
  

Abstract—To enhance the economic operation efficiency of 

microgrids and reduce pollutant emissions, this paper proposes 

an Improved Chernobyl Disaster Optimization algorithm 

(ICDO) to tackle the optimal scheduling problem of 

grid-connected microgrids. First, a grid-connected microgrid 

system encompassing photovoltaic generators, wind turbines, 

micro gas turbines, energy storage devices, and diesel 

generators is selected as the research object. The optimization 

objectives focus on minimizing the microgrid's economic 

operation cost, environmental protection cost, and total cost. A 

mathematical model for daily optimal scheduling of the 

microgrid is established, taking into account the microgrid's 

actual operational constraints, penalty costs for battery 

overcapacity, and load shedding. Subsequently, the basic 

Chernobyl Disaster Optimization (CDO) algorithm is enhanced 

by integrating tent chaotic mapping, a group cognitive 

mechanism, and a local search strategy. Following an analysis 

of the ICDO algorithm's time complexity, ten standard test 

functions are utilized for ablation studies and performance 

evaluation. Simulation results illustrate the feasibility of the 

three proposed strategies and validate the effectiveness of the 

improved algorithm. Finally, the ICDO algorithm is applied 

alongside PSO, GWO, DBO, and CDO algorithms to solve the 

microgrid's daily optimal scheduling model. The results show 

that regardless of whether the objective function is economic 

operation cost, environmental protection cost, or total cost, the 

ICDO algorithm demonstrates significant advantages. This 

effective optimization approach substantially reduces the 

microgrid's economic operation expenses and environmental 

protection costs. 

 

Index Terms—microgrid, optimal dispatch, CDO algorithm, 

group cognition mechanism, local search. 
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I. INTRODUCTION 

HE primary source of energy used in traditional power 

systems is the fossil fuels, which poses serious 

environmental pollution issues as well as resource depletion 

and climate change [1]. Therefore, people prefer clean energy 

sources such as solar and wind power to meet electricity 

demand and environmental sustainability requirements [2]. 

In this context, microgrids have emerged as a viable solution. 

Microgrids employ clean energy sources like solar and wind 

power through distributed generators, which to some extent 

reduces dependence on fossil fuels, promotes energy 

transition, decreases carbon emissions, and improves 

environmental quality. However, solar and wind power are 

significantly affected by weather conditions, thereby 

impacting the consistent operation of microgrids [3]. 

Meanwhile, compared to the traditional power grids, the 

microgrids have complex structures (involving wind power, 

solar power, energy storage, micro gas turbines, diesel 

generators, etc.), which increases the difficulty of 

coordinated scheduling [4]. Therefore, microgrid 

optimization scheduling is crucial to ensuring the steady and 

effective operation of microgrids. 

A. Literature Review 

The core concept underpinning microgrid optimization 

scheduling is the efficient allocation of output and 

operational hours across dispersed units to minimize 

environmental impact and operational expenses, all while 

ensuring a balanced power supply and adhering to various 

constraints [5]. Owing to the nonlinear, multi-constrained, 

and non-convex characteristics of microgrid optimization 

scheduling, an intelligent algorithm is necessitated [6], [7]. In 

past research, it has been identified that algorithms including 

Particle Swarm Optimization [8], [9], Genetic Algorithm [10], 

Sparrow Search Algorithm [11], Farm Land Fertility 

Algorithm [12], Differential Evolution [13], Grey Wolf 

Optimizer [14], Whale Optimization Algorithm [15], Salp 

Swarm Algorithm [16], Slime Mould Algorithm [17], and 

Hybrid Algorithms [18], among others, have been applied to 

address microgrid optimization issues. While the standard 

Particle Swarm Optimization algorithm benefits from 

structural simplicity and low parametric demands, it is prone 

to premature convergence and suboptimal solutions. Roy et 

al. [8] accomplished the optimal scheduling of a 

grid-connected microgrid over a 24-hour period by utilizing a 

particle swarm optimization algorithm integrated with a 

weighted aggregation approach. Zhang et al. [9] developed a 
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multi-objective particle swarm optimization technique to 

maximize service dependability while reducing operational 

costs and expenses associated with environmental protection. 

Despite their parallel evolutionary architecture and adaptive 

learning capacity, Genetic Algorithms face programming 

complexity and slow convergence limitations. Askarzadeh et 

al. [10] proposed a memory-based genetic algorithm for 

solving the minimum cost operation scheduling of microgrids. 

While the Sparrow Search Algorithm exhibits superior global 

exploration capacity, it is susceptible to premature 

convergence. Nguyen et al. [11] presented a sparrow search 

algorithm that optimizes microgrid operating plans by 

combining elite reverse learning and the firefly method's 

mutation technique. The farmland fertility algorithm is a 

nature-inspired metaheuristic algorithm, but it also suffers 

from slow convergence and an imbalance between global 

search and local exploitation capabilities. Mandloi et al. [12] 

presented an agricultural fertility algorithm to address 

microgrid and overall economic dispatch issues. The 

differential evolution algorithm is simple and efficient but 

easily falls into local optima and performs poorly on 

high-dimensional problems. Kamal et al. [13] developed a 

microgrid model for rural areas, which employs a differential 

evolution algorithm to compute the minimum energy cost 

and identify feasible component configurations. When it 

comes to microgrid optimization scheduling challenges, the 

conventional grey wolf optimizer has the problem of quickly 

becoming trapped in local optima, which leads to poor 

scheduling schemes. Liu et al.'s [14] introduced the Levy 

flight strategy, mutation strategy, and chaos strategy to 

address the drawbacks of the grey wolf algorithm in 

microgrid optimal scheduling. The basic Whale Optimization 

Algorithm is simple with few parameters but converges 

slowly, has low accuracy, and risks local optima. Zhang et al. 

[15] solved the issue of classic Whale Optimization 

Algorithms slipping into local optima in microgrid 

optimization scheduling by including reverse learning and 

nonlinear variable components into the fundamental 

algorithm. The Salp Swarm Algorithm is simple to operate 

and has few parameters, but it may fail to find the optimal 

solution in the later iterations. Belboul et al. [16] suggested 

an enhanced Salp Swarm method for solving the microgrid 

optimization scheduling problem. For complicated problems, 

the Slime Mould Algorithm may converge slowly and settle 

into local optima, despite its excellent exploration and 

exploitation capabilities. Behera et al. [17] solved the 

microgrid optimization scheduling issue using the slime mold 

method for the first time, with the goal of lowering emissions 

and operating costs.  Although hybrid algorithms increase 

algorithm complexity and parameter adjustment difficulties, 

they integrate the advantages of many techniques to improve 

solution quality and robustness. Bektas et al. [18] solved 

microgrid optimization management difficulties by 

combining the simulated annealing approach and genetic 

algorithm while taking geographical circumstances and 

constraint variables into account. 

Although researchers have made many advancements in 

the field of microgrid optimization scheduling algorithms, 

there is still great potential for optimization due to the 

complexity of the constraints. In light of this, this paper 

introduces an algorithm——the Chernobyl Disaster 

Optimization Algorithm (CDO). The CDO algorithm [19], 

proposed by Hisham A. Shehadeh, is a new metaheuristic 

optimization algorithm mainly inspired by the explosion of 

the Chernobyl nuclear reactor core. Its advantages include 

efficient search capability, ease of escaping local optima, and 

the potential to handle tasks across multiple domains. 

However, the CDO algorithm has difficulties including 

inadequate population diversity and constrained optimization 

capabilities while handling multi-constrained optimization 

issues. With the goal of offering a more efficient solution for 

microgrid optimization scheduling, this paper suggests an 

enhanced ICDO algorithm based on tent chaotic mapping, 

swarm cognitive mechanism, and local search strategy in 

response to the aforementioned problems. 

B. Research Contribution 

The primary research contributions of this paper are as 

follows: 

(1) A model of a grid-connected microgrid system 

including energy storage devices, diesel generators, 

micro-gas turbines, wind, and solar electricity has been built. 

(2) An ICDO algorithm is proposed, which is improved 

through the integration of tent chaotic mapping, swarm 

cognitive mechanism, and a refined local search strategy, 

thereby enhancing its global search and local exploitation 

capabilities. 

(3) To confirm the viability of the three suggested 

methodologies and the efficacy of the enhanced algorithm, 

the ICDO algorithm's performance was tested and ablation 

research was carried out using ten standard test functions 

with thirty dimensions. 

(4) The usefulness of the algorithm's improvements and 

the viability of the built model were both successfully 

confirmed by applying the enhanced ICDO algorithm, along 

with other algorithms, to the microgrid optimal scheduling 

model. 

The paper is structured as follows. Section 2 presents the 

microgrid optimal scheduling model. Section 3 delves into 

the fundamental principles of the CDO algorithm. Section 4 

elaborates on the improvement strategies employed in the 

ICDO algorithm. Section 5 showcases the comprehensive 

performance assessment of the proposed algorithm. Section 6 

contains a simulation-based analysis of a microgrid case 

study, and Section 7 deliberates on the key conclusions and 

research results. 

II. MICROGRID OPTIMIZATION SCHEDULING MODEL  

This paper investigates a microgrid encompassing diverse 

distributed energy units, with photovoltaic power generation 

systems (PV), wind power generation systems (WT), micro 

gas turbines (MT), diesel power generation systems (DE), 

and batteries for energy storage (BESS). The microgrid is 

interconnected with the main grid (GRID) through a public 

connection point (PCC). 

A. Objective function 

The microgrid in this article operates in a grid-connected 

mode, and its total cost consists of two parts: economic 

operation cost and environmental protection cost.  

(1) Economic operation cost of the microgrid 

The operational costs of the microgrid in grid-connected 
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mode consist of the operation and maintenance costs as well 

as fuel expenses for both DE and MT, the maintenance costs 

of BESS, the cost of grid interaction, and penalty fees. The 

operational cost function is formulated as: 

 

24

1
1
( ( ) ( ) ( ) ( ) )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

=
 = + + + +




= + +


= −

MT DE OM GRID punish
t

OM MT MT DE DE BESS BESS

GRID buy buy sell sell

f C t F t C t C t C

C t k P t k P t k P t

C t C t P t C t P t

 (1) 

Here, ( )MTC t denotes the fuel cost of the MT at time t. 

DEF  signifies the fuel cost of the diesel generator. ( )OMC t  

denotes the operation and maintenance cost of distributed 

energy sources at time t, while ( )GRIDC t  signifies the grid 

interaction cost at time t. 
MTP ,

DEP , and
BESSP respectively 

denote the output power of the MT, DE, and BESS at time t. 

MTk ,
DEk , and 

BESSk  respectively represent the operation and 

maintenance coefficients of MT, DE, and 

BESS. ( )buyC t and ( )sellC t  denote the purchasing and selling 

electricity prices at time t. ( )buyP t and ( )sellP t  indicating the 

purchasing and selling electricity power at time t. 

The penalty cost
punishC for load loss and battery 

overcharging is as follows: 

 ( ) ( )= +punish punish loss punish overC P t P t   (2) 

Here,
punish and

punish  represents the load loss and battery 

overcapacity penalty coefficients respectively. ( )lossP t  

denotes the load loss at time t, and ( )overP t  indicates the 

excess capacity of the battery at time t. 

(2) Microgrid grid-connected environmental protection 

costs 

During the operation of the MT, DE, and grid interaction, 

the k-th type of pollutant produced (when k=1, the pollutant 

is CO2; when k=2, the pollutant is SO2; when k=3, the 

pollutant is NOx). Thus, when a microgrid operates in grid - 

connected mode, its environmental protection costs denote 

the expenditures for handling the k - th type of pollutant, 

specified as below.  
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Here,
. ( )MT ENC t ,

. ( )DE ENC t , and 
. ( )GRID ENC t  denote the 

pollutant treatment costs of the MT, DE, and the main grid 

respectively. 
,MT k ,

,DE k , and 
,GRID k  signify the discharges 

of the k-th pollutant category emitted by the MT, DE, and the 

primary power grid respectively. 
kC denotes the cost 

coefficient of treating the k-th type of pollutant. 

(3) Total cost objective function of the microgrid 

The total cost of the microgrid includes not only the 

operating cost
1f , but also the environmental protection 

cost
2f . Therefore, the total cost Z is defined as Equation (4), 

and minimized the total cost Z serves as the objective. 

 
1 2min( )= +Z f f  (4) 

B. Constraints 

For the optimal scheduling of the microgrid in 

grid-connected mode, the constraints are described as 

follows: 

(1) Power balance constraint 
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(2) Diesel generator output constraints 
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( ) ( 1)
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(3) Micro gas turbine output constraints 

 

min max( ) ( ) ( )

( ) ( 1)
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(4) Contact line constraints 

 min max( ) ( ) ( ) GRID GRID GRIDP t P t P t  (8) 

(5) Energy storage device constraints 

 
min max

min max

( ) ( ) ( )

( ) ( ) ( )

  

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BESS BESS BESSP t P t P t
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Here, 
PVP  denotes the actual output power of the 

photovoltaic cell, while 
WTP  represents the output power of 

the WT. The variable ( )LP t  signifies the microgrid load at 

time t. max ( )DEP t , min ( )DEP t , max ( )MTP t , and min ( )MTP t  respectively 

indicate the upper and lower bounds of the DE and MT 

output at time t. Similarly, 
DEr and

MTr  denote the maximum 

limits of the DE and MT power ramping rates. Additionally, 
max ( )GRIDP t and min ( )GRIDP t  respectively stand for the upper and 

lower bounds of the tie line transmission power at time t. 
max ( )BESSP t and min ( )BESSP t  define the upper and lower limits of the 

energy storage device’s output at time t, while 
max ( )SOC t and min ( )SOC t  specify the upper and lower limits 

of the energy storage capacity at time t. 

III. CHERNOBYL DISASTER OPTIMIZATION ALGORITHM 

The CDO algorithm simulates the process of nuclear 

radiation where α, β, and γ particles adhere to the human 

body after a nuclear explosion. Once the explosion occurs, 

these particles move away from the core carrier until they 

reach human settlements, triggering the disaster [19]. It is 

postulated that the individuals (humans) are in motion via 

walking when the particles are assaulting them. Assuming 

adults walk at speeds of 0-3 miles per hour outdoors within a 

circular walking area. Based on this, we can calculate the 

walking speed of individuals using Equation (10). 
 

h 3 1*((3) / _ )= −WS Max iter  (10) 

 2

h = x r   (11) 

Here,
hWS represents the walking speed of individuals, 

linearly decreasing from 3 to 0. Max_iter refers to the upper 

limit of iteration counts for the algorithm, while
hx represents 

the area of the circular region surrounding the person while 

walking. In addition, r refers to the radius of the circle, which 

is a random value in the range from 0 to 1. 

During the nuclear radiation process where α, β, and γ 

particles adhere to the human body, the gradient descent 

coefficients for the attack of these three particles on humans, 
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denoted as v
, v

, and v
, are as shown in Equation (12). 
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Here, ( )X t
, ( )X t , and ( )X t  denote the current 

positions of the α, β and γ particles, respectively. While 

 ,
 , and

  signify the propagation amounts of the α, β, 

and γ particles, respectively. 
, 

, and 
stand for the 

differences between the positions of the particles and the 

position of the person. 

For the α, β, and γ particles, the update formulas for their 

propagation quantities are as follows: 
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Here, S
, S

, and S
represent the velocities of the α, β, 

and γ particles, respectively, which are normalized by taking 

their logarithms. 

The formula for updating the distance between different 

particle positions and all particle positions is as follows: 
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 2= = = A A A r     (16) 

Here, A , A , and A respectively represent the 

propagation areas of the α, β, and γ particles, which are the 

areas of circles with radius r( (0,1)r ).
TX denotes the 

positions of all particles. 

Based on the gradient descent coefficients of α, β and γ 

particles, the updating formula for all particles is as follows: 
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IV. IMPROVEMENTS TO THE CHERNOBYL DISASTER 

OPTIMIZATION ALGORITHM 

This paper aims to address the issues of poor population 

diversity and optimization capabilities when solving 

multi-constrained optimization problems using the CDO 

Algorithm. Three improvement strategies are proposed as 

follows.  

A. Population initialization - Tent Chaotic Mapping 

For intelligent algorithms, population initialization 

constitutes a pivotal step [20]. The quality of population 

initialization exerts a direct influence on the algorithm's 

performance and search capabilities. The CDO algorithm 

initializes the population using random number methods, 

which have relatively weak randomness and traversal 

properties. This results in a non-uniform distribution of the 

generated population across the search space, causing the 

algorithm to be susceptible to local optima and restricting its 

global search performance. Tent chaotic mapping is a type of 

linear piecewise mapping [21] with a uniform distribution 

function and strong randomness. Therefore, tent chaotic 

mapping is applied for population initialization, contributing 

to the enhancement of population diversity. The specific 

calculation formula is described as follows. 

 
( )1

2 [0,0.5)

2 1 [0.5,1]+


=  − 

n n
n

n n

x x
x

x x
 (18) 

 ( )= − +i iy x ub lb lb  (19) 

Here,
nx and

1+nx  denote the state variables prior to and 

after the tent chaotic mapping, respectively. The search 

region boundaries are represented by ub (upper bound) and lb 

(lower bound). 
iy denotes the initial values of the particle 

population after applying the tent chaotic mapping. 

B. Particle position update optimization - Particle Swarm 

Strategy 

Within the traditional CDO algorithm, the position update 

equations of particles fail to comprehensively represent the 

optimal position information of particle α, resulting in 

inferior optimization performance in solving multi-constraint 

optimization issues. To overcome these problems, the group 

cognition mechanism of the particle swarm optimization 

algorithm is incorporated into the position update formula of 

all particles within the CDO algorithm [22]. The new 

individual position update strategy is presented as shown in 

Equation (20). 

 

( )
( ) ()

3
(1 ) () ( ( ))
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T

t T

v v v
X t rand

rand gbest X t
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


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In the formula,   denotes the weight, which is set to 0.8 in 

this paper; rand is defined as a random number within the 

interval [0, 1]; 
tgbest  represents the position of particle α at 

the t-th iteration of the algorithm. 

C. Local search strategy - Hill Climbing 

In response to the issue of poor optimization capability of 

the traditional CDO algorithm under multiple constraints, 

this paper introduces a local search strategy to optimize and 

improve it. Hill climbing, as an efficient local search 

algorithm [23], operates by starting from the current solution, 

evaluating and selecting a better neighboring solution, and 

repeating this process until a termination condition is met. 

Aiming to improve the CDO algorithm's local search 

proficiency and help it break free from local optima, this 

study performs a local search on the determined global 

optimal location after each iteration cycle. The following are 

the precise steps for implementation. 

(1) The global optimal position obtained in each iteration 

cycle of the CDO algorithm is used as the starting solution of 

the hill climbing algorithm. 

(2) A set of neighboring solutions around the starting 

solution are generated to ensure that these solutions are 

within the search space. 

(3) The fitness values of the initial solution and its adjacent 

solutions are assessed, and the solution with the best fitness is 
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chosen as the new solution according to the greedy principle.  

(4) Check whether the termination condition (usually the 

dimensionality of the solution) is met. If the condition is 

satisfied, the loop ends. In the absence of satisfaction, the 

loop runs repeatedly until the condition is met. 

D. The flowchart of the ICDO algorithm  

Given the issues encountered in the CDO algorithm when 

solving multi-constraint problems, multiple strategies are 

integrated to improve it in this paper. The enhanced flowchart 

of the ICDO is depicted in Figure 1. 

 

Set the initial parameters and use the tent 

chaotic map to initialize the population.

Calculate the fitness values for each particle.

Start

Update the fitness and position of the α 

particle, β particle, and γ particle.

Calculate the gradient descent coefficients 

for α particles, β particles, and γ particles.

Update the positions of all particles 

according to Equation (20)

Yes

No

Update parameters such as a, C, R, and WSh.

Conduct a local search at the current best 

position.

End

Output the best fitness value.

    Is the maximum 

number of iterations 

reached?

 
Fig. 1.  The flow chart of the ICDO algorithm  
 

The detailed procedures of the enhanced ICDO algorithm 

are outlined as follows: 

Step 1: Utilize the Tent Chaotic Map to initialize the 

population and configure the corresponding parameters. 

Step 2: Compute the fitness value for each particle, and 

then update the fitness values and positions of the α, β, and γ 

particles. 

Step3: Update a, C, R, WSh and other related parameters. 

Step4: Calculate the gradient descent coefficients of α, β 

and γ particles according to Equation (12). 

Step 5: Integrate the group cognition mechanism into the 

position update formula for all particles, and utilize the 

revised Equation (20) to update their positions. 

Step6: Carry out local search of the current best fitness 

value and optimal location by mountain climbing method. 

Step 7: Check if the maximum number of iterations has 

been reached. If not, return to Step 2. 

Step8: Output the optimal fitness value and optimal 

position. 

E. Time complexity analysis 

Assuming that the population size is represented by N, the 

dimensionality of each individual is n, the time for parameter 

initialization is represented as t0, the time required for 

initializing each dimension of the particle population is t1, the 

time for calculating the fitness value of each particle is ( )f n , 

and the time for determining the three types of particles based 

on fitness values is t2, then the complexity of the CDO 

algorithm in terms of time during the phase of initializing the 

population is as follows: 

 
1 0 1 2( ( ( )) ) ( ( ))= +   + + = +T t N n t f n t n f n   (21) 

After entering the loop iteration, the number of iterations is 

set as Max_iter. For each iteration, the time taken to compute 

the walking speed 
hWS of the person and the speed S of the 

particle is marked as t3, the time taken to compute the 

spreading area A of the particle and the spreading 

amount  of the particle is labelde as t4, the time taken to 

compute the distance between the positions of particles α, β, 

and γ and the human position according to Equation (15) is 

assigned as t5, the time taken to compute the gradient descent 

coefficient according to Equation (12) is denoted by t6, the 

time taken to calculate the positions of all particles according 

to Equation (17) is denoted as t7, the time required to handle 

the boundary of each dimension of the particle individual is 

designated as t8, the time taken to compute the individual 

fitness value remains ( )f n , and the time required to update 

particles α, β, and γ is termed t9. Therefore, the time 

complexity within a single loop is: 

 
2 3 4 5 6 7 8 9( ( 3 ( ) ) ( ) )

( ( ))

=  + +  + + +  + +

= +

T N t t t t t n t f n t

n f n




 (22) 

Thus, the overall time complexity of the CDO algorithm 

can be described as: 

 1 2_ ( ( ))= +  = +T T Max iter T n f n  (23) 

In the ICDO algorithm, the population size is represented 

by N, where each individual possesses a dimension of n. 

During the population initialization phase, the tent chaotic 

mapping approach is utilized for initialization. The time 

taken for the tent chaotic mapping strategy is represented as 

d1, while other parameters remain consistent with those in 

the CDO algorithm. Therefore, the time complexity of the 

ICDO algorithm in the initialization phase can be stated as 

follows: 

 
3 0 1 1 2( ( ( )) )

( ( ))

= +   +  + +

= +

T t N n t n d f n t

n f n




 (24) 

In a single iteration, the main difference between the ICDO 

algorithm and the CDO algorithm lies in the optimization of 

particle position updating and the introduction of a local 

search strategy. For the optimization of particle position, the 

group cognition mechanism is directly incorporated into all 

particle position update formulas without additional 

computational steps. Therefore, the time taken to calculate 

the positions of all the particles is still t7. According to the 

local search strategy of the hill climbing method, the time 

taken to compute the optimal position of the particle 

population is c1. Thus, the time complexity of this stage is: 

 
4 3 4 5 6 7 8 1 9( ( 3 ( ) ) ( ) ( ) )

( ( ))

=  + +  + + +  + + +

= +

T N t t t t t n t c f n t

n f n




 (25) 

Therefore, the aggregate time complexity of the ICDO 

algorithm is: 

 '

3 4_ ( ( ))= +  = +T T Max iter T n f n  (26) 

In conclusion, the optimization of the ICDO algorithm in 
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this paper does not change its temporal complexity, which 

remains consistent with that of the original CDO algorithm.  

V. OPTIMIZATION ACHIEVEMENT TEST OF THE ICDO 

ALGORITHM 

To assess the performance of the ICDO algorithm, ten 

internationally recognized standard benchmark test functions 

were chosen. Initially, ablation studies were carried out to 

separately confirm the efficacy of the three core strategies 

incorporated into the CDO algorithm framework. Following 

this, the ICDO algorithm was evaluated for its convergence 

and optimization precision to demonstrate the efficiency of 

the enhanced algorithm. 

A. Introduction to standard test functions 

This paper evaluates the performance of the ICDO 

algorithm using 10 internationally acknowledged test 

function sets. Specifically, F1 to F5 represent unimodal 

functions, while F6 to F10 correspond to multimodal functions, 

as detailed in Table 1. To guarantee the reliability and 

fairness of the experimental outcomes, the population size N 

for all comparison algorithms is uniformly set to 30, with a 

maximum iteration limit of 1000. Each algorithm is executed 

50 times on each test function, and the mean, best value, and 

standard deviation of the results are recorded for each test 

group. The simulation environment consists of MATLAB 

R2018b as the software platform and Windows 10 as the 

operating system. 

 
TABLE I 

STANDARD TEST FUNCTION 

Number Function 
Variable value 

range S 
Optimal 
value F 

Unimodal test function 

1F  Sphere [-100;100]n 0 

2F  Schwefel's Problem 2.22 [-10;10]n 0 

3F  Schwefel's Problem 1.2 [-100;100]n 0 

4F  Schwefel's Problem 2.21 [-100;100]n 0 

5F  
Quartic Function i.e. 

Noise 
[-1.28;1.28]n 0 

Multimodal test function 

6F  
Generalized Rastrigin's 

Function 
[-5.12;5.12]n 0 

7F  Ackley's Function [-32;32]n 0 

8F  
Generalized Griewank's 

Function 
[-600;600]n 0 

9F  
Generalized Penalized 

Function 1 
[-50;50]n 0 

10F  
Generalized Penalized 

Function 2 
[-50;50]n 0 

 

B. Ablation research 

To validate the efficacy of the three proposed strategies, 

based on the above standard test functions, comparative tests 

were conducted sequentially on five intelligent algorithms: 

the basic Chernobyl Disaster Optimization (CDO), the 

Chernobyl Disaster Optimization algorithm integrated with 

Tent chaotic mapping (TCDO), the Chernobyl Disaster 

Optimization algorithm integrated with group cognitive 

mechanism (PCDO), the Chernobyl Disaster Optimization 

algorithm integrated with local search strategy (LCDO), and 

the ICDO algorithm. The results are summarized in Table 2. 

 
TABLE II 

COMPARISON RESULTS OF ABLATION STUDIES 

function algorithm 

d=30 

Optimal value Mean value 
standard 

deviation 

1F  

CDO 2.22E-273 5.64E-260 0.00E+00 
TCDO 3.26E-272 2.31E-260 0.00E+00 

PCDO 0.00E+00 0.00E+00 0.00E+00 

LCDO 8.79E-275 3.27E-264 0.00E+00 
ICDO 0.00E+00 0.00E+00 0.00E+00 

2F  

CDO 1.82E-138 5.71E-133 2.21E-132 

TCDO 9.99E-139 1.83E-133 6.51E-133 
PCDO 0.00E+00 0.00E+00 0.00E+00 

LCDO 1.32E-139 1.87E-135 4.33E-135 
ICDO 0.00E+00 0.00E+00 0.00E+00 

3F  

CDO 1.29E-242 9.40E-200 0.00E+00 

TCDO 3.99E-246 1.33E-197 0.00E+00 
PCDO 0.00E+00 0.00E+00 0.00E+00 

LCDO 1.50E-247 2.11E-205 0.00E+00 

ICDO 0.00E+00 0.00E+00 0.00E+00 

4F  

CDO 8.47E-129 2.07E-121 1.35E-120 

TCDO 1.03E-130 4.45E-122 1.78E-121 

PCDO 0.00E+00 0.00E+00 0.00E+00 
LCDO 9.29E-131 2.15E-122 1.02E-121 

ICDO 0.00E+00 0.00E+00 0.00E+00 

5F  

CDO 5.00E-06 7.45E-05 6.49E-05 
TCDO 5.24E-07 7.83E-05 5.90E-05 

PCDO 2.62E-06 3.56E-05 3.60E-05 
LCDO 1.67E-06 6.44E-05 5.75E-05 

ICDO 3.01E-07 3.68E-05 4.06E-05 

6F  

CDO 0.00E+00 1.28E+02 1.05E+02 
TCDO 0.00E+00 1.42E+02 1.01E+02 

PCDO 0.00E+00 0.00E+00 0.00E+00 

LCDO 0.00E+00 2.02E-01 1.93E-01 
ICDO 0.00E+00 0.00E+00 0.00E+00 

7F  

CDO 4.44E-15 4.44E-15 2.37E-30 
TCDO 4.44E-15 4.44E-15 1.58E-30 

PCDO 8.88E-16 8.88E-16 9.86E-32 

LCDO 4.44E-15 4.44E-15 1.58E-30 
ICDO 8.88E-16 8.88E-16 9.86E-32 

8F  

CDO 0.00E+00 3.79E-03 8.52E-03 

TCDO 0.00E+00 3.89E-03 5.13E-03 
PCDO 0.00E+00 0.00E+00 0.00E+00 

LCDO 0.00E+00 3.66E-03 5.73E-03 
ICDO 0.00E+00 0.00E+00 0.00E+00 

9F  

CDO 1.11E+00 1.27E+00 2.58E-01 

TCDO 1.11E+00 1.20E+00 2.10E-01 
PCDO 1.67E+00 1.67E+00 2.81E-04 

LCDO 7.82E-04 3.01E-03 2.04E-03 

ICDO 2.71E-04 3.13E-03 3.99E-03 

10F  

CDO 3.13E-01 4.22E-01 7.78E-02 

TCDO 2.73E-01 4.14E-01 7.97E-02 

PCDO 1.48E+00 1.89E+00 1.86E-01 
LCDO 2.12E-03 2.52E-02 1.16E-02 

ICDO 6.48E-03 2.77E-02 1.30E-02 

 

The following inferences can be derived from Table 2: 

For the TCDO algorithm, its performance on functions F2, 

F4, F7, F9, and F10 is remarkably superior to that of the CDO 

algorithm. On function F1, while the optimal value of the 

TCDO algorithm is marginally less than that of the CDO 

algorithm by an order of magnitude, it surpasses the CDO 

algorithm in terms of average value and standard deviation. 

On functions F3, F5, F6, and F8, the average values of the 

TCDO algorithm and the CDO algorithm are within the same 

order of magnitude, and the TCDO algorithm still retains 

advantages in terms of standard deviation and optimal value, 

which confirms the effectiveness of the Tent chaotic mapping 

population initialization strategy. 

For the PCDO algorithm, although its performance on 

functions F9 and F10 is not as good as that of the CDO 

algorithm, its optimal values, average values, and standard 
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deviations on functions F1~F8 are all superior to those of the 

CDO algorithm, proving the feasibility of integrating the 

group cognitive mechanism. 

For the LCDO algorithm, on functions F1~F10, it surpasses 

the CDO algorithm in terms of optimal value, average value, 

and standard deviation, which validates the effectiveness of 

incorporating the local search strategy. 

In summary, the findings of the ablation study indicate that 

the ICDO algorithm exhibits remarkably superior 

performance compared to the other four benchmark 

algorithms across the 10 standard test functions. Moreover, 

the TCDO, PCDO, and LCDO algorithms all outperform the 

CDO algorithm, thereby confirming that the three 

optimization strategies effectively improve the search 

performance of the CDO algorithm. 

C. Optimization Accuracy and Convergence Analysis 

Based on the above ten standard test functions, a 

comparative analysis of the optimization accuracy and 

convergence of the PSO [24], GWO [25], DBO [26], CDO 

[19], and ICDO algorithms was conducted. The parameter 

configurations of each algorithm are presented in Table 3. 

 
TABLE III 

PARAMETER SETTINGS 

Algorithm Parameter 

PSO Inertia weight  =0.9, Vmax=2, Vmin=-2, C1=C2=2 

GWO Control parameter amax = 2，amin = 0 

DBO K and =0.1, b=0.3, S=0.5 

CDO 

ICDO 

Sα= rand (1,16000), Sβ = rand (1,27000), Sγ=rand (1,300000), 

 r = rand (0,1) 

 

After multiple repeated experiments, the average value, 

optimal value, and standard deviation of the PSO, GWO, 

DBO, CDO, and ICDO algorithms were recorded. The results 

are presented in Table 4 as follows. 

(1) Table 4 indicates the following:  

1) For functions F1 to F4, the ICDO algorithm attains an 

optimal solution of 0 across the average value, optimal value, 

and standard deviation, surpassing the other four comparative 

algorithms. For function F5, although the ICDO algorithm 

fails to achieve the optimal solution in terms of the average 

value, optimal value, and standard deviation, it still 

demonstrates superior performance over the other four 

algorithms. 

2) For functions F6, F7, and F10, the ICDO algorithm 

outperforms the other four comparative algorithms in terms 

of optimal value, average, and standard deviation. For 

functions F8, the CDO, GWO, DBO, and ICDO algorithms 

all reach the optimal value of 0, exceeding the PSO algorithm. 

Additionally, the ICDO and DBO algorithm attain the 

optimal solution for the average value and standard deviation, 

outperforming the other three comparative algorithms. For 

function F9, while the ICDO algorithm shows a marginal 

performance deficit compared to the DBO algorithm in terms 

of optimal value and average, it exhibits stronger robustness 

and is significantly superior to the other three comparative 

algorithms. 

(2) To more intuitively compare the overall improvement 

performance of the optimization algorithms, Figure 2 

presents the convergence curves of the five algorithms for 

various test functions. 

 
TABLE IV 

PERFORMANCE COMPARISON AMONG DIFFERENT ALGORITHMS 

function algorithm 

d=30 

Optimal value Mean value 
standard 

deviation 

1F  

CDO 2.22E-273 5.64E-260 0.00E+00 
ICDO 0.00E+00 0.00E+00 0.00E+00 

GWO 2.68E-62 5.47E-59 1.22E-58 

PSO 8.95E-02 1.81E-01 5.45E-02 
DBO 1.64E-306 3.17E-207 0.00E+00 

2F  

CDO 1.82E-138 5.71E-133 2.21E-132 
ICDO 0.00E+00 0.00E+00 0.00E+00 

GWO 1.13E-35 1.37E-34 1.87E-34 

PSO 1.09E+00 2.66E+00 1.08E+00 
DBO 4.16E-158 3.59E-123 2.47E-122 

3F  

CDO 1.29E-242 9.40E-200 0.00E+00 

ICDO 0.00E+00 0.00E+00 0.00E+00 
GWO 3.48E-21 1.62E-14 7.96E-14 

PSO 4.40E+00 1.45E+01 4.42E+00 
DBO 4.97E-302 3.04E-88 2.13E-87 

4F  

CDO 8.47E-129 2.07E-121 1.35E-120 

ICDO 0.00E+00 0.00E+00 0.00E+00 
GWO 6.96E-16 1.67E-14 1.89E-14 

PSO 5.71E-01 1.82E+00 1.20E+00 

DBO 1.71E-152 2.15E-111 1.34E-110 

5F  

CDO 5.00E-06 7.45E-05 6.49E-05 

ICDO 3.01E-07 3.68E-05 4.06E-05 

GWO 1.97E-04 7.68E-04 3.17E-04 
PSO 9.27E-03 5.14E-02 2.93E-02 

DBO 2.76E-05 7.14E-04 5.83E-04 

6F  

CDO 0.00E+00 1.28E+02 1.05E+02 
ICDO 0.00E+00 0.00E+00 0.00E+00 

GWO 0.00E+00 2.37E-01 1.19E+00 
PSO 4.68E+01 7.39E+01 1.31E+01 

DBO 0.00E+00 1.19E-01 8.36E-01 

7F  

CDO 4.44E-15 4.44E-15 2.37E-30 
ICDO 8.88E-16 8.88E-16 9.86E-32 

GWO 2.37E-01 1.59E-14 2.95E-15 

PSO 7.39E+01 2.29E+00 6.38E-01 
DBO 8.88E-16 9.59E-16 4.97E-16 

8F  

CDO 0.00E+00 3.79E-03 8.52E-03 

ICDO 0.00E+00 0.00E+00 0.00E+00 
GWO 0.00E+00 6.37E-04 2.60E-03 

PSO 1.69E-02 5.23E-02 1.89E-02 
DBO 0.00E+00 0.00E+00 0.00E+00 

9F  

CDO 1.11E+00 1.27E+00 2.58E-01 

ICDO 2.71E-04 3.13E-03 3.99E-03 
GWO 6.54E-03 3.78E-02 2.64E-02 

PSO 2.76E-02 3.38E+00 1.65E+00 

DBO 2.92E-13 2.07E-03 1.45E-02 

10F  

CDO 3.13E-01 4.22E-01 7.78E-02 

ICDO 6.48E-03 2.77E-02 1.30E-02 
GWO 2.03E-01 5.14E-01 1.48E-01 

PSO 3.08E-02 1.04E-01 4.77E-02 

DBO 1.10E-02 2.97E-01 2.35E-01 

 

As illustrated in Figure 2, the ICDO algorithm surpasses 

the GWO, PSO, DBO, and CDO algorithms in terms of 

convergence speed and optimization capability. For functions 

F1 through F4 and F6 through F8, the ICDO algorithm exhibits 

substantial improvements in both convergence speed and 

optimization capability, clearly outmatching the other 

algorithms. In function F5 and F10, while the ICDO algorithm 

does encounter local optima, it manages to escape them more 

swiftly than its counterparts, and it achieves a significantly 

superior optimal value. In function F9, although the ICDO 

algorithm's convergence speed lags slightly behind PSO, it is 

still ahead of GWO, DBO, and CDO, and it demonstrates 

formidable optimization capabilities.  

In summary, the ICDO algorithm consistently 

demonstrates a faster convergence speed, good stability, and 

strong global search capabilities, validating the effectiveness 
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of the proposed improvements. 

VI. CASE PAPER ANALYSIS 

A. Case parameters 

In this paper, the microgrid grid-connected model 

mentioned earlier is utilized as a case paper. The chosen 

distributed units consist of PV, WT, DE, MT, and the energy 

storage device BESS. The energy storage equipment boasts a 

maximum capacity of 150kWh, a minimum capacity of 

5kWh, an initial capacity of 50kWh, and both its maximum 

output and input power are capped at 30kW, featuring a

  
(a) F1 function (b) F2 function 

  
(c) F3 function (d) F4 function 

  
(e) F5 function (f) F6 function 

  
(g) F7 function (h) F8 function 

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3053-3065

 
______________________________________________________________________________________ 



  
(i) F9 function (j) F10 function 

Fig. 2.  The convergence curves of various test functions 

 

charge-discharge efficiency of 0.9. The parameters for these 

units are listed in Table 5 [27], while the emission 

coefficients of pollutants and the associated costs of pollution 

treatment are detailed in Table 6 [27]. The time-of-use 

electricity price parameters adopted in this paper are listed in 

Table 7 [28]. The forecast data of wind power, photovoltaic 

and load in a certain place are shown in Figure 3. 
 

TABLE V 

UNIT PARAMETERS OF EACH DISTRIBUTED UNIT 

Power 

type 

Power 

upper 
limit /kW 

Power 

lower 
limit /kW 

Operating and 

maintenance unit 
price /

（yuan/ kW h ） 

Ramping upper 

power limit

（kW/min） 

PV 50 0 0 0 

WT 100 0 0 0 
MT 30 3 0.0293 1.5 

DE 65 0 0.04 1.5 

GRID 30 -30 0 0 

 

TABLE VI 

POLLUTANT PROTECTION COST AND EMISSION COEFFICIENT 

Type 
Treatment cost/

（yuan/Kg） 

Emission coefficient of pollutants /

（g/ kW h ） 

DE GRID MT 

CO2 0.023 680 889 724 

SO2 6 0.306 1.8 0.0036 
NOx 8 10.09 1.6 0.2 

 

TABLE VII 

TIME-OF-USE ELECTRICITY PRICE PARAMETERS 

Type 
Corresponding 

time period 

Electricity 
purchase price

（yuan/kWh） 

Electricity sales 

price（yuan/kWh） 

Peak time 
10:00--15:00 
18:00--22:00 

0.86 0.5 

Level time 
08:00--09:00 

16:00--17:00 
0.54 0.5 

Valley 

time 

01:00--07:00 

23:00--24:00 
0.32 0.5 

 

B. Simulation results analysis 

Utilizing day-ahead forecasting data for loads, wind 

turbines, and photovoltaic systems from practical 

engineering scenarios, this paper applies the ICDO, CDO, 

DBO, PSO, and GWO algorithms to solve the optimization 

scheduling model of a grid-connected microgrid system. The 

primary objectives are to minimize the economic operation 

cost, environmental protection cost, and comprehensive total 

cost, respectively. The algorithm parameters are set as a 

maximum iteration number of 300 and a population size of 

100. 

 

 
Fig. 3.  Typical daily load, wind power forecast curve 

 

(1) Algorithm comparison and analysis 

1) Comparative analysis of the convergence of various 

algorithms 

Figure 4 illustrates the iterative convergence curves of 

each algorithm for various objective functions. As illustrated 

in Figure 4, across various objective function scenarios, the 

ICDO algorithm demonstrates remarkable superiority over 

the other four comparative algorithms in both iterative 

convergence rate and optimization capability. In terms of 

local optima, between iterations 70 and 130, the CDO 

algorithm frequently falls into local optima traps, ultimately 

resulting in significantly less optimal solutions compared to 

PSO, GWO, DBO, and ICDO algorithms. PSO, GWO, and 

DBO algorithms rarely encounter the problem of falling into 

such traps during iterations, while the ICDO algorithm 

completely avoids them. In terms of convergence, PSO GWO, 

and DBO algorithms tend to stabilize around the 250th 

iteration, CDO around the 130th iteration, whereas the ICDO 

algorithm converges much faster, typically within 50 

iterations. In terms of optimal solutions, the results derived 

by the ICDO algorithm through iterative cycles all 

outperform those of the PSO, GWO, DBO, and CDO 

algorithms, further verifying the superiority and effectiveness 

of the proposed ICDO algorithm. 

2) Comparative Analysis of Optimization Results of 

Different Algorithms 

To verify the improved effectiveness and stability of the 

optimized ICDO algorithm, each algorithm was run 30 times. 

As shown in Table 8, the comparative analysis uses the mean 

value, standard deviation, and minimum value of the results. 
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As evident from Table 8, when compared with the PSO, 

GWO, DBO, and CDO algorithms, the optimization 

capability and stability of the ICDO algorithm have been 

remarkably enhanced. Taking the minimum operating cost as 

the objective function for analysis, the ICDO algorithm 

significantly improves the solution efficiency of microgrid 

optimal scheduling, resulting in a reduction of the average 

cost by 14.62%, 9.22%, 23.12%, and 51.71% compared to 

the PSO, GWO, DBO, and CDO algorithms, respectively. 

Additionally, the optimal cost achieved by the ICDO 

algorithm is7.58%, 3.51%, 13.29%, and 41.30% lower than 

that obtained by the same set of algorithms, respectively. 
 

 
(a) economic operating cost 

 
(b) environmental protection cost 

 
(c) total cost 

Fig. 4.  The iteration curves under different objective functions 

 

When focusing on minimizing the environmental 

protection cost, the ICDO algorithm still demonstrates 

remarkable advantages, with average environmental 

protection costs reduced by 36.44%, 33.83%, 46.51%, and 

56.03%, and optimal environmental protection costs reduced 

by 30.57%, 24.17%, 35.36%, and 28.59%, compared to the 

PSO, GWO, DBO, and CDO algorithms, respectively.  

When simultaneously considering operating cost and 

environmental protection cost to minimize the total cost, the 

ICDO algorithm continues to exhibit its superiority. The 

average total cost is reduced by 10.95%, 5.66%, 17.55%, and 

40.57%, while the optimal total cost is reduced by 6.04%, 

1.18%, 4.91%, and 26.88% compared to the PSO, GWO, 

DBO, and CDO algorithms, respectively. Across different 

objective functions, the ICDO algorithm demonstrates the 

smallest standard deviation. 

Therefore, when aiming for the lowest operating cost, the 

optimal solution obtained by the ICDO algorithm sets the 

operating cost of the microgrid at 387.27 yuan. In the 

scenario of minimizing environmental protection cost, the 

ICDO algorithm results in an environmental protection cost 

of 43.38 yuan for the microgrid. When pursuing the 

minimization of total cost, the optimized result of the ICDO 

algorithm determines the total cost of the microgrid to be 

541.65 yuan. As illustrated in Figure 4 and Table 8, the 

improved ICDO algorithm is capable of swiftly locating the 

global optimal solution, demonstrating faster convergence 

speed and superior stability. 

3) Comparative analysis of the running time of each 

algorithm 

In real-world engineering applications, the computational 

efficiency of an algorithm is a key indicator of its practicality. 

Here, the PSO, GWO, DBO, CDO, and ICDO algorithms are 

each tested through 30 repeated experiments. The execution 

time of each run is recorded, and the average value, optimal 

value, and standard deviation are computed for comparative 

analysis, as presented in Table 9. 

As shown in Table 9, under the same conditions of 

population size, maximum iteration count, and consistent 

solution models, the runtime of a given algorithm remains 

generally consistent across different objective functions. 

However, for the same objective function, different 

algorithms exhibit certain differences in runtime. Overall, the 

DBO algorithm has the shortest runtime, indicating higher 

computational efficiency. The GWO, PSO, and CDO 

algorithms follow, while the ICDO algorithm has a relatively 

longer runtime. It is worth noting that although the actual 

runtime of the ICDO algorithm is marginally longer than that 

of the CDO algorithm, its theoretical time complexity has not 

increased, and it offers superior optimization performance 

and convergence speed. The increase in runtime is mainly 

due to the additional computational steps introduced by the 

multi-strategy coordination mechanism (including Tent 

chaotic mapping, group cognition mechanism, and local 

search), rather than an escalation in the iteration count or the 

order of theoretical time complexity. 

In summary, the ICDO algorithm demonstrates strong 

optimization capability and fast convergence while 

maintaining a reasonable computational cost, significantly 

outperforming the other comparative optimization 

algorithms. 

(2) Optimization analysis of output power for distributed 

units in microgrid 

This paper performs a comprehensive analysis of the 

optimal scheduling outcomes derived by the ICDO algorithm 

in the grid-connected mode of a microgrid. Figure 5 presents  
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TABLE VIII 

COMPARISON OF SIMULATION RESULTS OF FIVE ALGORITHMS UNDER DIFFERENT OBJECTIVE FUNCTIONS 

Objective function Statistical Results PSO GWO DBO CDO ICDO 

economic operating cost 

Average (yuan) 471.66 443.59 523.81 833.88 402.69 

Optimal Value (yuan) 419.03 401.36 446.65 659.76 387.27 
Standard Deviation 24.46 26.82 40.51 95.09 7.26 

environmental protection cost 

Average (yuan) 69.77 67.01 82.90 100.85 44.34 

Optimal Value (yuan) 62.48 57.21 67.11 71.97 43.38 
Standard Deviation 3.53 4.40 5.91 17.97 0.56 

total cost 

Average (yuan) 623.68 588.70 673.62 934.55 555.38 

Optimal Value (yuan) 576.46 548.13 569.63 740.80 541.65 
Standard Deviation 21.43 24.17 42.70 85.88 6.92 

 

TABLE IX 

COMPARISON OF THE RUNNING TIMES OF FIVE ALGORITHMS UNDER DIFFERENT OBJECTIVE FUNCTIONS 

Objective function algorithm PSO GWO DBO CDO ICDO 

economic operating cost 

Average(s) 2.6084 2.6945 2.2952 2.6987 4.2273 

Optimal Value(s) 2.5125 2.5894 2.2411 2.6496 4.1547 

Standard Deviation 0.0443 0.0347 0.0471 0.0508 0.0777 

environmental protection cost 

Average(s) 2.6154 2.6848 2.2988 2.6777 4.2313 

Optimal Value(s) 2.4719 2.5377 2.2470 2.6131 4.1379 

Standard Deviation 0.0644 0.0644 0.0390 0.0378 0.0689 

total cost 

Average(s) 2.5469 2.6541 2.2917 2.7198 4.2053 

Optimal Value(s) 2.4413 2.5206 2.2021 2.5870 4.0695 

Standard Deviation 0.1038 0.1435 0.1086 0.2119 0.1807 

 

the optimal output of each distributed unit under different 

objective functions. 

Figure 5 demonstrates that, for the same microgrid model, 

different optimal scheduling results are obtained under 

varying objective functions. Wind and solar energy are clean 

sources of energy and are therefore given priority in power 

generation. As illustrated in Figure 5, wind power output is 

continuous throughout the 24 hours, while photovoltaic 

power generation, influenced by solar radiation, only occurs 

from 6 AM to 6 PM, with no photovoltaic generation during 

other time periods. 

Figure 5(a) depicts the optimal output of each distributed 

generator under the objective of minimizing operating cost. 

In this case, the generation cost of DE is lower than the 

microgrid's electricity selling price to the main grid, while the 

generation cost of MT is higher. As a result, DE operates at 

full capacity during peak, flat, and off-peak hours, while MT 

remains idle. The operational cost incurred during charging 

and discharging of the BESS results in its lower output 

throughout the scheduling period. To maintain the stability 

and continuity of power supply, the BESS alternates between 

charging and discharging to ensure that the initial and final 

energy levels are equal. During the peak hours from 18:00 to 

22:00, as electrical load demand increases significantly, DE 

alone cannot meet the supply requirements, and the 

generation cost of MT exceeds the price of buying power 

from the utility grid for the microgrid. Thus, the microgrid 

opts to purchase electricity from the main grid during these 

hours to ensure uninterrupted power supply. In other periods, 

while satisfying the internal load demand, excess electricity 

generated by DE is sold to the main grid, creating additional 

revenue streams and reducing the microgrid's operating costs. 

Figure 5(b) presents the optimal output of each distributed 

generation unit with the objective of minimizing 

environmental protection costs. In this scenario, MT incurs 

lower environmental protection costs than purchasing 

electricity from the main grid, whereas DE has the highest 

environmental protection costs. Consequently, MT operates 

at full capacity throughout the scheduling period. Since 

BESS does not generate environmental protection costs 

during charging and discharging, and to maintain equal initial 

and final energy levels, it frequently switches between 

charging and discharging states, resulting in a more 

pronounced output compared to Figure 5(a). During peak 

hours from 18:00 to 22:00, when the electrical load demand 

soars, MT alone cannot meet the supply, even with additional 

purchases from the main grid. Consequently, DE is activated 

to ensure stable and continuous power supply. In other 

periods, although MT runs continuously, it still cannot satisfy 

the load demand, thereby necessitating electricity 

procurement from the main grid. The amount of purchased 

electricity is influenced by both the load demand and the 

charging/discharging state of the BESS. 

Figure 5(c) demonstrates the optimal output distribution of 

each distributed generation unit under the objective of 

minimizing the total cost. During off-peak hours from 1:00 to 

7:00 and 23:00 to 24:00, when the load demand is relatively 

low, MT does not operate. BESS alternates between charging 

and discharging to provide and reserve electricity. DE's 

output power is the lowest throughout the scheduling period 

due to BESS discharging at its maximum output power at 

3:00. In other hours, DE operates almost at full capacity. As 

the electricity selling rate of the microgrid system exceeds the 

production costs of DE and BESS, there are opportunities to 

sell power to the main grid for profit. Between 5:00 and 7:00, 

when the main grid electricity price is low, the microgrid opts 

to purchase power to charge the BESS, preparing for 

peak-hour discharging. During flat hours from 8:00 to 9:00 

and 16:00 to 17:00, BESS charges during high-demand hours. 

MT, GRID, and DE remain in similar states as during 

off-peak periods without significant changes. During peak 

hours from 10:00 to 15:00, DE operates almost at full 

capacity, BESS continuously discharges, and sells excess 

electricity to the main grid, while MT remains idle. From 

18:00 to 22:00, influenced by the constraint of equal initial 

and final energy levels, BESS first discharges and then 

charges. At 20:00, due to a surge in electrical load, DE alone 

cannot meet the supply. To ensure reliable and continuous 

power supply, GRID and MT operate at their maximum 

output capacity.  
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(a) economic operating cost 

 
(b) environmental protection cost 

 
(c) total cost 

Fig. 5.  Optimal scheduling results of ICDO algorithm under different 

objective functions 

 

 
Fig. 6.  The curve of battery capacity status changes. 
 

Figure 6 demonstrates the variations in battery capacity 

states under distinct objective functions. 

As shown in Figure 6, regardless of whether the objective 

function is to minimize operational costs, environmental 

protection costs, or total costs, the battery's state of charge 

(SOC) conforms to the upper and lower capacity limits 

during a 24-hour period. With identical initial and final SOC 

levels, this ensures no impact on the microgrid's optimal 

scheduling in subsequent cycles. 
 

VII. CONCLUSION 

This paper takes the minimization of economic operation 

cost, environmental protection cost, and total cost as 

optimization objectives, respectively, and establishes an 

optimal dispatch model for grid-connected microgrids. To 

achieve these optimization objectives, an improved ICDO 

algorithm is proposed, which integrates tent chaotic mapping, 

group cognition mechanism and local search strategy. 

Through ablation studies, the effectiveness and feasibility of 

the three improvement strategies are verified. Through the 

analysis of convergence and optimization accuracy, the 

superiority of the improved algorithm is proved. In the 

context of optimal scheduling and grid-connection of 

microgrids, the enhanced ICDO algorithm is further 

compared with the four aforementioned algorithms across 

different objective functions. The results indicate that the 

ICDO algorithm demonstrates significant advantages in 

terms of average value, optimal value, and standard deviation. 

Key insights and conclusions drawn from the paper are as 

follows: 

(1) When economic operating cost are minimized as the 

objective function, the ICDO algorithm reduces the average 

cost by 14.62%, 9.22%, 23.12%, and 51.71% respectively 

compared to the other four algorithms. Similarly, the optimal 

cost is reduced by 7.58%, 3.51%, 13.29%, and 41.30%. 

(2) When environmental protection cost is minimized, the 

ICDO algorithm exhibits remarkable superiority, lowering 

the average cost by 36.44%, 33.83%, 46.51%, and 56.03% 

relative to other algorithms. Accordingly, the optimal cost is 

decreased by 30.57%, 24.17%, 35.36%, and 28.59%. 

(3) When considering total cost, which encompass both 

operational and environmental protection costs, the ICDO 

algorithm's advantages remain evident. Compared to PSO, 

GWO, DBO, and CDO, the ICDO algorithm decreases the 

average total cost by 10.95%, 5.66%, 17.55%, and 40.57%, 

respectively, and the optimal total cost is reduced by 6.04%, 

1.18%, 4.91%, and 26.88%. 

(4) Across various objective functions, the ICDO 

algorithm exhibits the smallest standard deviation, further 

attesting to its stability and reliability. 

Based on these results, it is clear that the ICDO algorithm 

exhibits exceptional optimization and solving capabilities 

within the multi-constraint microgrid grid-connected model, 

outperforming the PSO, GWO, DBO, and CDO algorithms, 

even when faced with diverse objective functions. However, 

it is worth noting that the paper has its limitations. 

Specifically, when addressing composite benchmark 

functions, the ICDO algorithm's advantage over the CDO 

algorithm diminishes. Additionally, the paper's focus has 

been limited to the economic operating cost, environmental 

protection costs, and total costs, without exploring other 
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potential objectives such as power supply reliability and 

robustness, which could serve as promising avenues for 

future research. 

 

REFERENCES 

[1] X. Wang, S. Chen, Y. Zhou, J. Wang, and Y. Cui, “Optimal dispatch of 

microgrid with combined heat and power system considering 

environmental cost,” Energies, vol. 11, no. 10, p. 2493, Sep. 2018. 

[2] M. H. Saeed, W. Fangzong, B. A. Kalwar, and S. Iqbal, “A review on 

microgrids’ challenges & perspectives,” IEEE Access, vol. 9, p. 

166502-166517, Dec. 2021. 

[3] F. Rodríguez, A. Fleetwood, A. Galarza, and L. Fontán, “Predicting 

solar energy generation through artificial neural networks using 

weather forecasts for microgrid control,” Renewable Energy, vol. 126, 

pp. 855-864, Mar. 2018. 

[4] Z. Xin, Z. Ze, X. Yi, and M. Jin, “Economic-environmental dispatch of 

microgrid based on improved quantum particle swarm optimization,” 

Energy, vol. 195, p. 117014, Jan. 2020. 

[5] M. F. Ishraque, S. A. Shezan, M. M. Ali, and M. M. Rashid, 

“Optimization of load dispatch strategies for an islanded microgrid 

connected with renewable energy sources,” Applied Energy, vol. 292, p. 

116879, Apr. 2021. 

[6] X. Yang, J. Long, P. Liu, X. Zhang, and X. Liu, “Optimal scheduling of 

microgrid with distributed power based on water cycle algorithm,” 

Energies, vol. 11, no. 9, p. 2381, Sep. 2018. 

[7] A. Beirami, V. Vahidinasab, M. Shafie-khah, and J. P. Catalão, 

“Multiobjective ray optimization algorithm as a solution strategy for 

solving non-convex problems: A power generation scheduling case 

paper,” International Journal of Electrical Power & Energy Systems, 

vol. 119, p. 105967, Mar. 2020. 

[8] S. Roy, S. Goswami, A. Pal, A. Kumar, H. K. Singh, and M. Biswas, 

“Application of modified particle swarm optimization technique for 

economic scheduling of a complex micro grid with renewable energy 

sources” in 2018 2nd International Conference on Trends in 

Electronics and Informatics (ICOEI). IEEE, pp. 77-83, 2018. 

[9] Q. Zhang, J. Ding, W. Shen, J. Ma, and G. Li, “Multiobjective particle 

swarm optimization for microgrids pareto optimization dispatch,” 

Mathematical Problems in Engineering, vol. 2020, pp. 1-13, Mar. 

2020. 

[10] A. Askarzadeh, “A memory-based genetic algorithm for optimization 

of power generation in a microgrid” IEEE Transactions On 

Sustainable Energy, vol. 9, no. 3, pp. 1081-1089, Dec. 2017. 

[11] T. T. Nguyen, T. G. Ngo, T. K. Dao, and T. T. T. Nguyen, “Microgrid 

operations planning based on improving the flying sparrow search 

algorithm,” Symmetry, vol. 14, no. 1, p. 168, Jan. 2022. 

[12] T. Mandloi, S. K. Sharma, and S. C. Choube, “The energy management 

of islanded micro grid system using farmland fertility algorithm” 

Energy Sources, Part A: Recovery, Utilization, and Environmental 

Effects, vol. 45, no. 2, pp. 5031-5051, Apr. 2023. 

[13] M. M. Kamal, I. Asharaf, and E. Fernandez, “Optimal energy 

scheduling of a standalone rural microgrid for reliable power 

generation using renewable energy resources,”. Energy Sources, Part 

A: Recovery, Utilization, and Environmental Effects, vol. 45, no. 1, pp. 

485-504, 2023. 

[14] Y. W. Liu, L. L. Li, M. L. Tseng, and M. K. Helmi Ali, “Optimal 

scheduling of combined cooling, heating, and power microgrid based 

on a hybrid gray wolf optimizer,” Journal of Industrial and Production 

Engineering, vol. 39, no. 4, pp. 277-292, 2022. 

[15] M. Zhang, F. Zhang, and Y. Gao, “The optimal scheduling of 

microgrid: A research based on a novel whale algorithm,” Energy 

Reports, vol. 9, pp. 894-903, 2023. 

[16] Z. Belboul, B. Toual, A. Bensalem, C. Ghenai, B. Khan, and S. Kamel, 

“Techno-economic optimization for isolated hybrid 

PV/wind/battery/diesel generator microgrid using improved salp 

swarm algorithm,” Scientific Reports, vol. 14, no. 1, pp. 2920, 2024. 

[17] S. Behera, N. B. Dev Choudhury, and S. Biswas, “Maiden application 

of the slime mold algorithm for optimal operation of energy 

management on a microgrid considering demand response program,” 

SN Computer Science, vol. 4, no. 5, pp. 491, 2023. 

[18] Z. Bektas, M. O. Kayalıca, and G. Kayakutlu, “A hybrid heuristic 

algorithm for optimal energy scheduling of grid-connected micro 

grids,” Energy Systems, vol. 12, pp. 877-893, 2021. 

[19] H. A. Shehadeh, “Chernobyl disaster optimizer (CDO): a novel 

meta-heuristic method for global optimization,” Neural Computing 

and Applications, vol. 35, no. 15, pp. 10733-10749, 2023. 

[20] A. Ashraf et al., “Papering the impact of initialization for 

population-based algorithms with low-discrepancy sequences,” 

Applied Sciences, vol. 11, no. 17, pp. 8190, 2021. 

[21] Y. Zhao and L. Liu, “A bit shift image encryption algorithm based on 

double chaotic systems,” Entropy, vol. 23, no. 9, pp. 1127, 2021. 

[22] D. Sedighizadeh, E. Masehian, M. Sedighizadeh, and H. Akbaripour, 

“GEPSO: A new generalized particle swarm optimization algorithm,” 

Mathematics and Computers in Simulation, vol. 179, pp. 194-212, 

2021. 

[23] B. A. S. Emambocus, M. B. Jasser, and A. Amphawan, “An optimized 

continuous dragonfly algorithm using Hill climbing local search to 

tackle the low exploitation problem,” IEEE Access, vol. 10, pp. 

95030-95045, 2022. 

[24] Yan-e Hou, Wenwen He, Xianyu Zuo, Lanxue Dang, and Hongyu Han, 

“A Task Scheduling Approach based on Particle Swarm Optimization 

for the Production of Remote Sensing Products,” IAENG International 

Journal of Computer Science, vol. 50, no.1, pp23-31, 2023. 

[25] Asmaa Wahba, Reda El-khoribi, and Shereen Taie, “A New Hybrid 

Model for Energy Consumption Prediction Based on Grey Wolf 

Optimization,” IAENG International Journal of Computer Science, vol. 

49, no.2, pp469-481, 2022 

[26] Xu Ji, Qiang Qu, Yu-Long Ren, Jia-Xun Lian, and Tian-Ran Jiang, 

“Improved DBO Algorithm Incorporating Disorienting Behavior and 

Dynamic Population Strategy for Engineering Problem Solving,” 

Engineering Letters, vol. 33, no. 1, pp90-103, 2025 

[27] L. I. Xingshen et al., “Multi-objective optimization dispatching of 

microgrid based on improved particle swarm algorithm,” Electric 

Power Science and Engineering, vol. 37, no. 3, pp. 1, 2021. 

[28] C. Wu, B. Xing, and S. Li, “Hierarchical optimal scheduling of 

microgrid based on sparrow search algorithm,” Southern Power Grid 

Technology, pp. 1-9, Nov. 3, 2023. 

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3053-3065

 
______________________________________________________________________________________ 




