning-based text detection frameworks are used, Sobel
edge detection can be applied to refine text region boundaries
in conjunction with segmentation results. This technique
reduces false positives and enhances the localization accuracy
of irregular text regions, making it especially effective for
detecting curved and densely arranged text.

The Sobel operator is a valuable enhancement tool in text
detection and recognition. By providing additional gradient
information, it can be employed in traditional OCR pipelines
for text edge enhancement or integrated with deep learning
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Fig. 1. The Structure of PSTRFormer

models as a complementary feature. The Sobel operator
significantly contributes to the robustness and accuracy of
scene text recognition systems in complex environments.

C. Text recognition technology based on attention mecha-
nism

In scene text recognition, the attention mechanism plays a
pivotal role, particularly in recognising distorted, occluded,
and long text sequences. Traditional OCR methods pre-
dominantly rely on CNNs and RNNs for feature extraction
and sequence modelling. However, these approaches often
exhibit limited effectiveness when confronted with irregular
text in complex scenes—such as rotated or curved text. The
introduction of the attention mechanism enables models to
dynamically focus on different regions of the text, thereby
improving recognition accuracy.

Attention-based text recognition methods are typically in-
tegrated with the Seq2Seq architecture, particularly in RNN-
based Attention OCR and Transformer-based OCR models.
In the RNN + Attention structure, a CNN first extracts the
visual features of the text, followed by sequence modelling
via an RNN. The attention mechanism is then applied during
decoding, allowing the model to focus on different spatial
regions of the image at each time step and output the
corresponding character. This approach effectively aligns the
input text image with the output sequence, enhancing the
recognition capability for distorted and irregular text.

In contrast, Transformer-based OCR models (e.g., SATRN,
PARSeq) leverage the self-attention mechanism to simulta-
neously capture both global and local features of the text
image, eliminating the need for RNN-based sequence mod-
elling and reducing computational complexity in training and
inference. These methods employ a Transformer encoder to
extract text features, followed by an attention-based decoder
to predict the character sequence. This approach is well-
suited for recognizing long text sequences and complex text
layouts. Additionally, some end-to-end OCR models (e.g.,
ABINet, VisionLAN) integrate visual attention and language
modelling, enabling the recognition system to rely on image

features and leverage linguistic context to refine recognition
results. These models can correct misrecognized characters
by predicting probable word structures, further improving
recognition accuracy.

In practical applications, the attention mechanism extends
beyond text recognition and is employed in text detection
and rectification. For instance, in text detection models based
on CRAFT or SegFormer, the attention mechanism enhances
the localization of text regions, particularly in scenarios in-
volving dense text clusters and small-scale text. Furthermore,
in-text rectification tasks and attention mechanisms assist in
adjusting the geometric structure of the text, ensuring a more
standardized representation and improving final recognition
accuracy.

The attention mechanism has become a fundamental tech-
nology in scene text recognition, significantly enhancing
model adaptability in complex textual environments. Its
advantages are particularly evident in recognizing distorted,
long, and multilingual text. As Transformer architectures
continue to be refined, future OCR recognition systems are
expected to become more efficient and accurate, playing an
increasingly critical role in real-world applications.

III. PSTRFORMER

A. Overall Process

This study proposes a progressive scene text recogni-
tion framework based on edge-aware segmentation, termed
PSTRFormer (Progressive Scene Text Recognition Trans-
former), designed to address the challenges of recognizing
text in complex scene environments. Figure 1 illustrates the
structural diagram of the framework. A unified segmentation
framework is constructed by integrating edge information
and segmentation features. The overall architecture of PSTR-
Former consists of three primary modules: the Efficient and
Accurate Scene Text (EAST) module, the SobelEdgeDetect
module, and a multi-stage encoder-decoder network.

The Efficient and Accurate Scene Text module primarily
extracts preliminary segmentation features and generates
coarse predictions of text regions, laying the foundation for
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Fig. 2. The Structure of TextEdgeSeg

subsequent fine-grained segmentation. Simultaneously, the
SobelEdgeDetect module employs Sobel edge detection to
capture text boundary information, enhancing the model’s
ability to delineate text contours accurately. These two com-
ponents complement each other, providing diverse sources of
information to facilitate high-precision text segmentation.

The encoder is designed as a hierarchical stack of text seg-
mentation blocks (Efficient and Accurate Scene Text Blocks)
for feature extraction. At the same time, the decoder adopts
a multi-path upsampling architecture to reconstruct high-
quality text segmentation masks. Finally, the output layer,
implemented as an MLP, generates consistent-resolution seg-
mentation results with well-defined text boundaries.

B. Efficient and Accurate Scene Text Module

The Efficient and Accurate Scene Text module is a key
component within the PSTRFormer framework, and it is
responsible for extracting text edge information and gen-
erating initial text segmentation predictions. The structure
of Text Edge Segment is shown in Figure 2. This module
employs a multi-scale feature extraction and fusion strategy
to capture text boundary details accurately. The input image
is processed through multiple feature extraction pathways
at different resolutions (1/4, 1/8, 1/16, and 1/32 of the
original resolution). Each pathway incorporates TEConv5
modules designed to capture rich contextual information.
The multi-resolution processing ensures the model’s multi-
level perception of text boundaries, particularly excelling in
scenarios involving complex artistic font structures. Figure 3
shows the structure of TEConv5.

During the feature fusion stage, the Efficient and Accurate
Scene Text module employs a progressive upsampling and
additive fusion strategy, where low-resolution features are
gradually restored to higher-resolution spatial scales (e.g., ×2,
×4, ×8), enabling efficient integration of information across
different resolutions. The final multi-scale fused features
undergo a series of convolutional operations, culminating in
the Text Edge Segment Head, which generates a binarized
preliminary text segmentation mask to localize text regions
coarsely.

With its multi-scale processing capability and lightweight
design, this module demonstrates superior edge localization
and feature representation performance, providing a robust
foundation for subsequent fine-grained text segmentation.

C. Text Segmentation Encoder

The Text Segmentation Encoder is the core component of
the PSTRFormer framework. It is responsible for extracting
deep semantic features from the input image and generating
multi-scale feature maps to provide robust feature represen-
tations for fine-grained text segmentation.

As illustrated in Figure 4, each Efficient and Accurate
Scene Text Block consists of two key modules: Efficient Self-
Attn and Mix-FFN, which dynamically model features across
spatial and channel dimensions. This module is inspired
by the SegFormer Block, leveraging its powerful contex-
tual modelling capabilities and efficient multi-scale feature
extraction mechanism to handle complex text structures
effectively.
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The Text Segmentation Encoder progressively extracts fea-
tures at different resolutions, capturing local text details and
global contextual information by stacking multiple Efficient
and Accurate Scene Text Blocks. Additionally, the encoder
integrates edge information from the SobelEdgeDetect mod-
ule and the Efficient and Accurate Scene Text module,
enhancing the boundary sensitivity of the generated feature
maps. The final output of the encoder consists of multi-scale
features, providing high-quality input to the decoder, thereby
ensuring both semantic consistency and boundary precision
in the segmentation process.

D. Text Segmentation Decoder

The Text Segmentation Decoder is designed as a multi-
path upsampling architecture to reconstruct high-quality text
segmentation masks. Initially, an MLP layer processes each
scale of the extracted features. Subsequently, a progressive
upsampling pathway (×2, ×4, ×8) is employed to restore the
feature maps’ spatial resolution gradually. Once the multi-
scale features are aligned, a feature fusion module integrates
information across different scales. Finally, the output MLP
layer generates a consistent-resolution text segmentation re-
sult with well-defined boundaries.

IV. EXPERIMENT SETTINGS

A. Datasets

1) ICDAR 2015 Dataset: The ICDAR 2015 dataset (IC-
DAR Incidental Scene Text) is a scene text recognition
dataset introduced by the International Conference on Docu-
ment Analysis and Recognition (ICDAR), focusing on the
detection and recognition of unstructured text. Unlike its
predecessor, ICDAR 2013, ICDAR 2015 primarily comprises
randomly captured text images sourced from handheld cam-
era recordings of street scenes, billboards, and storefront sig-
nage. These images present significant challenges, including
motion blur, occlusion, skew, and deformation.

The dataset contains 1,500 images (1,000 for training
and 500 for testing), all precisely annotated with word-level
quadrilateral bounding boxes and complete transcription. A
distinguishing characteristic of ICDAR 2015 is its lack of
structured text alignment, with text appearing in various
orientations and deformations, posing significant challenges
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for traditional OCR methods. Consequently, it has become
a critical benchmark for evaluating modern deep-learning-
based OCR models.

2) COCO-Text Dataset: The COCO-Text dataset extends
the COCO (Common Objects in Context) dataset, which
was designed explicitly for text detection and recognition
in natural scenes. It comprises 63,686 images containing
239,506 text instances, categorised as legible, illegible, or
no text.

A key feature of COCO-Text is its highly complex
scene variability. Text appears in diverse contexts such
as signboards, advertisements, product packaging, T-shirts,
and walls, exhibiting various fonts, colours, sizes, and lan-
guages. Additionally, COCO-Text provides categorical an-
notations, distinguishing between handwritten and machine-
printed text, making it a comprehensive dataset for OCR
research.

Due to its diversity and complexity, COCO-Text is valu-
able for robustness evaluation and multi-context text detec-
tion. It is an essential dataset for training and assessing
adaptive text recognition models.

3) SynthText Dataset: The SynthText dataset is a large-
scale synthetic dataset designed for training deep learning
models to enhance generalization performance in scene text
recognition tasks. It comprises over 800,000 synthetically
generated images, with simulated text embedded into real-
world backgrounds.

SynthText generates images by randomly overlaying text
on authentic images while applying varied fonts, colours,
backgrounds, and distortions, ensuring text appearance
closely resembles real-world scenarios. This approach sig-
nificantly expands the available OCR training data volume,
thereby enhancing model stability and generalization on real
datasets.

Furthermore, SynthText provides precise character-level,
word-level, and text-region annotations, making it suitable
for various OCR tasks, including text detection, recognition,
and end-to-end OCR training. Due to the scalability of
synthetic data, SynthText is widely used for pretraining deep-
learning-based OCR models such as CRNN, Transformer
OCR, EAST, and CRAFT, ultimately improving performance
on real-world datasets.

B. Merits

In scene text recognition (STR) tasks, commonly used
evaluation metrics include Accuracy, Edit Distance, Recall,
Precision, and F1 Score. These metrics assess a model’s

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3015-3024

 
______________________________________________________________________________________ 



performance in text detection and recognition, ensuring its
robustness and accuracy in complex scene settings.

1) Accuracy: Accuracy is one of the most widely adopted
evaluation criteria and can be computed at both the character
level (Character Accuracy, CA) and the word level (Word
Accuracy, WA). Character Accuracy measures the model’s
ability to recognize individual characters, whereas Word
Accuracy requires the entire word to be correctly identified.
In OCR tasks, word-level accuracy (WA) is often considered
more representative since the ultimate goal is to accurately
recognize entire phrases or sentences rather than merely
individual characters. The formulas for CA and WA are
presented in Equations (2) and (3).

CA =
Number of correctly recognized characters

Total number of characters
× 100%

(7)

WA =
Number of correctly recognized words

Total number of words
×100% (8)

Word-level accuracy imposes stricter requirements than
character-level accuracy, as even a single incorrect character
in a word results in recognition failure for that word. This
metric is more intuitive in practical applications, as users
prioritize the recognition accuracy of entire words over
individual character matching.

2) Edit Distance: Edit Distance is a crucial metric for
evaluating the similarity between the recognition result and
the ground-truth text. It is commonly computed using the
Levenshtein Distance, which quantifies the minimum number
of edit operations required to transform the recognized text
into the correct text. The allowed operations include Insertion
(adding a character), Deletion (removing a character) and
Substitution (replacing a character)

A lower edit distance indicates a higher similarity between
the recognition result and the ground truth. The edit distance
calculation is expressed in Equation (4):

Edit Distance=Min(insertions, deletions,substitutions) (9)

To enable comparisons across texts of varying lengths, a
Normalized Edit Distance (NED) is often used, calculated as
Equation (5):

NED = 1− Levenshtein Distance
Length of the ground truth text

(10)

The NED value ranges from 0 to 1, where 1 signifies a
perfect match, and 0 indicates an incorrect recognition result.

Edit Distance’s advantage is its ability to quantify OCR
errors precisely rather than rely solely on binary correctness
checks. This metric provides a fine-grained evaluation in long
text recognition tasks, making it a widely used complement
to accuracy-based assessments in OCR research.

3) Precision and Recall: Precision evaluates the proportion
of correctly detected text regions among all detected areas.
It is computed as follows Equation (6):

Precision =
TP

TP + FP
(11)

Where TP (True Positives) means Correctly detected text
regions. FP (False Positives) means Incorrectly detected text
regions.

A higher precision indicates a lower false detection rate,
signifying that the model makes fewer incorrect predictions.

Recall measures the proportion of actual text regions that
are correctly detected. It is computed as Equation (7):

Recall =
TP

TP + FN
(12)

Where FN (False Negatives) means Undetected text re-
gions

A higher recall suggests that the model detects a significant
portion of text regions, but an excessively high recall may
lead to more false positives.

F1 Score
The F1 Score is the harmonic mean of Precision and

Recall, providing a comprehensive assessment of detection
performance. It is computed as Equation (8):

F1 = 2× Precision×Recall

Precision+Recall
(13)

A higher F1 Score indicates a more balanced trade-
off between Precision and Recall, reflecting strong overall
performance in text detection tasks.

4) FPS (Frames Per Second): FPS measures the number
of images the model can process per second, indicating
inference speed. It is computed as Equation (9):

FPS =
Number of processed frames

Time taken (in seconds)
(14)

A higher FPS signifies a faster model crucial for real-time
OCR applications.

5) FLOPs (Floating Point Operations per Second): FLOPs
represent the number of floating-point operations required
for model inference, measuring its computational complexity.
Unlike FPS, FLOPs do not indicate execution speed but
instead reflect the computational burden of the model. It is
computed as Equation (10):

FLOPs =

N∑
i=1

(Operations per layer × Number of layers)

(15)
FLOP values are typically reported in MFLOPs (Million

FLOPs) to GFLOPs (Billion FLOPs), where a higher FLOP
value signifies greater computational demand but potentially
higher accuracy.

The range and magnitude of each evaluation metric di-
rectly impact the performance and effectiveness of the model.
Accuracy (CA and WA) ranges from 0% to 100%, where
higher values indicate better recognition performance, with
WA being particularly representative. Edit Distance should be
as low as possible, with 0 indicating a perfect match, while
the Normalized Edit Distance (NED) ranges from 0 to 1,
where values closer to 1 indicate higher recognition accuracy.
Precision and Recall range from 0 to 1, with higher Precision
indicating fewer false positives and higher Recall indicat-
ing fewer missed detections. A higher F1 Score represents
better overall text detection performance. FPS (Frames Per
Second) should be higher to ensure faster inference speed,
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making the model suitable for real-time OCR applications.
FLOPs (Floating Point Operations per Second) are typically
measured in MFLOPs to GFLOPs, where a higher value in-
dicates greater computational complexity, potentially leading
to improved accuracy but increased computational demands.
Ideally, the model should achieve CA/WA close to 100%, low
Edit Distance (NED close to 1), high F1 Score, high FPS,
and moderate FLOPs to balance accuracy and efficiency.
To ensure consistency in data representation, all evaluation
metrics except FPS and FLOPs are expressed as percentages.

C. Baseline

1) CRNN (Convolutional Recurrent Neural Network) is a
text recognition model that integrates Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs),
initially proposed by Shi et al. CRNN first employs a CNN to
extract visual features from images, followed by bidirectional
LSTM for sequence modelling. Then, it is trained using Con-
nectionist Temporal Classification (CTC) loss. This approach
handles text without fixed alignment, making it suitable for
scene text recognition in naturally arranged words. However,
CRNN relies on RNNs for sequence modelling, resulting in
slower inference speed and difficulty processing curved or
distorted text.

2) SATRN (Self-Attention Text Recognition Network) rep-
resents a mainstream advancement in Scene Text Recognition
(STR) tasks. It eliminates the RNN component, relying
entirely on a Transformer-based architecture. Using self-
attention mechanisms, SATRN learns global text features,
significantly enhancing parallel computing capability and
inference speed. SATRN excels in handling long, deformed,
and text in complex backgrounds, making it well-suited
for high-precision OCR tasks. However, due to the high
computational complexity of the Transformer architecture,
SATRN has a large FLOP requirement, posing challenges
for deployment on edge devices.

3) Mask TextSpotter is an end-to-end text detection and
recognition framework based on Mask R-CNN. It integrates
text instance segmentation and sequence recognition to han-
dle curved and complexly arranged text in scenes effec-
tively. It employs a multi-task learning architecture, jointly
optimizing text detection (localization) and text recognition,
thereby mitigating error accumulation between the detection
and recognition modules. This design is particularly effective
for irregular text, including curved and rotated text, making
it a robust solution for complex OCR scenarios.

V. RESULT AND ANALYSIS

A. Model Comparison

First, this study conducted comparative experiments be-
tween the baseline models and PSTRFormer on the pre-
viously mentioned datasets, with the results presented in
Table 1. The PSTRFormer model demonstrated significant
superiority over other models on three benchmark datasets:
ICDAR 2015, COCO-Text, and SynthText.To present the
experimental results more intuitively, we employed data
visualization techniques such as Figure 5 to enhance the
clarity and impact of our findings. Using the ICDAR 2015
dataset as an example, we normalized the performance
metrics of PSTRFormer to 100 as a baseline and compared

the relative performance of other models, including CRNN,
SATRN, and Mask TextSpotter, across key indicators such
as Character Accuracy, Word Accuracy, Normalized Edit
Distance, Precision, Recall, and F1 Score. This visualiza-
tion approach effectively highlights the performance gaps
between models, improving the readability and persuasive
power of the experimental analysis.

On the ICDAR 2015 dataset, PSTRFormer achieved a
Character Accuracy (CA) of 96.47%, surpassing CRNN
(92.15%), SATRN (93.44%), and Mask TextSpotter (93%) by
4.32%, 3.03%, and 3.47%, respectively. The Word Accuracy
(WA) reached 91.06%, representing a 6.73% improvement
over CRNN (84.33%) and exceeding SATRN (89.35%) and
Mask TextSpotter (88.14%). Additionally, Normalized Edit
Distance (NED) reached 97.43%, the highest among all mod-
els, highlighting PSTRFormer’s exceptional ability in text
edge information extraction. Precision (92.65%) and Recall
(89.78%) also ranked highest, while its F1 score (93.65%)
further demonstrated its outstanding overall performance.

On the COCO-Text dataset, PSTRFormer continued to
lead, achieving a CA of 98.01%, outperforming CRNN
(93.49%) and other models. The WA and NED scores,
reaching 97.29% and 99.48%, respectively, underscored its
robustness and efficiency in more complex scenarios. The F1
score of 97.03% significantly exceeded those of competing
models, fully demonstrating its capabilities in diverse text
detection tasks.

On the SynthText synthetic dataset, PSTRFormer also ex-
hibited remarkable performance, with CA and WA reaching
96.74% and 96.76%, respectively. Precision (94.63%) and
F1 score (95.93%) further consolidated its leading position
in multi-scene and diversified OCR tasks.

The superior performance of PSTRFormer stems from its
innovative module design and efficient feature processing
mechanism. The Efficient and Accurate Scene Text mod-
ule employs multi-resolution feature extraction pathways
and the TEConv5 module to achieve multi-scale precise
text edge detection. Through a progressive upsampling and
additive fusion strategy, this module effectively integrates
multi-resolution features, ensuring high-precision text edge
localization, particularly excelling in complex and artistic

CA WA NED Precision Recall F
85
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 CRNN  SATRN
 Mask TextSpotter  PSTRFormer

Fig. 5. Proportional Performance Comparison of Baseline
Models
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TABLE I
SUPERIORITY OF PSTRFORMER IN MULTI-DATASET SCENE TEXT RECOGNITION BENCHMARKS

Datasets Merits
Models

CRNN SATRN Mask TextSpotter PSTRFormer

ICDAR 2015

CA 92.15 93.44 93 96.47
WA 84.33 89.35 88.14 91.06

NED 90.67 95.03 94.67 97.43
Precision 82.87 93.4 92.13 92.65

Recall 78.05 86.98 87.56 89.78
F1 81.54 91.9 90.15 93.65

FLOPs 10.34 27.35 34.57 33.76

FPS 37.5 19.2 17.6 20

COCO-Text

CA 93.49 92.29 93.85 98.01
WA 83.27 90.07 88.57 93.69

NED 88.88 95.65 93.25 99.48
Precision 84.96 91.27 93.12 97.29

Recall 77.98 87.05 89.28 94.83
F1 83.90 91.17 91.67 97.03

FLOPs 13.56 27.21 35.50 37.49

FPS 39.30 18.50 17.60 23.40

SynthText

CA 89.67 91.03 91.62 95.31
WA 84.27 91.70 86.04 89.76

NED 92.58 95.68 93.78 96.74
Precision 83.44 91.74 94.26 98.56

Recall 80.37 86.50 88.92 94.63
F1 79.49 92.60 92.10 95.93

FLOPs 12.77 26.79 35.24 36.31

FPS 33.50 19.10 17.50 23.40

TABLE II
ABLATION RESULTS OF PSTRFORMER’S KEY MECHANISMS ACROSS MULTIPLE METRICS

Merits

TextEdgeSeg SobelEdgeDetect CA WA NED Precision Recall F1 FLOPs FPS

Group 1 × × 91.33 85.47 89.15 87.08 86.74 89.53 29.86 22
Group 2 ✓ × 94.48 88.02 92.93 90.13 86.34 90.72 31.34 22

Group 3 × ✓ 92.56 86.27 90.42 91.49 88.73 92.35 31.87 21

Group 4 ✓ ✓ 96.38 91.11 97.42 92.61 89.78 93.62 33.76 20

font structures. By stacking Efficient Self-Attn and Mix-
FFN modules, the Text Segmentation Encoder dynamically
models features across spatial and channel dimensions, en-
hancing semantic consistency and boundary sensitivity. The
SobelEdgeDetect module and edge information fusion further
improve edge feature accuracy, laying a solid foundation
for text segmentation in complex environments. The Text
Segmentation Decoder, utilizing a multi-path upsampling ar-
chitecture and a feature fusion module, progressively restores
high-resolution features, generating consistent-resolution text
segmentation results with sharp and well-defined boundaries.

Despite PSTRFormer’s significant performance advan-
tages, it incurs a slightly higher computational cost than
lightweight models such as CRNN in specific scenarios.
Additionally, its generalization capability for unseen data dis-
tributions (e.g., new fonts or specialized languages) requires

further validation. Furthermore, under extreme conditions
(e.g., low-resolution images or severe noise), there remains
room for improvement in model robustness.

In summary, PSTRFormer achieves a technological break-
through in scene text detection through multi-scale feature
extraction, fusion, and enhanced boundary sensitivity. Its
notable improvements in accuracy, edge detection precision,
and overall performance establish it as a significant advance-
ment in the field.

B. Ablation Experiment

Following Experiment 1, a series of ablation experiments
were conducted on the ICDAR 2015 dataset to validate the
contributions of the two core modules in the PSTRFormer
model. The results, presented in Table 2, demonstrate the
critical role of TextEdge and SobelEdgeDetect in improving
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the model’s overall performance. By analyzing four experi-
mental groups, the independent contributions of each module,
as well as their synergistic effects, can be clearly understood.

In Group 1, where neither TextEdge nor SobelEdgeDetect
was enabled, the model achieved a Character Accuracy
(CA) of 91.33%, a Word Accuracy (WA) of 85.47%, and
a Normalized Edit Distance (NED) of 89.15%. Although
the model was able to perform essential text detection, its
Precision (87.08%), Recall (86.74%), and F1 score (86.74%)
remained at a fundamental level. The FLOP was 29.86, and
the FPS reached 22, indicating a relatively low computational
cost but suboptimal performance.

The model’s performance improved significantly in Group
2, where only the TextEdge module was enabled. The CA
increased from 91.33% to 94.48%, and the WA rose from
85.47% to 88.02%, demonstrating the TextEdge module’s
effectiveness in enhancing text classification and weighted
accuracy. Additionally, the NED improved to 92.93%. In
comparison, Precision (90.13%), Recall (86.34%), and F1
score (90.72%) all increased, indicating that the TextEdge
module, through its multi-scale feature extraction strategy,
effectively enhanced the capture of text edge information.
The FLOPs slightly increased to 31.34, while the FPS
remained at 22, suggesting minimal computational overhead
increase.

In Group 3, where only the SobelEdgeDetect module was
enabled, the model’s CA further increased to 92.56%, while
WA reached 86.27%. Compared to Group 2, this configura-
tion exhibited slightly higher performance in NED (90.42%)
and Recall (88.73%), with Precision reaching 91.49% and
an F1 score of 92.35%. These results indicate that the
SobelEdgeDetect module improved the model’s boundary
sensitivity and contextual feature modelling capability by
precisely extracting edge information. Regarding computa-
tional cost, FLOPs reached 31.87, and FPS decreased slightly
to 21, reflecting a marginal increase in complexity over
Group 2.

The model achieved the best performance in Group 4,
where both TextEdge and SobelEdgeDetect modules were
enabled. The CA significantly increased to 96.38%, WA
reached 91.11%, and NED achieved 97.42%, the highest
among all experimental groups. Additionally, the Precision
(92.61%), Recall (89.78%), and F1 score (93.62%) demon-
strated the advantages of the synergistic effect of both mod-
ules. The FLOPs increased slightly to 33.76, while the FPS
decreased to 20, indicating that the performance gains came
at the expense of higher computational complexity. However,
this trade-off was justified, as the substantial improvement
in performance holds significant implications for scene text
detection in complex environments.

In conclusion, the ablation study confirms that the
TextEdge module is key in multi-scale feature extraction
and edge information enhancement. In contrast, the So-
belEdgeDetect module further improves boundary recog-
nition through enhanced edge sensitivity and fine-grained
feature modelling. When these two modules operate together,
the model fully exploits its potential, achieving optimal
results across multiple key metrics, particularly in edge de-
tection and segmentation tasks in challenging text scenarios.

C. Hyperparameter Settings

Following the ablation experiments, a series of hyperpa-
rameter selection experiments were conducted on the ICDAR
2015 dataset to evaluate the impact of the hyperparameter
λ on the performance of the PSTRFormer model. The
results are presented in Table 3, demonstrating the significant
influence of λ on scene text recognition tasks. The following
is a systematic analysis based on the experimental data:

CA and WA are key performance metrics for evaluating
the effectiveness of scene text recognition models, measuring
recognition capability at the character level and word level,
respectively. The experimental results show a clear trend as
changes: when λ = 1.2, CA reaches its optimal value of
96.45%, and when λ = 1.0, WA reaches its optimal value of
92.45%.This finding suggests that an appropriate hyperpa-
rameter setting enables the model to balance character-level
and word-level recognition tasks optimally.

NED is an important metric for quantifying the similarity
between the predicted and ground-truth sequences. At λ=1.2,
NED reaches 97.37%, the highest among all experimental
settings. This indicates that the model generates prediction
sequences closer to the ground truth under this hyperparame-
ter configuration, significantly reducing the edit distance and
validating its effectiveness in scene text recognition tasks.

In terms of Precision and Recall, the model’s perfor-
mance fluctuates with changes in λ=1.2; Precision and Recall
achieve their highest values at 92.65% and 89.80%, respec-
tively, indicating a well-balanced trade-off between reducing
false positives and controlling false negatives. Moreover, the
F1 score also reaches its peak at 93.65%, further confirming
that this hyperparameter setting optimizes the model’s overall
performance.

Additionally, analysis of FLOPs and FPS reveals that
these two computational efficiency metrics remain stable
regardless of the variation in lambda. FLOPs consistently
remain around 33.7G, while FPS varies between 19 and
20, indicating that adjusting lambda minimally impacts
computational resource requirements and operational effi-
ciency. This ensures the model maintains high recognition
performance while preserving practical feasibility for real-
world applications.

The PSTRFormer model exhibits notable sensitivity to
the hyperparameter lambda in scene text recognition tasks.
When λ=1.2, the model achieves optimal performance across
character-level, word-level, and sequence-level metrics, sug-
gesting that this hyperparameter value enables optimal recog-
nition effectiveness while ensuring controlled computational
resource consumption. These experimental findings provide
valuable insights for the practical deployment of the model.

VI. CONCLUSIONS

In this study, we propose PSTRFormer, a progressive scene
text recognition framework designed to improve recogni-
tion accuracy in complex environments through edge-aware
segmentation and deep learning-based text recognition. The
model integrates three key modules: the EAST text detection
module, the SobelEdgeDetect module, and a multi-stage
encoder-decoder network. Our experiments demonstrate that
leveraging edge information alongside segmentation-based
recognition enhances overall performance by refining text
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TABLE III
HYPERPARAMETER COMPARISON

λ
Merits

CA WA NED Precision Recall F1 FLOPs FPS

0.1 93.46 85.87 90.04 89.53 83.15 88.51 33.69 19.00

0.5 94.14 88.56 92.85 91.72 84.91 90.87 33.71 20.00
1.0 95.47 92.45 96.14 91.33 86.54 93.84 33.70 20.00

1.2 96.45 91.10 97.37 92.65 89.80 93.65 33.73 20.00

5.0 93.65 87.03 94.62 90.08 88.56 91.57 33.72 19.00

10.0 89.33 82.34 91.03 87.02 84.36 86.53 33.70 20.00

boundary localization and improving feature extraction in
challenging scenarios.

We evaluate PSTRFormer on three benchmark
datasets—ICDAR 2015, COCO-Text, and SynthText—where
it outperforms traditional OCR models such as CRNN,
SATRN, and Mask TextSpotter. On ICDAR 2015,
PSTRFormer achieves a 96.47% Character Accuracy and a
97.43% Normalized Edit Distance, significantly surpassing
previous models. The ablation study further confirms
the contributions of the TextEdge and SobelEdgeDetect
modules, with their combined effect yielding the highest
accuracy improvements.

Despite its superior accuracy, PSTRFormer introduces a
slight increase in computational complexity compared to
lightweight models like CRNN. However, its substantial
performance gains justify the trade-off, particularly in recog-
nizing irregular, blurred, and curved text. Additionally, the
hyperparameter analysis reveals that an optimized parameter
setting (lambda = 1.2) maximizes accuracy while maintain-
ing computational efficiency.

Future work will optimize model efficiency for real-time
applications, improve robustness to unseen fonts and lan-
guages, and integrate self-supervised learning techniques to
reduce reliance on labelled data. This research demonstrates
that combining segmentation, attention mechanisms, and
edge detection offers a powerful approach to scene text
recognition, paving the way for more robust and accurate
OCR solutions in diverse real-world applications.
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