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Finite Time Identical Synchronization in Full
Networks of n Linearly Coupled Dynamical
Systems of the Hindmarsh-Rose 3D Type

Phan Van Long Em

Abstract—This paper proposes an adaptive nonlinear con-
troller designed to achieve finite-time identical synchronization
across a full network of n nodes. Each node is represented by a
dynamical system of the Hindmarsh-Rose 3D type. The author
also presents numerical results using R programming to verify
the effectiveness of the theoretical findings.

Index Terms—controller, finite time identical synchronization,
full network, Hindmarsh-Rose 3D model.

I. INTRODUCTION

YNCHRONIZATION is a captivating phenomenon that
has been thoroughly explored across diverse fields and
natural systems [3], [19], [10], [14], [11], [7], [13]. At its
core, synchronization represents the remarkable ability of
different systems to display identical behavior simultane-
ously [3]. In recent years, the allure of complex dynamical
networks has surged, driven by their vast potential in critical
domains such as information processing, the World Wide
Web, biological systems, and neural networks [21], [22],
[23], [8]. The implications of these studies are profound,
promising to reshape our understanding of interconnected
systems and enhance our capabilities in these essential areas.
In recent decades, complex networks have emerged as a
focal point of research, captivating attention across various
fields such as food webs, communication systems, and the In-
ternet. The study of control and synchronization within these
networks is not only essential for understanding numerous
phenomena in nature and society, but it also holds immense
potential for real-world applications [3], [5], [7], [8], [10],
[11], [12], [13], [14], [19], [21], [22], [23]. Significant strides
have already been made in unraveling the complexities of
synchronization in these networks [1], [2], [3], [15], [16].

Despite the advances in this area, most existing research
has centered around asymptotic synchronization wherein
networks achieve synchronization over an infinite time [1],
[2], [3], [6], [15], [16], [18]. However, in practical scenarios,
the need for synchronization within a finite time frame
is paramount. This pressing requirement has prompted a
growing interest among scholars in exploring finite-time
synchronization of complex dynamic networks.

This paper takes a bold step forward by focusing on finite-
time identical synchronization in fully coupled networks
of n linearly coupled dynamical systems modeled on the
Hindmarsh-Rose 3D framework. By harnessing the princi-
ples of finite-time stability theory and devising a suitable
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controller along with an effective Lyapunov function, we
demonstrate that these networks can indeed achieve finite-
time identical synchronization. Furthermore, we lay out clear
and sufficient conditions necessary for this synchronization
to occur.

To bolster our theoretical claims, we present robust numer-
ical results that showcase the effectiveness of our approach.

The structure of this paper is as follows: Section 2 pro-
vides a comprehensive overview of the model, foundational
concepts, and key findings. In Section 3, we detail the nu-
merical results that validate our theoretical framework, while
Section 4 wraps up with insightful conclusions. Together,
these contributions promise to advance our understanding of
synchronization in complex networks, offering pathways for
impactful applications in various domains.

II. FINITE TIME IDENTICAL SYNCHRONIZATION IN FULL
NETWORKS OF n DYNAMICAL SYSTEMS OF THE
HINDMARSH-ROSE 3D TYPE

In 1952, A. L. Hodgkin and A. F. Huxley published a
groundbreaking paper that introduced a mathematical model
consisting of four ordinary differential equations to approxi-
mate certain properties of neuronal membrane potential [6],
[7], [10]. For their remarkable work, they were awarded the
Nobel Prize. Building on their pioneering study, many scien-
tists have sought to simplify Hodgkin-Huxleys model while
retaining the significant energetic and biological properties
of cells.

Among these researchers were J. L. Hindmarsh and R.
M. Rose, who introduced a simpler system known as the
Hindmarsh-Rose 3D model in 1984 [7], [9]. This model con-
sists of three ordinary differential equations, which simplify
Hodgkin-Huxleys system and provide insight into neuronal
voltage dynamics. It includes two variables, u and v, along
with a third variable w. The first variable, v = wu(t),
represents the transmembrane voltage of the cell. The second
variable, v = v(t), and the third variable, w = w(t), repre-
sent physical quantities such as the electrical conductivity
of ion currents across the membrane. All those variables
depend on time t. The ordinary differential equations of the
Hindmarsh-Rose 3D model are given below [6], [7], [9]:

du

Ezut:f(u)—kv—w—&—l,

dv

E:vtzl—buQ—v, (1
dw

E:wt:r(s(u—c)—w)7
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where u = u(t),v = v(t),w = w(t); f(u) = —u® + au?;
a,b,c,r,s are constants (a,b,7,s > 0); I presents the
external current; ¢ presents the time.

In this discussion, we redefine the dynamical system (1)
as a neural model, paving the way for the development of
a comprehensive network composed of n linearly coupled
systems (1). This innovative approach promises to unlock
new insights and deepen our understanding of complex inter-
actions within neural structures. Specifically, a full network
of n linearly coupled systems (1) is constructed as follows:

n
U = f(u)) +vi—wi +1— 37 gsyn(ui —uy),
j=1,j#i
vy =1 — bu? — v,
wir = r(s(u; — ) — wy),
i=1,2,...,n,

2)
where (u;,v;,w;),4=1,2,...,n, is defined as in (1); gsyn is
a positive number presenting the coupling strength [6], [7].

In the following sections, we present a groundbreaking
adaptive nonlinear controller designed to ensure identical
synchronization of network (2) in a finite time frame. Before
diving into the specifics, it’s essential to revisit a crucial
point that has been established in [18]. This foundation will
reinforce our approach and underscore the significance of our
findings.

Remark 1 (see [18]). The function f satisfies the following
condition:

|f(ui) = fuj)] < afu; —ug ], 3)

where u;,u;,4,5 = 1,2,...,n, present the transmembrane
voltages, and « is a positive number.

Let the node errors of identical synchronization of the
network (2) be e = u; —uy,ef =v; —v1,e) = w; —wy,
for all ¢ = 2, ...,n. The finite time identical synchronization
problem of the network (2) can be defined as follows:

Definition 1. If there is a time ¢* > 0 such that:
n

Jim 37 (Jel + el + e ) =0,
i=2

and

(le¥| + |e?| + [e¥|) = 0, for all ¢ > t*,
=2
where t* is called the setting time, then the full network (2)

is identically synchrous in a finite time.

Research indicates that while most theoretical studies
predict that desired synchronization is achieved only as
time ¢ approaches infinity, numerical evidence reveals that
synchronization can, in fact, occur in a finite time. This
critical gap between theoretical predictions and numerical
results underscores the need for further investigation, serving
as a compelling motivation for our paper. Tackling this
challenge is no simple task. To realize identical synchro-
nization within a finite timeframe, it is essential to develop
specific controllers for the network outlined in equation (2).
This process involves carefully constructing and integrating

controllers into neuron ¢ (where ¢ # 1), as detailed below:

n

Uy = f(ul) +v—wy+ 1 — ngyn(ul 7uj)7
Jj=2

V1t = 1 —bu% — U1,

wie = r(s(uy — ) —wi),
n

ug = flug) +v; —wi +1— Z Gsyn(ui — uj) + T,
J=Lj#i

vig =1—bu? —v; + '

wie = 7(s(u; — ¢) — w;) + 7,

1=2,...,1m,

4 , C))
where the controllers I =TY(¢),i = 2,3,...,n;j = 1,2,3,
will be designed as follows:

F%:ult—f(ul)—vl—&—wl—f

n
+ Z Gsyn (U1 — uj) — kief! + G,
=15
12 :vlt—l—l—bu%—kvl—l—Gf,
2 =wy —r(s(ug — ¢) —wy) + G2,

(&)

with the updated rules defined as follows:
ki = ri((e})” + 6;), (6)

where k; = k;(t); r; is a arbitrary positive constant, for
i =2 ..n and GJ = GI(t),0, = 0,(t),j = 1,2,3;i =
2,3, ...,n, are defined as follows:

G} = —m.sign(e¥)|e¥|",
G2 = —m.sign(e}) el
(7N
G? = —m.rs.sign(e?)]e? ],
0; = —m.sign(k; — k).|ki — k|7,

where sign(.) represents a signum function; m is a given
positive constant; v € R and satisfies 0 <y < 1; and k is a
positive cosntant to be determined.

Under the action of the controllers designed as above, the
error dynamic equations of the system (2) are described as:

el = (u — ur)
n
=flu)+vi—wi+I— > gsyn(ui —uy)
J=1j#i
—f(ur) —vi+wy =1
n
+ X Geynl(ur —uy) — kief + G}
j=1,j#i

= Flus) — flur) + (i — 1) — (w; —wy) ®)

+(n - 1)gsyn(ui - ul) - kle? + Gzl
= flui) = f(u1) +ef —ef

+(n —1)gsyney — kie} + Gll,

ey = Vit — V1t
=1-bu? —v; — 1 +bui+ v, + G? 9)
= —b(u; + up)e? —e? + G2,
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and
€i = Wit — Wiy

=r(s(u; —c) —w;) —r(s(u; —¢) —wy) + G3

=rs(u; —uy) — r(w; —wy) + G3

=rsel —re? +G3,

(10)

fori=2,...,n
Lemma 1 ([20]). For every a; € R,i =1,2,...,n, if p,q €

R,0<p<1,0<q<2, then we have:

Z'ai‘q > <Zai|2> and (Z |ai|> SZla P
i=1 i=1 i=1

Lemma 2 ([4]). Assume that a continuous, positive-definite
Sunction V (t) satisfies the following differential inequality:

%t(t) < —eVHE(t), forallt >0,V (0) >0

where (i, € are positive constants and 0 < p < 1, then

VIZr#) < VIR(0) —e(1—p)t, 0<t<tr,
ViTH(0)
Vt)=0, t>t' = ——2,
) e(l—p)

By employing Lyapunov functions alongside finite time
stability theory, the author effectively tackles the critical
challenge of achieving finite time identical synchronization in
complex networks, as outlined in equation (2). The pivotal
findings are encapsulated in the following theorem, which
promises to advance our understanding of synchronization
dynamics significantly.

Theorem 1. The full network (2) can achieve identical
synchronization in a finite time under the adaptive controller
(5) and updated rule (6). The setting time is estimated as:
po VIO
mp T (1 - 7)
where p = min{2, 2rs,2r;},i = 2,3, ....,n

Proof: We construct the Lyapunov function as follows:
_ 1 u\2 V)2 L w2 1 2
V(t)—§Z ()" + ()" + —(ei’)" + — (ki = k)" ).

P s
Y
Calculating the time derivative of V'(¢) along the error

systems (8) - (10), we get:

dv (t - 1 1
()_Z|:z ’Lt+e’L 1t+ eezt+r(kl*

k)k;
dt : it

i=2

=D e (f(wi) = f(u
i=2

+(n—

D) +ef el
D)gsynel — ket + G})
—b(u; +ur)efef — (ef)?

ef')? — k(ef)?

+€$G12 + ki( + (]% — k)@i

1
<+(m##—d#f+#@ﬂ

3

=D [ef (fw) = f(w)) +€/G;

(1= blu; +ur))ef'e] — k(e}')* + ef G}
(= 1)gayn(ef)” — (e)?
1 1
ki —k)0; — —(e)? + —eG3|.
I = 0= (P + el
(12)
By using Proposition 1, it is easy to obtain:

T < 5 [t + (0 = Dgag(e)? — (€1
=2

1, . 1
— () + e Gl + €{GY + —el' G — k(e})?
S S

+(ki = k)0 + (1 + (Jus] + [ua]))lei[[e7 ]
13)
By using the Young’s inequality for every 6 > 0, we can
see:

lei| e | (14 b(Jui] + |ual))

1 1)
< (L (fuil + Jua])) (55 (e e)? + 5(63)2)
M 5 M6 9
< (e (¥
< (e + 22,

(14)
where M is a positive constant, since u;,t = 1,2,...,n are
bounded (see [17]).

Combining (13) and (14) yields:
M u\2
<Z [ _k+ l)gsyn"_%)(ei)
Mo 1

“_2)*‘J#ﬂ ()

+(ki — k)0; + € G} + €/ G7 + —Se}“Gg’ .

Chose § > 0 such that 1 — MTé > 0, and take
M

b at (= 1)gsyn + o5, (16)

then (15) can be estimated as:
" 1
E [ ki —k)O; + eG4+ eVG? + —eG3 .
rs
i=2

(17)
Besides that, we can see:

Volume 33, Issue 8, August 2025, Pages 3040-3052



Engineering Letters

n

1
(th =0+ vt i+ Levar) =
rs
2

>

=2

—m.(k; — k)sign(k;, — k).|k; — k|”

—m.e¥sign(ed)|er|”
—m.e}’sign( )|e"|V m.elsign(e)|ed|")
n

<3 (~mllh = B P el e ).

i=2
(18)
Combining (17) - (18) yields:
dv(t) <
ac  —
35 (I — P e e ).
i=2
(19)

By using Lemma 1, we have:

1
n 1
(Z (s = KD+ e P fer P eé“l“l))

=2
1

n 2
> (Z (|ki—k2+e?|2+|e:2+e;"|2)> .

i=2
(20
That yields:
3 (s = K7 e e e )
i=2
41
n 2
2(Z(Iki—kl2+le?|2+efl2+le§”|2)> .
=2
2D
Therefore, (19) becomes:
dV(t) <
o 2
—m(z (1 = kP + et 4 fel? + e )
i=2
1 2 v|2 (22)
o (35 (e
—2 )
1 =
#ocle P k- k) )
rs T
< —mp> VWT“(t).
where p = min{2, 2rs,2r;},i = 2,3,...,n.
It is derived from Lemma 2 that V(t) =0 for
1—y
V= (0
mp = (1 —7)
Therefore,
i D (1 e+ ef1) =
and "
Z(|ei| + lei| + |ef’]) =0 for t > t*.
i=2
This completes the proof. ]

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we will rigorously evaluate the effec-
tiveness of the controllers that have been developed. To
achieve seamless integration of the system, we utilize R
programming, a powerful tool for data analysis. The sim-
ulation results, which are derived from carefully selected
parameter values, will provide insightful evidence of the
system’s performance.

fu) = —u®+au?,a=3,b=5s=4,r=0.008,

1
c=—51+ V5), 1 =3.25.

A. Example 1.

In this compelling example, we explore a full network of
two nodes and strategically design a controller, as outlined in
the theoretical section, to achieve identical synchronization
within a finite time frame. Our objective is to create effective
controllers for this network based on the groundbreaking
theoretical results illustrated in systems (5) to (7). Moreover,
we will rigorously test the performance of these controllers
through numerical simulations to ensure their efficacy. This
full network of two nodes, equipped with the designed
controllers, paves the way for achieving seamless synchro-
nization, as depicted in the following system:

ur = f(ur) +vi — w1 + 1 — gsyn(u1 — u2),

v =1 —bu? — vy,

wyy = r(s(u; — ¢) —wy),

ugr = f(uz) +ve —wo + 1 — gsyn(uz —uy) + I3,
voy = 1 — bud — vy + T3,

wor = r(s(ug — ¢) — wq) + 3.

(23)
where
F% = U1t — f(ul) — U1 +’LU1 —I— k‘QGIQL + G%,
% =vy — 14 bu? + v, + G3, 24)
I3 = wyy — r(s(ug —¢) —wy) + G3,
with the updated rules defined as follows:
kot = r2((€%)? + 02), (25)

where ko = ko(t); ro is a arbitrary positive constant; e} =

U — UL, €5 = vy — V1, ey = wy —wy; and Gé = G;(t),Qz -
02(t),j = 1,2,3, are defined as follows:
G% = —m.sign(e¥)|e¥|”,
G3 = —m.sign(ey)|es]?,
(26)
Gg’ = 7m.rs.8ign(6121))|612u|7’
O = —m.sign(ke — k).|ka — k|7,

where sign(.) represents a signum function, m is a given
positive constant, v € R and satisfies 0 < v < 1.
In this example, we take:

m = 0.55; v = 0.55;r, = 0.001, k = 3.

Let |e¥| + |e4] + |e¥| denote the identical synchronization
error that is a crucial measure of the system’s performance.
We assert that the network defined by system (23) achieves
identical synchronization within a finite time frame if this
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synchronization error converges to zero as ¢ approaches a
specific finite value. To effectively demonstrate this, we will
establish the initial conditions for the system in (23) as
follows:

(u1(0),v1(0), u2(0),v2(0)) =
(=0.5,—0.5,—0.5,0.5,0.5,0.5).

Fig. 1 powerfully illustrates the challenge of achieving
identical synchronization error within the network defined by
system (23). In particular, Fig. 1(a) showcases a simulation of
this network devoid of the controllers specified in systems
(24)-(26). With a coupling strength set at g, = 0.0001
and over the time interval ¢ € [0,200000], the results are
striking: the identical synchronization error fails to approach
zero, highlighting that the phenomenon of identical synchro-
nization remains elusive, even when time is extended to
significant lengths.

Moreover, Fig. 2 compellingly presents the time series data
for all variables in the system governed by (23), also without
the aforementioned controllers. In Fig. 2(a), u; is depicted
by a solid line, while us is represented by a dotted line. This
clear distinction carries through to Fig. 2(b) for v; and v,
and likewise in Fig. 2(c) for w; and ws. The stark contrast
between the solid and dotted lines serves as undeniable
evidence that the behaviors of these variables do not align,
reinforcing the conclusion that the desired phenomenon of
identical synchronization is not realized in this case.

In Fig. 1(b), we present a compelling simulation of the
network defined by system (23), utilizing the controllers
specified in systems (24) through (26). With a carefully
chosen coupling strength of g4, = 0.0001 and over the time
frame ¢ € [0,10000], the results are striking. They demon-
strate that the identical synchronization error converges to
zero in a remarkably short time, even with the same coupling
strength as in the earlier case, emphasizing the effectiveness
of our approach.

As t approaches a finite value, we can confidently assert:

up(t) = ug(t); wvi(t) = va(t);

Moreover, Fig. 3 powerfully depicts the time series be-
havior of all variables in the system governed by (23) with
the applied controllers. In Fig. 3(a), the captivating solid line
representing u; synchronously tracks the dotted line of wo,
mirroring this phenomenon in Fig. 3(b) for v; and vy, and
in Fig. 3(c) for w; and ws. The clear alignment of these
lines underscores the significant identical synchronization
achieved in this scenario, occurring decisively within a finite
time frame (notably, ¢ < 4000). This compelling evidence
not only illustrates the success of our methods but also
reinforces the importance of harnessing synchronization in
complex networks.

w1 (t) ~ W2 (t)

B. Example 2.

In this compelling example, we delve into a full network
made up of three nodes, where we strategically design a con-
troller based on the theoretical foundations provided earlier.
Our goal is to achieve identical synchronization in a finite
amount of time. To that end, we must meticulously construct
controllers for this network, leveraging the robust theoretical
results captured in systems (5) to (7). This investigation will
reveal whether these controllers can deliver the promised

results in practice. Presented below is the system that outlines
a full network of three nodes, equipped with controllers that
drive us toward achieving flawless identical synchronization:

uye = f(ur) +v1 —wy + 1
_gsyn(ul - u2) - gsyn(ul - u3)7
Vg = 1—bu% — v,
wyr = r(s(ug — ¢) —wy),
Ut = f(U2) +U2 — W2 +I
795yn(“2 - ul) - gsyn(UQ - Ug) + F%a
Vop = l—bug—vg—i—I%,
way = r(s(ug — ¢) —wq) + 13,
uz, = f(us) +v3 —ws + 1
—stn(US —uy) — gsyn(u3 —ug) + F;,a
V3p = lfbugfvngF%,
way = 7(s(uz — ¢) —ws) + 3.

(27)
where
F% = U1t —f(U1) —vy+w — 1
+gsyn(ul - U3) — koely + G%,
F% = V1t 71+buf+v1 +G§,
I3 = wyy — r(s(ug —¢) —wy) + G3, 28)
Pi=wuy — flur) —vi +wy — I
+gsyn(ul - UQ) — kse§ + Gé,
% =wvy — 1+ bu? + v + G%,
I3 =wy —r(s(ur — ) —w1) + G§,
with the updated rules defined as follows:
kot = ra((e¥)* + 62)
’ 29
{ kar = r3((e)? + 603), 29

where ko = ko(t), ks = ks(t); o, rs are arbitrary positive
constants; e}’ = u; —u1,e; = v;i—vi, e = w;—wy,i = 2,3;
and G = G (t),0; = 0;(t),i =2,3,j = 1,2,3, are defined
as follows:

Gy = —m.sign(ey)le3|",

G3 = —m.sign(e3)|es|”,

G3 = —m.rs.sign(e¥)|e¥ |7,

Gy = —m.sign(e§)les|",

(30)

G3 = —m.sign(e3)|es]",

G3 = —m.rs.sign(e¥)|e¥ ],

0o = —m.sign(ko — k).|ka — E|7,

03 = —m.sign(ks — k).|ks — k|7,

where sign(.) represents a signum function, m is a given
positive constant, v € R and satisfies 0 < v < 1.
In this example, we take:

m = 0.0055; v = 0.06;r, = 0.0001;r3 = 0.001; k = 4.

Let us define the identical synchronization error as |e*2|+
|eV2|+|e*2|+|e*3| +|e¥3|+|e™3|. We assert that the network
described by system (27) achieves identical synchronization
in a remarkably short time if this synchronization error

Volume 33, Issue 8, August 2025, Pages 3040-3052



Engineering Letters

approaches zero as t tends to a finite value. We will establish
the initial conditions for the system in (27) as follows:

(u1(0),v1(0),w1(0)) = (=1, -1, 1),
(u2(0),v2(0), w2(0)) = (0,0,0),
(u3(0),v3(0),w3(0)) = (1,1,1).

Figure 4 compellingly demonstrates the identical synchro-
nization error within the network outlined in system (27).
In panel (a) of Fig. 4, we conducted a simulation of the
network without the controllers specified in systems (28)-
(30), employing a coupling strength of g,,, = 0.00001 over
the time interval ¢ € [0,500000]. The findings are striking:
the identical synchronization error fails to converge to zero,
highlighting that the phenomenon of identical synchroniza-
tion does not materialize, regardless of how extensively we
extend the time ¢.

Moreover, Fig. 5 powerfully illustrates the time series
behavior of all variables in the system defined by (27)
without the influence of controllers. In panel (a), we see u;
represented by a solid line, us by a dotted line, and ug by a
dashed line. This pattern continues in panel (b) for vy, vo, and
vs; and in panel (c) for wy, we, and ws. It is abundantly clear
that the dotted and dashed lines do not mirror the behavior of
the solid line, firmly reinforcing the conclusion that identical
synchronization is unattainable in this instance.

In stark contrast, panel (b) of Fig. 4 reveals the simulation
of the network incorporating controllers from equations (28)-
(30). Here, we again use the coupling strength g,y =
0.00001, but over a different time interval ¢ € [0,200000].
The results are nothing short of transformative: the identi-
cal synchronization error remarkably reaches zero within a
finite time. This achievement occurs even with an identical
coupling strength as before and with a significantly shorter
time t. As a result, as t approaches this decisive finite point,
we observe a striking alignment:

v1(t) =~ va(t) =~ vs(t);
w1 (t) ~ UIQ(t) ~ wg(t.

This data unequivocally underscores the vital impact of
implementing controllers within network dynamics, effec-
tively facilitating identical synchronization where it was
otherwise unattainable.

Figure 6 powerfully depicts the time series of all variables
within the system outlined by systems (27) and governed by
(28)-(30). In panel (a), the variable u; is illustrated with a
solid line, while us and ug are represented by dotted and
dashed lines, respectively. This clear distinction continues in
panel (b) with vy, v, and v3, and again in panel (c) with
w1, we, and ws. What stands out is the striking similarity in
behavior between the dotted and dashed lines and their solid
counterparts. This compelling evidence of synchronization
underscores a remarkable phenomenon that occurs within a
finite time frame (f < 200000). Such synchronization not
only emphasizes the effectiveness of the control strategy
but also highlights the interconnected nature of the system’s
dynamics.

Remark 2. The two examples presented clearly demon-
strate that achieving identical synchronization is impossible
without the innovative controllers proposed in this study,
even when the time t is exceedingly large. Additionally,
networks investigated without controllers could still numer-
ically achieve the desired synchronization in a finite time,
provided that the coupling strength is sufficiently large
[15], [16]. However, this does not negate the theoretical
results. It is important to note that we have not proven that
synchronization can be achieved in a finite time without
controllers. Remarkably, when we incorporate the controllers
into the investigated networks, identical synchronization can
be realized in a finite time, even with relatively small cou-
pling strength and a short duration. This compelling evidence
highlights the effectiveness of the controllers introduced in
this paper and underscores their critical role in achieving
synchronization.

IV. CONCLUSION

In this paper, we tackle the critical challenge of finite-time
identical synchronization in a full network of n linearly cou-
pled dynamical systems of the Hindmarsh-Rose 3D type. By
strategically designing a robust controller and employing the
powerful tools of Lyapunov functions alongside finite-time
stability theory, we derive compelling sufficient conditions as
a set of inequalities that guarantee successful synchronization
among all node systems. Remarkably, this allows them to
achieve the desired synchronous solution within a finite time
frame. Furthermore, the effectiveness and practicality of our
innovative approach are convincingly demonstrated through
numerical simulations, highlighting its potential to advance
the field of dynamical system synchronization.

REFERENCES

[1] B. Ambrosio and M. A. Aziz-Alaoui, “Synchronization and control
of coupled reaction-diffusion systems of the FitzZHugh-Nagumo-type”,
Computers and Mathematics with Applications, vol 64, pp. 934-943,
2012.

[2] B. Ambrosio and M. A. Aziz-Alaoui, “Synchronization and control
of a network of coupled reaction-diffusion systems of generalized
FitzHugh-Nagumo type”, ESAIM: Proceedings, Vol. 39, pp. 15-24,
2013.

[3] M. A. Aziz-Alaoui, ”Synchronization of Chaos”, Encyclopedia of
Mathematical Physics, Elsevier, Vol. 5, pp. 213-226, 2006.

[4] S.P. Bhat and D.S. Bernstein, Finite-time Stability of Continuous
Autonomous Systems, SIAM Journal on Control and Optimization,
38, 751-766, 2000.

[5] I Belykh, E. De Lange and M. Hasler, “Synchronization of bursting
neurons: What matters in the network topology”, Phys. Rev. Lett.
188101, 2005.

[6] N. Corson, "Dynamics of a neural model, synchronization and com-
plexity”, Thesis, University of Le Havre, France, 2009.

[7]1 G. B. Ermentrout and D. H. Terman, “Mathematical Foundations of
Neurosciences”, Springer, 2009.

[8] C.M. Gray, “Synchronous Oscillations in Neural Systems”, Journal
of Computational Neuroscience, 1, 11-38, 1994.

[9] J. L. Hindmarsh and R. M Rose, ”A model of the nerve impulse using

two firstorder differential equations”, Nature, vol. 296, pp. 162-164,

1982.

A. L. Hodgkin and A. F. Huxley, “A quantitative description of

membrane current and its application to conduction and excitation in

nerve”, J. Physiol.117, pp. 500-544, 1952.

E. M. Izhikevich, “Dynamical Systems in Neuroscience”, The MIT

Press, 2007.

D. W. Jordan and P. Smith, “Nonlinear Ordinary Differential Equa-

tions, An Introduction for Scientists and engineers (4th Edition)”,

Oxford, 2007.

J. P. Keener and J. Sneyd, "Mathematical Physiology”, Springer, 2009.

J. D. Murray, “Mathematical Biology”, Springer, 2010.

(10]

(11]
[12]

[13]
[14]

Volume 33, Issue 8, August 2025, Pages 3040-3052



Engineering Letters

[15] V.L.E.Phan, ”Sufficient Condition for Synchronization in Complete
Networks of Reaction-Diffusion Equations of Hindmarsh-Rose Type
with Linear Coupling”, IAENG International Journal of Applied
Mathematics, vol. 52, no. 2, pp. 315-319, 2022.

[16] V.L.E.Phan, “Sufficient Condition for Synchronization in Complete
Networks of Reaction-Diffusion Systems of Hindmarsh-Rose Type
with Nonlinear Coupling”, Engineering Letters,, vol. 31, no. 1, pp413-
418, 2023.

[17] V.L.E.Phan, “Global Attractor of Networks of n Coupled Reaction-
Diffusion Systems of Hindmarsh-Rose Type”, Engineering Letters,
vol. 31, no. 3, pp1215-1220, 2023.

[18] V.L.E. Phan, ”Synchronous Controller between Drive Network of n
Reaction-Diffusion Systems of FitzHugh - Nagumo type and Response
Network of n Reaction-Diffusion Systems of Hindmarsh-Rose type”,
IAENG International Journal of Applied Mathematics, vol. 54, no. 10,
pp2049-2059, 2024.

[19] A. Pikovsky, M. Rosenblum and J. Kurths, “Synchronization, A
Universal Concept in Nonlinear Science”, Cambridge University Press,
2001.

[20] CJ. Qian and J. Li, Global Finite-Time Stabilization by Out-
put Feedback for Planar Systems without Observable Lineariza-
tion, IEEE Transactions on Automatic Control, 50, 885-890.
https://doi.org/10.1109/TAC.2005.849253, 2005.

[21] S. Stogatz and I. Stewart, ”"Coupled Oscillators and Biological Syn-
chronization”, Scientific American, 269, 102-109, 1993.

[22] S. H. Strogatz, "Exploring Complex Networks”, Nature, 410, 268-
276, 2001.

[23] Q. Xie, R.G. Chen and E. Bolt, "Hybrid Chaos Synchronization and Its
Application in Information Processing”, Mathematical and Computer
Modelling, 1, 145-163, 2002.

Volume 33, Issue 8, August 2025, Pages 3040-3052



Engineering Letters

5 o -
@ _
c
=] 0 —
™
N o —
[
S < -
S
€ 7
o 2 T | | | |
0 50000 100000 150000 200000
Time
(a)
S
5 <
c
.0 ™ —
©
.E N —]
2
L — —
3]
s
D —
» | | | | | |
0 2000 4000 6000 8000 10000
Time
(b)
Fig. 1. Identical synchronization errors of the network (23): (a) without controllers (24)-(26); (b) with controllers (24)-(26) according to the coupling

strength gsyn = 0.0001, and ¢ € [0; 10000].
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Fig. 3. Time series of all variables of the system (23) with controllers (24)-(26) according to the coupling strength gsy» = 0.0001, and ¢ € [0; 10000].
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Fig. 4. Identical synchronization errors of the network (27): (a) without controllers (28)-(30); (b) with controllers (28)-(30) according to the coupling
strength gsyn = 0.00001, and ¢ € [0; 200000].
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Fig. 5. Time series of all variables of the system (27) without controllers (28)-(30) accroding to the coupling strength gsy» = 0.00001, and ¢ € [0; 500000].
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Fig. 6. Time series of all variables of the system (27) with controllers (28)-(30) according to the coupling strength gsy» = 0.00001, and ¢ € [0; 200000].
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