
 

  

Abstract—To address the prediction challenges posed by the 

pronounced nonlinear characteristics and susceptibility to 

external interference in urban traffic flow data, this study 

proposes a hybrid forecasting framework integrating 

multimodal signal analysis and intelligent optimization. First, 

the raw traffic flow data are decomposed into multiscale 

components using Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (CEEMDAN), followed by 

dynamic threshold-based Empirical Wavelet Transform (EWT) 

to adaptively filter high-frequency noise and enhance 

discriminative features. Second, a multidimensional feature 

space is constructed by integrating multisource spatiotemporal 

features, including meteorological factors and temporal 

attributes, while the Sparrow Search Algorithm (SSA) is 

employed to globally optimize the hidden layer dimensions of 

the Bidirectional Gated Recurrent Unit (BiGRU) network and 

the parameter configurations of its attention mechanism. 

Finally, XGBoost is utilized to synergistically integrate 

multimodal features and deep learning outputs for prediction 

refinement. Experimental results demonstrate that the 

proposed framework achieves near-optimal R² values while 

continuously reducing error metrics (MSE, MAE, RMSE, and 

MAPE), significantly outperforming standalone BiGRU, 

XGBoost, and conventional hybrid models. Robustness and 

generalizability are further validated on a second dataset with 

distinct spatiotemporal characteristics, demonstrating 

consistent performance. Systematic ablation studies confirm 

that each module contributes substantially to accuracy 

improvement, verifying the comprehensive design of the 

proposed framework. 

 
Index Terms—Traffic flow forecasting, Multi-modal 

decomposition, Hybrid neural network, Parameter 

optimization 
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I. INTRODUCTION 

RIVEN by urbanization and motorization, the rapid 

increase in motor vehicle ownership has led to 

increasingly severe traffic congestion, posing significant 

obstacles to socio-economic development. As an effective 

approach to mitigate traffic congestion, Intelligent 

Transportation Systems (ITS) prioritize accurate and timely 

traffic flow prediction as one of their core functionalities [1]. 

However, the complexity of traffic flow data—including its 

nonlinearity and volatility—coupled with external factors 

such as weather variations, renders short-term traffic flow 

prediction a highly challenging task. Traffic prediction is 

critical for effective traffic planning, management, and 

control. It enables urban travelers to select optimal routes, 

improving travel efficiency, while providing traffic 

authorities with a scientific basis to preemptively regulate 

congestion and implement vehicle restrictions. Over the past 

decade, with advancements in ITS, traffic flow prediction has 

garnered growing attention in both research and practical 

applications. 

Current approaches to traffic flow forecasting are mainly 

divided into three key categories: traditional parametric 

techniques, conventional machine learning methods, and 

deep learning frameworks. 

Traditional parametric techniques encompass models such 

as the Autoregressive Integrated Moving Average (ARIMA) 

[2], Exponential Smoothing [3], and Kalman Filtering [4], 

Multiple Regression [5], and Grey System Theory [6]. 

Among these, ARIMA and its variants [7-10] are suitable for 

forecasting stationary time series, while exponential 

smoothing excels in short-term predictions. The Kalman 

Filter demonstrates strong performance in dynamic scenarios, 

multiple regression models linear relationships between 

variables, and grey models are tailored for systems with 

incomplete information. However, these parametric 

approaches are often constrained by predefined assumptions, 

limiting their ability to capture the intricate dynamics of 

traffic flow. To address these limitations, researchers have 

developed hybrid models that integrate parametric methods 

with artificial intelligence (AI) techniques [11]. These hybrid 

frameworks exhibit greater flexibility in structural design and 

parameter tuning, enabling more effective handling of 

complex patterns and uncertainties inherent in traffic flow 

prediction. 

Compared to classical parametric methods, traditional 

machine learning approaches are more adept at handling 

complex nonlinear problems. Support Vector Machine (SVM) 

[12][13] and Support Vector Regression (SVR) [14] enhance 

prediction accuracy by leveraging kernel functions to 
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transform low-dimensional, linearly inseparable traffic data 

into high-dimensional, linearly separable representations. A 

novel hybrid model, denoted as C-WSVM, was proposed for 

short-term traffic speed prediction, which enhances the 

performance of Support Vector Machines (SVM) by 

incorporating wavelet functions and phase space 

reconstruction theory [15]. This methodology synergistically 

combines advanced signal processing and nonlinear 

dynamics to achieve superior predictive accuracy and 

robustness in complex traffic environments. Empirical 

validation using real-world data demonstrated the model’s 

accuracy and practicality. Similarly, a short-term traffic flow 

prediction model was developed using Support Vector 

Regression (SVR) combined with a Genetic Algorithm (GA) 

for parameter optimization [16]. The feasibility and 

effectiveness of this model were confirmed through traffic 

flow data from the Jiangxi Provincial Department of 

Transportation. Urban traffic flow prediction framework 

integrating traffic, weather, calendar data, and Twitter 

information was proposed [17]. By employing SVM and 

SVR, their study empirically validated that such multimodal 

integration, including social media data form Twitter, 

significantly improves traffic flow prediction accuracy. 

With the advancement of neural networks, an increasing 

number of scholars [18-21] have applied deep learning 

models to traffic flow prediction. These models excel at 

extracting hierarchical representations of features, enabling 

high-dimensional space modeling and parameter extraction. 

Variants of recurrent neural networks, such as Long 

Short-Term Memory (LSTM) and Gated Recurrent Unit 

(GRU), are particularly suited for sequential data analysis, 

capturing long-term dependencies in time series.  

An innovative short-term traffic prediction model based on 

LSTM networks was proposed, enhancing prediction 

accuracy by integrating spatiotemporal correlations within 

traffic systems [22]. Comparative experiments with other 

models validated its superior performance. Similarly, LI [23] 

partitioned raw traffic flow sequences into multiple intervals 

to construct adaptive traffic flow series. By employing a 

GRU algorithm enhanced with data augmentation and a 

bidirectional GRU with adaptive mechanisms, their approach 

significantly improved prediction accuracy. As models 

evolve, hybrid deep learning frameworks [24-26] have 

gained traction, combining the strengths of individual models 

to address different aspects of data, thereby enhancing 

prediction accuracy and robustness. For example, literature 

[27] proposed a hybrid deep learning model that integrates an 

attention mechanism-enhanced Conv-LSTM network with 

Bi-LSTM. This model effectively captures spatial, short-term, 

and long-term temporal features of traffic flow, significantly 

enhancing the accuracy of short-term traffic predictions. 

Short-term traffic flow data, often contaminated by noise 

during acquisition, faces challenges in reliability and 

accuracy due to spatiotemporal uncertainties and 

complexities in traffic systems. To address this, researchers 

have developed diverse data denoising techniques to enhance 

data quality prior to prediction, thereby improving precision 

and credibility.   

Wavelet Transform (WT) has been widely adopted for 

noise reduction in traffic flow prediction. Wavelet-Kalman 

filter model was utilized to reduce noise in short-term traffic 

volume forecasting, combined with deep learning methods to 

validate the efficacy of wavelet-based processing [28]. 

KASHI [29] proposed a hybrid WT-ANN model, integrating 

wavelet denoising and artificial neural networks (ANN) to 

predict traffic flow 5 – 35 minutes ahead. Their results 

demonstrated that noise removal significantly enhanced 

prediction accuracy. Literature [30] proposed a 

CEEMDAN-XGBoost hybrid model, combining 

CEEMDAN and extreme gradient boosting, to achieve 

high-precision and stable lane-level traffic flow prediction, 

outperforming state-of-the-art methods such as ANN and 

LSTM. Literature [31] proposed a novel adaptive framework 

for traffic flow sequence analysis, utilizing CEEMDAN to 

decompose raw traffic flow time series into multiple adaptive 

subseries based on dataset characteristics, showcasing its 

superiority in capturing dynamic traffic flow variations.  

This study addresses the complexity of urban traffic flow 

prediction by proposing an innovative hybrid neural network 

model based on multi-modal decomposition. To tackle the 

nonlinear and dynamic nature of traffic data, the model 

integrates CEEMDAN, EWT, SSA, an attention 

mechanism-enhanced BiGRU, and XGBoost to achieve 

precise traffic flow forecasting. The key contributions are as 

follows:   

1) Multi-modal decomposition and denoising: The 

CEEMDAN algorithm is first applied to decompose 

traffic flow data into Intrinsic Mode Functions (IMFs) 

while removing noise. High-frequency IMFs are further 

decomposed via EWT to reduce residual noise and 

extract critical features, establishing a cleaner data 

foundation for prediction.   

2) Attention-based BiGRU and XGBoost refinement: A 

BiGRU model enhanced with an attention mechanism is 

developed to capture bidirectional temporal 

dependencies and dynamically focus on key information 

points. XGBoost is then employed to refine predictions 

and improve generalization across diverse traffic 

scenarios.  

3) Hyperparameter optimization via SSA: The SSA 

algorithm optimizes BiGRU hyperparameters (e.g., 

hidden layers, neuron counts), enhancing the model’s 

adaptability to dynamic traffic patterns. 

4) Multimodal feature integration: The model incorporates 

traffic, weather, and calendar features, enabling a 

holistic consideration of factors influencing traffic flow 

and significantly boosting prediction accuracy. 

5) Comprehensive evaluation framework: A performance 

assessment system based on R², MSE, MAE, RMSE, and 

MAPE is established to rigorously validate the model’s 

accuracy and reliability.  

The paper is organized as follows: Section II details the 

theoretical foundations and mathematical frameworks of 

CEEMDAN, EWT, BiGRU, and XGBoost. Section III 

elaborates on the application of SSA for BiGRU 

hyperparameter tuning and the structural design of the hybrid 

model. Section IV presents empirical experiments, ablation 

studies to validate the importance of each module, and 

performance evaluations to demonstrate the efficacy of the 

proposed approach.  Finally, the conclusion summarizes key 

findings and discusses future research directions. 
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II. METHOD 

In this section, we comprehensively elucidate the core 

principles of the algorithms and methodologies employed in 

this study. Specifically, this research delves into the 

implementation mechanisms of CEEMDAN, EWT, BiGRU, 

and XGBoost. These methods not only constitute critical 

components of the proposed hybrid forecasting model but 

also play a pivotal role in ensuring the accuracy and stability 

of the final prediction results. 

A. Complete Ensemble Empirical Mode Decomposition 

with Adaptive Noise  

CEEMDAN algorithm is an enhanced variant of the 

Ensemble Empirical Mode Decomposition (EEMD). It aims 

to achieve precise reconstruction of original signals and 

improved spectral separation of modes while reducing 

computational costs. CEEMDAN is specifically designed for 

processing nonlinear and non-stationary signals. By 

adaptively introducing noise and iterating multiple times, it 

effectively mitigates the mode mixing issue inherent in 

traditional Empirical Mode Decomposition (EMD), thereby 

enhancing decomposition accuracy and stability. 

The core principle of CEEMDAN lies in incrementally 

adding white noise to the IMFs obtained from EMD 

decomposition during each iteration. This stepwise noise 

addition significantly reduces the impact of white noise on 

decomposition results, improving both precision and 

robustness. Unlike EEMD and CEEMD, which perform 

global averaging across all IMF components, CEEMDAN 

applies averaging immediately after each IMF is generated. 

This ensures that noise effects are minimized at every 

decomposition stage. Subsequently, the residual component 

is processed iteratively, effectively addressing the transfer of 

white noise from high-frequency to low-frequency bands. 

The key steps for implementing the CEEMDAN algorithm 

are outlined below, with Algorithm 1 providing the 

pseudocode: 

Step 1: Initialization and Noise Addition. For the original 

signal Y(n), multiple realizations of Gaussian white noise ϵk(n) 

(with zero mean and variance σ2) are added to generate a 

noisy signal sequence. Let K denote the number of noise 

realizations. For each realization k=1, 2, …, K, the noisy 

signal is defined as ( ) ( ) ( )k kY n Y n n= + . 

Step 2: EMD Decomposition. Apply EMD to each noisy 

signal Yk(n), decomposing it into IMF components and a 

residual Rk: 

 1( ) ( ) ... ( ) ( )k k kM kY n IMF n IMF n R n= + + +  (1) 

Step 3: Compute IMF Averages. For each mode m=1, 2, …, 

M, compute the average across all K realizations of IMFm to 

obtain the CEEMDAN-derived mIMF : 

 
1

1
( ) ( ) ( )

K
k

m m m

k

IMF n IMF n IMF n
K =

= =  (2) 

Step 4: Residual Calculation and Iteration. Subtract the 

averaged IMF components from the original signal to 

generate the residual sequence (3): 

 
1

( ) ( ) ( )
M

m

m

R n Y n IMF n
=

= −  (3) 

The residual sequence R(n) is then augmented with 

Gaussian white noise, and Steps 2–3 are repeated to derive 

the next IMF component. 

Step 5: Iterative Decomposition. Repeat Steps 2–4 for each 

new residual sequence until the residual contains fewer than 

two extrema (local maxima or minima) or meets predefined 

stopping criteria. 

Step 6: Stopping Criteria. Terminate the algorithm when 

the residual magnitude becomes negligible, no new IMFs can 

be extracted, or a preset maximum iteration count is reached. 

Step 7: Signal Reconstruction. The original signal is 

reconstructed by summing all IMFs and the final residual: 

 
1

( ) ( ) ( )
M

m

m

Y n IMF n R n
=

= +  (4) 

Through these steps, CEEMDAN effectively decomposes 

nonlinear and non-stationary signals into a series of IMFs, 

each representing distinct frequency modes. The 

pseudo-code of CEEMDAN is illustrated in TABLE I. 

 
TABLE I 

PSEUDO-CODE OF THE CEEMDAN ALGORITHM 
Algorithm 1 The Realization of the CEEMDAN Approach 

Input: Y(n)-The raw time-series data 

K- The number of realizations 

Output: mIMF , m=1, 2, …, M and R(n) 

1 for k=1 to K do 

2      ( ) ( ) ( )k kY n Y n n +  

3 end 

4 for k=1 to K do  

5  1 2( ), ( ), , ( ), ( ) ( ( ))k k kM k kIMF n IMF n IMF n R n EMD Y n   

6 end 

7 for k=1 to K do 

8 ( )1
( ) ( ) /

K k

m mk
IMF n IMF n K

=
   

9 end 

10 
1

( ) ( ) ( )
M

mm
R n Y n IMF n

=
 −   

11 while Num (R(n)) ≥ 2 do 

12       for k=1 to K do 

13 ( ) ( ) ( )k kY n R n n +  

14  1 2( ), ( ), , ( ), ( ) ( ( ))k k kM k kIMF n IMF n IMF n R n EMD Y n   

15 end 

16 for k=1 to K do 

17 ( )1
( ) ( ) /

K k

m mk
IMF n IMF n K

=
   

18 end 

19 
1

( ) ( ) ( )
M

mm
R n Y n IMF n

=
 −   

20 end 

21 ( )( )r n R n  

B. Empirical Wavelet Transform 

The EWT proposed by Gilles in 2013, combines the 

locality of wavelet transforms with the adaptability of 

Empirical Mode Decomposition to address limitations of 

traditional wavelet methods in analyzing nonlinear and 

non-stationary signals. EWT designs adaptive wavelet filter 

banks to extract meaningful subbands from non-stationary 

time series. 

EWT Implementation Steps: 

1. Extend the original signal to facilitate the Fourier 

transform. 

2. Compute the Fourier transform of the input signal, 

converting the time-domain signal to the frequency domain. 

3. Partition the Fourier spectrum into N continuous 

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3025-3039

 
______________________________________________________________________________________ 



 

segments. Determine the boundaries by identifying local 

maxima in the spectrum and sorting them in descending order. 

If the number of local maxima M satisfies M≥N, retain the 

first N−1 maxima; if M<N, retain all maxima and adjust N 

accordingly. Finally, define the midpoint frequency ωn 

between two adjacent local maxima as the boundary. 

4.Based on the local maxima identified in Step 3, 

determine the segmentation boundaries and partition the 

spectrum. 

5.Construct an appropriate wavelet filter bank, which will 

be used to decompose the signal. 

6.Decompose the signal using the constructed wavelet 

filter bank to extract subbands. This step breaks the signal 

into a finite number of modes, each corresponding to a 

subband of the spectrum. 

7.Decompose the signal into several uncorrelated filtering 

modes and a residual. These modes represent different 

intrinsic patterns of the signal, while the residual contains 

components not explained by the modes. 

C. Bidirectional Gated Recurrent Unit-Attention 

The BiGRU-Attention architecture addresses sequential 

modeling challenges through integrated gating mechanisms 

and selective feature weighting. This framework employs 

GRU cells - a streamlined variant of recurrent networks that 

mitigates gradient issues through dual gating control. Unlike 

LSTM's three-gate design, GRU utilizes an update gate Zt and 

reset gate rt to regulate information flow, the computational 

formulas (5) for GRU are as follows: 

 

1

1

1

1

( [ , ] )

( [ , ] )

tanh( [ , ] )

(1 )

t z t t z

t r t t r

t t t t

t t t t t

z W x h b

r W x h b

h W x r h b

h z h z h





−

−

−

−

=  +

=  +

=  +

= − +

 (5) 

in (5), σ denotes the sigmoid activation,  represents 

Hadamard product, and W․ and b․ are learnable parameters. 

The update gate modulates historical state retention, while 

the reset gate controls previous state contribution to 

candidate activation th . 

BiGRU combines two unidirectional GRU models—to 

capture comprehensive temporal dependencies, bidirectional 

processing integrates complementary directional contexts. At 

each time step, the hidden state of the BiGRU is a 

combination of the hidden states from the forward and 

reverse GRUs, which can be either concatenated or weighted 

summed. The computational formula (6) for BiGRU is as 

follows: 

 ( , )BiGRU forward backward

t t th h h=   (6) 

where, forward

th and backward

th encode forward/backward 

sequence contexts, fused via concatenation or weighted 

summation (Ø). 

The introduction of the attention mechanism aims to 

simulate the selective focus of humans when processing 

information, enabling the model to identify and concentrate 

on the most important parts when handling large amounts of 

data. In sequence processing tasks, this means the model 

needs to recognize the input segments that are most 

influential to the current task and allocate more attention to 

them. The query (Q), key (K), and value (V) vectors are 

constructed from the outputs of the BiGRU. Typically, these 

vectors are derived through linear transformations of the 

hidden states of the BiGRU, formally defined as (7): 

 

BiGRU

q

BiGRU

k

BiGRU

v

Q W H

K W H

V W H

=

=

=

 (7) 

where, HBiGRU represents the output of the BiGRU layer, and 

Wq, Wk and Wv are learnable weight matrices. 

The similarity between the query vector and all key vectors 

is computed, followed by weight allocation using the softmax 

function, which can be expressed by the formula (8): 

 

,

,

,

,

1

tanh( )

exp( )

exp( )

T T

t j a t k j

t j

t j T

t k

k

e v QW K

e

e



=

=

=



 (8) 

The context vector is generated through weighted 

summation of the attention weights. Pass the context vector ct 

to the output layer to make the final decision. 

D. XGBoost 

XGBoost follows the gradient boosting framework, which 

is an ensemble learning method that improves prediction 

performance by iteratively adding new tree models to correct 

the residuals or errors of the previous models. In each 

iteration, the newly added tree model focuses on the 

prediction errors of the previous model, thereby enhancing 

the overall predictive accuracy. 
1) Objective Function 

The objective function (9) synergistically combines 

predictive error minimization and structural regularization: 

 ( ) ( )( ) ( )

1

ˆ,
n

t t

i i t

i

l y y f
=

= +   (9) 

where, ( )( )ˆ, t

i il y y  represents the loss function, yi denotes the 

true value of the sample i, ( )ˆ t

iy denotes the predicted value of 

the sample i by the model, and ( )tf represents the 

regularization term for the complexity of the t-th tree model. 
2) Loss function 

The loss function is used to measure the difference 

between the predicted values and the actual values. Common 

loss functions include squared loss and logarithmic loss. For 

the i-th sample, the loss function can be expressed as (10): 

 ( )
2

)ˆ ˆ( ,i i i il y y y y−=  (10) 

3) Regularization 

The regularization term (11) is used to measure the 

complexity of the tree, preventing overfitting: 

 ( ) 2

1

1

2

T

t j

j

f T w 
=

 = +   (11) 

where, T is the leaf count, wj represents leaf weights with γ, λ 

controlling model complexity. 
4) Second-order Taylor expansion 

XGBoost utilizes Taylor expansion to approximate the loss 

function as a second-order polynomial, facilitating 

optimization. The loss function is approximated via 

second-order Taylor expansion at iteration t: 

 
,

11 1 21
ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( ) ( )

2i i i

t t t

i i i i i i il y y l y y g y y h y y−− − + − + −  (12) 
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in (12), ( 1)ˆ ˆ ˆ
g = ty y yi l −=

  and ( 1)

2

ˆ ˆ ˆ
= ty yi y

lh −=
  as gradient and 

Hessian components. Removing constants yields the 

optimized objective. 

That is, the objective function can be simplified to (13): 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( 1) 2

1

2

1

1
ˆ,

2

1

2

n
t t

i i t i i it

i

n

i t i t

i

i t

i ti

l y y g f x h f x f

g f x h f x f c

−

=

=

 
= + + +  

 

 
= + +  + 

 





 (13) 

where, 1 )ˆ ˆ (ti i

t t

iy f xy −= + , Based on the principle of Boosting, 

it can be derived that: the prediction value of the sample i by 

the t-th tree = the prediction value of the previous t-1 trees + 

the prediction value of the t-th tree, c is a constant term. 

Leveraging Boosting's additive training principle, 

XGBoost reformulates the objective function via 

second-order Taylor approximation for loss optimization. 

Subsequent elimination of invariant terms yields the 

minimized expression for deriving optimal leaf weights (14): 

 ( ) ( ) ( )( ) 2

1

1

2

n
t

i t i t i t

i

ig f x h f x f
=

 
= + +  

 
  (14) 

5) Leaf node weights 

For a fixed tree structure q with leaf partition 

={ | ( )= }j iI i q x j  , optimal weights are derived as (15): 

 ( ) 2 2

1 1

1 1

2 2

n

j

T
t

i

j

ji j

i

g w h w T w 
= =

 
 + + + 

 
   (15) 

Then 
ji

j i

I

G g


=  and
ji

j i

I

H h


=  , let it be further 

simplified to (16): 

 ( )( ) 2

1

1

2

T
t

j j j j

j

G w H w T 
=

 
= + + + 

 
  (16) 

For a fixed tree structure, the optimal weight wj for the j-th 

leaf node can be expressed as:
j

j

j

G
w

H 
= −

+
.Based on this, 

the optimal value of the objective function can be derived (17) 

to yielding the structure score:: 

 

2

( )*

1

1

2

T
t

j

j

j

G
T

H


=

= − +
+

  (17) 

6) Splitting gain calculation 

In practical applications, enumerating all potential tree 

structures is computationally infeasible due to complexity 

constraints. Therefore, XGBoost employs a greedy algorithm 

to construct the tree model by iteratively selecting the optimal 

split points, rather than exploring all possible tree structures. 

During the splitting process, a gain function (18) is used to 

evaluate the effectiveness of a split: 

 
2 2 2( )1

Gain
2

L R L R

L R L R

G G G G

H H H H


  

 +
= + − − 

+ + + + 
 (18) 

where, GL, GR, HL, HR are the sums of the gradients and the 

second-order derivatives (Hessians) of the left child node, 

respectively, while GL, GR, HL, HR are those of the right child 

node. λ is the regularization parameter. 
7) Construction of the tree structure 

XGBoost constructs the tree structure by iteratively adding 

branches until a predefined maximum depth is reached or no 

further gain is achieved. 

8) Prediction and Output 

After the model training is completed, for a new input 

sample, XGBoost sequentially inputs the sample features into 

each decision tree and sums the predictions from all trees to 

obtain the final prediction output. 

Through the above steps, the pseudo-code of the XGBoost 

is described in TABLE II. XGBoost effectively combines 

multiple decision trees and iteratively optimizes the model 

using gradient boosting, ultimately achieving superior 

predictive performance. 

 
TABLE II 

PSEUDO-CODE OF THE XGBOOST ALGORITHM 

Algorithm 2 XGBoost Training Process 

Input: X-Feature matrix; y-Labels; Tmax-Max trees; 

η-Learning rate; λ,γ-Regularization; max_depth-Tree 

depth 

Output: Trees-Ensemble of trained trees 

1 # Initialize base prediction 

2 
( )ˆ t

iy = base_prediction(y) 

3 for t=1 to Tmax 

4 
( )t-1

t-1

ˆ,
g

ˆ

i i

i

i

l yy

y



,

( )2 t-1

t-1 2

ˆ,
=

ˆ( )

i i

i

i

y
h

y

y

l


 

5 function BuildTree(X, g, h, depth): 

6 if depth ≥ max_depth or Gain < γ: 

7 
j

j

ii I

j

ii I

g
w

h 





 −
+




 

8 return leaf node with wj 

9 else 

10 

2 2 21 ( )
Gain

2

L R L R

L R L R

G G G G

H H H H


  

 +
 + − − 

+ + + + 
 

11 
Xleft={xi|xsplit_feature≤split_value} 

Xright={xi|xsplit_feature>split_value} 

12 
left_child=BuildTree(Xleft , gleft , hleft , depth+1) 

right_child=BuildTree(Xright , gright , hright , depth+1) 

13 return internal node with split rule  

14 
( ) ( 1) )ˆ ˆ (t t

t ii i fy y x− +  

15 Trees=Trees∪{ft} 

16   end for 

17 return Trees 

III. ALGORITHMS AND MODEL FRAMEWORK 

This research employs the SSA to optimize pivotal 

hyperparameters within the traffic flow prediction framework. 

By mimicking sparrow swarm dynamics, SSA determines 

optimal weight distributions for the multimodal 

BiGRU-XGBoost architecture integrating traffic, 

meteorological, and temporal features. This optimization 

minimizes adaptive prediction errors through targeted 

adjustment of BiGRU-Attention structural parameters, 

including hidden layer quantities and neuronal configurations 

per layer. Consequently, the enhanced model exhibits 

superior capability in capturing both transient fluctuations 

and longitudinal trends in traffic flow dynamics. 

A. Sparrow Search Algorithm 

The SSA constitutes a swarm intelligence optimizer 

inspired by sparrows' foraging and collective movement 

patterns. Within this framework, the population segregates 
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into explorers and followers. Explorers orchestrate food 

sourcing and guide collective foraging trajectories, while 

followers capitalize on resources located by explorers. 

Individuals engage in mutual behavioral monitoring, 

competing with high-yield conspecifics upon resource 

discovery to maximize nutritional intake efficiency. Predator 

detection triggers coordinated evasion responses. 

The SSA prioritizes explorers with superior adaptation 

levels during search operations. Given their role in sustaining 

collective nutrition, explorers command broader foraging 

radii compared to followers. Nutritionally disadvantaged 

followers (low fitness values) exhibit area-shifting behavior 

to replenish energy reserves. Imminent threat perception 

prompts rapid relocation to secure foraging zones. 

Algorithmic implementation follows these core principles, 

and pseudocode in Algorithm 2: 

First, population initialization commences with 

randomized positioning (19): 
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 (19) 

where, the SSA initializes with n agents in d-dimensional 

space, represented by position matrix X∈Rn×d. Each row 

vector xi corresponds to an agent's coordinates. The fitness 

values of all sparrows are computed to form a fitness value 

vector F, as shown in the following equation (20): 
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 (20) 

whose components Fi determine role assignment: 

high-fitness individuals become explorers (producers), while 

low-fitness agents serve as followers (scroungers). Explorers 

command expanded search domains due to their nutritional 

responsibility. Position updates for explorers follow dual 

modalities based on threat assessment. By iteratively 

updating the positions of discoverers using the following two 

formulas (21): 
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 (21) 

within the SSA framework, t denotes the current iteration 

index, while tmax specifies the maximum iterations. The 

position of sparrow i in dimension j at iteration t is 

denoted ,

t

i jX . Randomness is modeled through α∈ (0,1], 

with  R2 ∈ [0,1] representing alertness level and  ST ∈

[0.5,1.0] defining safety threshold. Environmental 

stochasticity is simulated by Q∼N (0,1), and L=11×d ensures 

dimensional integrity during updates. When R2<ST indicates 

that absence of predators enables explorers to conduct 

wide-range exploration. When R2≥ST indicates that 

collective predator detection triggers immediate relocation to 

secure foraging zones. 

Followers continuously surveil explorers, initiating 

competitive foraging upon resource discovery. Success 

grants immediate consumption; failure prompts continued 

search. Follower position updates (22) incorporate: 
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 (22) 

where, Xp denotes the optimal explorer position, while Xworst 

signifies the globally worst recorded position. Matrix A∈

{-1,1}1×d contains stochastically assigned elements, with its 

pseudo-inverse defined as A+=AT(AAT)-1. The condition 

i>n/2 identifies energetically deficient followers (low fitness) 

requiring relocation for energy replenishment. 

When alertness R2 surpasses safety threshold ST, 

emergency evasion is activated. This can be achieved using 

the following formula (23):  

 

best best
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 (23) 

here, the global optimum solution is denoted Xbest, with β∼N 

(0,1) controlling step magnitude. Directional coefficient K∈

[−1,1] governs movement orientation, while  fi, fg, and fw 

represent current, global optimum, and worst fitness values 

respectively. Constant ε<<1 prevents division singularities. 

When fi>fg that peripheral agents face elevated predation 

vulnerability. When fi=fg that core agents initiate cohesion 

behavior to mitigate predation risk. Termination occurs at 

t=tmax, outputting xbest and fg as the optimal solution, the 

pseudocode of the SSA is illustrated in TABLE III. 

 
TABLE III 

PSEUDOCODE OF THE SSA 

Algorithm 3 The Realization of the SSA Approach 

1 # Initialization Step 
2 Randomly initialize the population of sparrows: 

3 X = [X1, X2, ..., Xn] 
4 Set parameters: α, Q, L, itermax, ST (stopping criteria) 
5 Calculate the fitness value f(Xi) for each sparrow 
6 # Iterative search process 
7 while stopping criteria ST is not met: 
8 Compute the fitness value f(Xi) 

9 
Record the current best position Xbest and worst position 
Xworst 

10 # Leader (explorers) update their positions 

11 for i in range(p * n):   
12 if r < ST:  
13 X[i] ← X[i] * exp(-i / (α * itermax))   
14 else: 

15             X[i] ← X[i] + Q * L 
16    End 

17 Constrain X[i] within search boundaries 
18 # Followers (joiners) update their positions 

19 for i in range(p * n, n): 
20         X[i] ← Q * exp((Xworst - X[i]) / (i^2)) 
21 End 

22 Constrain X[i] within search boundaries 

23 
# Check fitness values and update best and worst 

positions 
24 Update Xbest, Xworst 
25 # Output the best solution 

26 Output Xbest, the best position found during the iterations 
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B. Measures Of Effectiveness 

Prediction performance is evaluated using three metrics: 

R², MSE, MAE, RMSE, and MAPE. By comparing these 

parameters, we can more thoroughly assess the performance 

of the proposed model. The mathematical expressions for 

each evaluation metric are as follows (24), (25), (26), (27), 

(28): 
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here, y(i) represents the measured traffic flow data at time i, 

( )y i is the predicted traffic flow value, and N is the number of 

data points. Smaller values of MSE, MAE, RMSE, and 

MAPE indicate better performance, while an R² value closer 

to 1 indicates better performance. These metrics effectively 

and comprehensively illustrate the quality of the model's 

prediction results. 

The following evaluation criteria can thoroughly and 

accurately demonstrate the predictive power of a model in 

terms of outcomes. Utilizing these assessment metrics, we 

will proceed to evaluate the model's performance in the 

subsequent section. 

C. A Forecasting Model Based On CEEMDAN 

This research proposes a cohesive computational 

architecture for traffic flow forecasting, integrating 

state-of-the-art methodologies to augment predictive 

precision and stability.  Fig 2 delineates the framework's 

structural composition, comprising these critical 

components: 
a) Data Preprocessing Module 

Before model training, preprocessing the raw traffic data is 

a fundamental and critical step. This study employs the 

CEEMDAN algorithm to adaptively decompose the data, 

effectively removing noise and extracting the IMFs of traffic 

flow. This step provides clearer input features for the model, 

contributing to improved prediction accuracy. In the traffic 

flow prediction model, the processing of high-frequency 

IMFs is particularly crucial. High-frequency IMF 

components, such as IMF 1, IMF 2, and IMF 3, often exhibit 

high energy density in the spectrum, which may indicate the 

presence of high-frequency noise or interference. These 

high-frequency components may not contribute to the 

prediction task and could even reduce prediction accuracy. 

Therefore, further processing of these high-frequency IMF 

components is necessary. To extract meaningful signals and 

reduce noise, we apply EWT to deeply process the 

high-frequency IMF components. EWT decomposes 

high-frequency signals into more stable components, not 

only helping to remove high-frequency noise but also 

ensuring that the data input to the model is smoother and 

more conducive to capturing the intrinsic patterns of traffic 

flow. Through this approach, we can extract more accurate 

and predictive features from the raw data, thereby enhancing 

the overall performance of the traffic flow prediction model. 
b) Feature Extraction Module 

In this study, we comprehensively consider various factors 

influencing traffic flow, including time, speed (mph), 

holidays, temperature, traffic flow, and weather conditions. 

To ensure the model captures factors significantly impacting 

traffic flow, we quantify the importance of these factors using 

statistical methods such as correlation analysis. The results of 

this evaluation not only help the model identify key factors 

but also optimize the model's sensitivity to traffic flow 

changes by assigning appropriate weights to each factor. 

Subsequently, the feature extraction module utilizes the 

BiGRU-Attention model to perform deep feature extraction 

on the preprocessed data. By combining the bidirectional 

GRU structure and the attention mechanism, this model 

effectively captures dynamic changes and key information 

points in the time series. This integration enables the model to 

more precisely extract core features related to traffic flow, 

thereby improving prediction accuracy. 
c) Parameter Optimization Module 

To further enhance model performance, this study 

introduces the SSA to optimize the hyperparameters of the 

BiGRU-Attention model. The SSA algorithm intelligently 

searches the solution space by simulating the social behavior 

of sparrows, identifying the optimal number of hidden layers 

and neurons per layer. 
d) Refinement Prediction Module 

Building on the BiGRU-Attention model, the XGBoost 

model is introduced to refine the prediction results. XGBoost, 

with its excellent generalization ability and capability to 

handle nonlinear problems, adjusts the output of the 

BiGRU-Attention model to improve prediction accuracy. 

This step further enhances the model's predictive 

performance by refining the results. The architecture of the 

proposed BiGRU-Attention-XGBoost model is shown in Fig 

2, which integrates bidirectional sequence learning, attention 

mechanisms, and gradient boosting. 
e) Model Integration 

The design of the entire model framework aims to achieve 

high-precision traffic flow prediction by integrating multiple 

advanced machine learning techniques. The synergistic 

collaboration of CEEMDAN denoising, SSA optimization, 

BiGRU-Attention feature extraction, and XGBoost 

refinement prediction enables the model to comprehensively 

capture the dynamic characteristics of traffic flow, improving 

the reliability and accuracy of predictions. 

Overall, as illustrated in Fig 2, the proposed 

CEEMDAN-EWT-SSA-BiGRU-XGBoost architecture 

sequentially integrates adaptive signal decomposition, 

wavelet filtering, swarm intelligence optimization, and 

hybrid prediction modules, forming an end-to-end 

framework for traffic flow forecasting. 
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IV. EXPERIMENTS AND RESULTS ANALYSIS 

A. Dataset Description and Preprocessing 

This research employs a traffic flow from a mountainous 

city in southwestern China, spanning one month with a 

5-minute resolution, yielding 8,904 data points. The dataset is 

split into training and test sets, with 80% allocated for 

training and 20% for testing, as depicted in Fig 3, to assess 

the model’s performance on unseen data. It accurately 

captures traffic variations on key urban roads in the region. 

Prior to training, preprocessing steps were taken including 

outlier removal and missing value imputation to ensure data 

quality. To improve the model’s ability to detect dynamic 

traffic patterns, temporal features like time, day, date, month, 

and notable events were incorporated, enhancing the model’s 

capacity to model temporal relationships in traffic flow. 

 

Original Data Dataset

Decomposition

Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise

(CEEMDAN)

...
Components

( )R n

Further

Components EWT Component

Empirical Wavelet Transform(EWT)

XGBoost

Predictors
Predictor

1
Predictor

2
Predictor

3
Predictor

m
Predictor

m+1

Prediction refinement

Predictor
1

Predictor
2

Predictor
3

Predictor
m

Predictor
m+1

BiGRU-

Attention

Sparrow Search Algorithm(SSA)

Hyperparameter optimization

Integration Predicted Results

1( )IMF n
2 ( )IMF n 3 ( )IMF n ( )mIMF n

 
Fig 1. CEEMDAN-EWT-SSA-BiGRU-XGBoost Model Architecture 

B. Data Denoising 

First, we applied the CEEMDAN algorithm to adaptively 

decompose the original traffic data, effectively reducing 

noise levels and extracting key traffic flow features. The 

CEEMDAN algorithm decomposes the original data into 

several IMFs, which capture the main components of the data 

while removing or reducing the impact of noise. The 

CEEMDAN decomposition results, as illustrated in Fig 4, 

decomposes the original traffic flow data into multiple IMFs, 

revealing the primary components of the data. For IMF 1, 

IMF 2, and IMF 3 obtained from CEEMDAN decomposition, 

their high energy density in the spectrum suggests the 

presence of high-frequency noise or interference, 

necessitating further processing. We employed EWT to 

further decompose these high-frequency IMFs into 

components of different frequencies, identifying and 

separating high-frequency noise components from 

low-frequency trend components. The EWT decomposition 

results of three selected IMFs are shown in Fig 5, where 

(a)-(c) illustrate the frequency components of IMF 1, IMF 2, 

and IMF 3, respectively. 
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Fig 2. BiGRU-Attention-XGBoost Model Architecture Diagram 

 

 
Fig 3. Dataset Partitioning Diagram 
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Fig 4. CEEMDAN Decomposition Results Diagram 

 
(a) EWT Decomposition Results: IMF 1 

Original Signal 

IMF 1 

IMF 11 

IMF 10 

IMF 9 

IMF 8 

IMF 7 

IMF 6 

IMF 5 

IMF 4 

IMF 3 

IMF 2 

Original Signal 

EWT Component 1 

EWT Component 2 

EWT Component 3 

0 2000 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

4000 

8000 

8000 

8000 

8000 

8000 6000 

6000 

6000 

8000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

6000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 

2000 4000 

4000 

4000 

4000 

4000 

4000 

4000 

4000 

4000 

4000 

4000 

8000 

8000 

8000 

8000 

8000 

8000 

750 
500 

250 

 

0 

-100 

50 
0 

-50 

500 
400 

300 

25 
0 

 

50 
0 

-50 

200 

0 

-200 

250 
0 

-250 

 

0 

-200 

100 

0 

-100 

50 
0 

-50 

100 

0 

-100 

3000 

3000 

3000 

3000 

0 

0 

0 

0 

1000 

1000 

1000 

1000 

2000 

2000 

2000 

2000 

4000 

4000 

4000 

4000 

5000 

5000 

5000 

5000 

6000 

6000 

6000 

6000 

100 

50 

0 

-50 

-100 

50 

25 

0 

-25 

-50 

100 

50 

0 

-50 

 

40 

20 

0 

-20 

-40 

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3025-3039

 
______________________________________________________________________________________ 



 

 
(b) EWT Decomposition Results: IMF 2 

 
(c) EWT Decomposition Results: IMF 3 

Fig 5. EWT Decomposition 
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Fig 6. Feature Importance Analysis Diagram 

C. Model Training and Testing 

The hybrid neural network model is utilized for both 

training and prediction tasks. In the training phase, the SSA 

is employed to fine-tune the hyperparameters of the 

BiGRU-Attention model. The initial population size is 

configured to 50, with the iteration count set to 100.After 

150 training epochs, SSA continuously updates the 

population positions during iterations, evaluates the quality 

of each individual using a fitness function, and dynamically 

adjusts the search strategy based on the global optimal 

solution. Ultimately, through multiple iterations and 

dynamic updates of population positions, SSA gradually 

approaches the global optimal solution. The findings 

indicate that the BiGRU-Attention model performs best with 

two layers and 44 hidden units per layer. By integrating a 

bidirectional GRU architecture with an attention mechanism, 

the model effectively captures temporal dependencies in the 

data sequence and dynamically emphasizes critical 

information points. 

Fig 7 displays the MSE loss for both the training and test 

sets as the number of training epochs increases. The graph 

indicates that the loss for both sets decrease steadily, with 

the test set loss showing no significant rise, demonstrating 

the model's strong performance on both the training and test 

datasets. 

 

 
Fig 7. Loss Variation 

 

D. Comparative Analysis of Results 

The proposed multimodal decomposition-based hybrid 

neural network demonstrates consistent predictive 

superiority across two datasets with distinct spatiotemporal 

characteristics. As illustrated in Fig 8 and Fig 9, the model's 

predictions exhibit strong alignment with ground-truth 

observations under diverse traffic scenarios, including 

steady-state conditions, recurring peak-hour patterns, and 

irregular fluctuation events, validating its capability to 

holistically model the dynamic evolution mechanisms of 

traffic flow. Compared to standalone BiGRU, XGBoost, and 

conventional hybrid models, this framework achieves 

enhanced noise robustness and pattern generalization in 

heterogeneous data scenarios. Even when considering 

weather conditions and traffic scenarios, the multi-modal 

decomposition-based hybrid neural network model 

maintains a strong advantage in fitting abrupt changes in 

traffic flow data and minimizing prediction errors.  

The experiments demonstrate that the hybrid neural 

network model, enhanced by data preprocessing and the 

inclusion of various external factors, substantially surpasses 

the individual BiGRU and XGBoost models in predictive 

accuracy. The correlation distributions between actual and 

predicted values for four models (BiGRU, XGBoost, 

BiGRU-XGBoost, and the multi-modal decomposition- 

based hybrid neural network) are compared in Fig 10, 

demonstrating the superior consistency of the hybrid model 

in capturing complex traffic patterns. By evaluating model 

performance using the R² correlation coefficient, it is 

evident that the traffic flow sampling data exhibits a 

continuous distribution from low to high values. The 

experimental outcomes reveal that the R² value of the hybrid 

neural network model, incorporating multi-modal 

decomposition, markedly surpasses that of the compared 

models, indicating superior predictive accuracy. Notably, 

compared to the standalone BiGRU and XGBoost models, 

the BiGRU-XGBoost model already shows a clear 

improvement in prediction accuracy, further confirming the 

advantages of hybrid models in traffic flow prediction. 

TABLE IV and TABLE V summarize the overall 

performance metrics of different models on the training set 

and test set, respectively. As shown in TABLE IV, the 

hybrid model (CEEMDAN-EWT-SSA-BiGRU-XGBoost) 

achieves the lowest values in MAE, MSE, MAPE, and 

RMSE while maintaining the highest R² value, confirming 

its superior generalization capability. Notably, although 

inherent discrepancies exist in evaluation metrics between 

the two datasets, the hybrid model consistently outperforms 

baseline models across both tables, with observed variations 

attributable to the intrinsic spatiotemporal heterogeneity of 

traffic flow data and uncertainties caused by external 

disturbances. Furthermore, the proposed method 

demonstrates enhanced prediction accuracy and consistency 

compared to alternative models in both prediction outcomes 

and evaluation metrics, solidifying its practical value for 

traffic flow forecasting applications. Among all compared 

models on Dataset 1, the BiGRU-XGBoost hybrid model 

attained R², MSE, MAE, RMSE, and MAPE values of 

0.8774, 0.403, 0.045, 0.501, and 0.176, respectively. 

Through enhanced data processing and integration of 

multiple external factors, the proposed model demonstrated 

superior performance with corresponding values of 0.9455, 

0.293, 0.043, 0.334, and 0.126, validating its enhanced 

predictive capability in complex traffic scenarios. 

The predictive performance of different models over 

train-MSE-loss 

test-MSE-loss 

 

mph 

Times 

Condition 

Temperature 

Feature Importance Analysis 

Holidays 

WindSpeed 

30 20 5 0 15 10 25 

0.14 

100 0 
0.00 

0.08 

0.04 

0.06 

0.02 

20 

0.12 

0.10 

40 60 80 

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3025-3039

 
______________________________________________________________________________________ 



 

extended forecasting horizons is compared in Fig 11, where 

the proposed hybrid model maintains higher R² values and 

lower MSE, MAE, RMSE, and MAPE across all time steps, 

demonstrating robust long-term forecasting capability. 

To further elucidate how each module of our proposed 

method enhances prediction accuracy, we conducted 

corresponding ablation studies by incrementally 

incorporating submodules and comparing the resulting 

models. Starting with a baseline BiGRU-XGBoost model, 

we sequentially integrated the decomposition, 

multimodality, attention, and optimization modules, 

evaluating the final prediction performance. Fig 12 

illustrates the predictions of these models, while TABLE VI 

provides a detailed comparison of performance metrics. As 

shown in TABLE VI, each submodule employed in this 

study significantly improves prediction accuracy. For 

instance, the baseline BiGRU-XGBoost model yields MAE, 

MSE, MAPE, RMSE, and R² values of 0.045, 0.403, 0.176, 

0.501, and 0.8774, respectively. With the progressive 

incorporation of decomposition, multimodality, attention, 

and optimization modules, all metrics exhibit an 

optimization trend: MAE decreases to 0.043, MSE to 0.293, 

MAPE to 0.126, RMSE to 0.334, and R² increases to 0.9455, 

demonstrating the cumulative effectiveness of the proposed 

modules. 

 

 

 
Fig 8. Comparison of Prediction Results for Different Models on Dataset 1 

 

 
Fig 9. Comparison of Prediction Results for Different Models on Dataset 2 
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TABLE IV 

COMPARISON OF EVALUATION METRICS FOR DIFFERENT 

MODELS ON DATASET 1 

Methods Training set 

 R² MSE MAE RMSE MAPE 

BiGRU 0.8859 0.359 0.044 0.469 0.068 

XGBoost 0.7777 0.700 0.061 0.648 0.089 

BiGRU -XGBoost 0.8857 0.391 0.045 0.444 0.057 

Proposed Model 0.9598 0.312 0.043 0.266 0.05 

Methods Test set 

 R² MSE MAE RMSE MAPE 

BiGRU 0.8697 0.406 0.044 0.564 0.182 

XGBoost 0.7574 0.755 0.064 0.677 0.192 

BiGRU -XGBoost 0.8774 0.403 0.045 0.501 0.176 

Proposed Model 0.9455 0.293 0.043 0.334 0.126 

TABLE V 

COMPARISON OF EVALUATION METRICS FOR DIFFERENT 

MODELS ON DATASET 2 

Methods Training set 

 R² MSE MAE RMSE MAPE 

BiGRU 0.8602 0.400 0.145 0.703 0.068 

XGBoost 0.7932 0.652 0.164 0.825 0.085 

BiGRU -XGBoost 0.8653 0.391 0.148 0.691 0.063 

Proposed Model 0.9222 0.310 0.144 0.546 0.052 

Methods Test set 

 R² MSE MAE RMSE MAPE 

BiGRU 0.8522 0.423 0.148 0.778 0.187 

XGBoost 0.7774 0.735 0.166 0.868 0.191 

BiGRU -XGBoost 0.8598 0.410 0.146 0.610 0.180 

Proposed Model 0.9147 0.320 0.145 0.556 0.135 

 
Fig 10. Comparative Analysis of Prediction Results from Different Models 

 

 
Fig 11. Predictive Performance of Different Models over Extended Forecasting Horizons 
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Fig 12. Performance Comparison of Baseline Models and Ablation Studies 

TABLE VI 

PERFORMANCE COMPARISON OF BASELINE MODELS AND ABLATION STUDIES 

Methods DECOMPOSITION MULTIMODALITY ATTENTION OPTIMIZATION R² MSE MAE RMSE MAPE 

BiGRU -XGBoost     0.8774 0.403 0.045 0.501 0.176 

Experiment 1 √    0.9081 0.351 0.044 0.456 0.161 

Experiment 2 √ √   0.9202 0.323 0.044 0.412 0.146 

Experiment 3 √ √ √  0.9354 0.300 0.043 0.365 0.133 

Experiment 4 

(Proposed Model) 
√ √ √ √ 0.9455 0.293 0.043 0.334 0.126 

Experimental results validate the effectiveness of the 

hybrid neural network model in traffic flow prediction. The 

model demonstrates not only higher R² values and lower 

MSE, MAE, RMSE, and MAPE on the test set but also 

maintains superior performance on the training set. 

Comparative analysis with benchmark models further 

confirms the reliability and robustness of the 

CEEMDAN-EWT-based hybrid neural model in processing 

dynamic traffic flow data. 

V. CONCLUSION 

This study significantly improves the accuracy and 

robustness of traffic flow prediction by proposing a hybrid 

neural network model based on CEEMDAN-EWT. The 

CEEMDAN algorithm plays a critical role in the data 

preprocessing stage, effectively removing noise and 

extracting the main components of traffic flow data through 

adaptive decomposition. The EWT further decomposes 

high-frequency IMFs to reduce noise and extract more 

meaningful features, thereby enhancing the model's ability to 

capture dynamic changes in traffic flow. 

The SSA optimizes model parameters by simulating the 

social behavior of sparrows, intelligently searching the 

solution space to determine the optimal number of hidden 

layers and neurons per layer, further improving model 

performance. During the feature extraction stage, the 

BiGRU-Attention model effectively captures dynamic 

dependencies and key information points in time series by 

combining a bidirectional GRU structure and an attention 

mechanism, enhancing prediction accuracy. In the refinement 

prediction stage, the XGBoost model adjusts the output of the 

BiGRU-Attention model using its excellent generalization 

ability and capability to handle nonlinear problems, further 

improving prediction accuracy. This step refines the 

prediction results, significantly enhancing the model's 

predictive performance. 

In comparative evaluations, the proposed 

CEEMDAN-based hybrid neural network model 

demonstrates higher prediction accuracy and robustness on 

the test set compared to standalone BiGRU and XGBoost 

models. Specifically, the R² value improved by 

approximately 8.72%, 24.84%, and 7.76% higher than that 

of the BiGRU, XGBoost, and BiGRU-XGBoost models, 

respectively. The MSE value is reduced by approximately 

27.83%, 61.20%, and 27.29%, respectively, the MAE value 

is reduced by approximately 2.27%, 32.81%, and 4.44%, 

the RMSE value is reduced by approximately 40.78%, 

50.66%, and 33.33%, and the MAPE value is reduced by 

approximately 30.77%, 34.38%, and 28.42%respectively. 

These results highlight the advantages of the proposed model 

in prediction accuracy and error reduction. In addition, to 

rigorously evaluate the contribution of each submodule to 

model accuracy, we performed systematic ablation studies. 

The comparison outcomes demonstrate that all evaluation 

metrics consistently improve, confirming the effectiveness 

and robustness of the proposed enhancements. 

These findings clearly demonstrate the significant 

advantages of the proposed model in prediction precision. By 

integrating multiple techniques and methods, the model not 

only achieves an R² value close to perfection but also 

significantly reduces key performance metrics such as MSE, 

MAE, RMSE, and MAPE. This indicates that the model can 

effectively capture the dynamic characteristics of traffic flow, 

improving the reliability and accuracy of predictions. 

True Values 

Experiment 1 
Experiment 4 

(Proposed Model) 

Experiment 3 

Experiment 2 
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