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Abstract—The detection of surface defects in the steel
production process is crucial for ensuring product quality. To
address the issues of large variations in defect sizes, high
similarity between abnormal and normal regions, and low
detection accuracy in traditional steel surface defect detection,
this paper proposes an improved YOLOv8-based method for
steel surface defect detection, named CEC-YOLO. Firstly, a
Cross Channel Group Interaction (CCGI) module is designed to
enhance the model’s feature extraction and fusion capabilities.
Secondly, a Sparse Spatial Reduction Attention (SSRA) module
is introduced, enabling the model to focus on the most critical
regions for defect detection. Finally, a Dynamic Ratio IoU (DRI)
regression strategy is implemented, which adaptively adjusts the
size of detection boxes based on the size of the target and is
suitable for different datasets, making it more appropriate for
industrial inspection tasks. Experimental results show that the
proposed method achieves a mAP of 85.5% on the GC10-DET
dataset and a mAP of 78.8% on the NEU-DET dataset.
The proposed model demonstrates superior detection accuracy
and computational efficiency compared to existing approaches,
addressing critical industry requirements for high-speed and
reliable steel surface defect identification.

Index Terms—Steel surface fault detection, Attention
mechanism, Group convolution, Dynamic regression, Object
detection

I. INTRODUCTION

STEEL, as a crucial material widely used in construction,
machinery, automobiles, aerospace, and other fields,

has surface quality that directly impacts the performance,
useful life and safety of final products. To ensure the
quality and safety of steel and prevent defective products
from flowing into downstream industries and causing
economic losses or safety accidents, detecting steel surface
defects has become an urgent task [1]. Traditional steel
defect detection is based on manual visual inspection
and the stroboscopic method. Although these traditional
methods can identify steel surface defects, they are limited
by the experience and skills of inspectors, resulting in
inconsistent detection speed and quality. Moreover, training
qualified inspectors requires significant time and financial
investment [2]. With technological advancements, machine
vision technology has been introduced. Although traditional
machine learning algorithms cover multiple critical steps
such as image pre-processing, feature extraction, and
classification, they face challenges such as slow processing
speed and insufficient accuracy [3]. In recent years, the
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integration of deep learning and machine vision technology
has demonstrated strong capabilities in automated detection,
enabling accurate localization and prediction of defect types.
Methods based on Convolutional Neural Networks (CNN)
exhibit greater robustness and generalization capabilities,
making them a key detection method in the industrial sector
[4].

Current deep learning-based object detection algorithms
are primarily categorized into two types: two-stage detectors
and single-stage detectors.Two-stage algorithms, such as
R-CNN [5], Fast R-CNN [6], and Faster R-CNN [7],
achieve higher detection accuracy by first generating region
proposals in the initial stage and then classifying and refining
their locations in the second stage. In contrast, single-stage
detectors, such as SSD [8] and the YOLO series [9–11],
perform classification and localization simultaneously on
feature maps, offering faster inference speeds at the cost
of slightly lower accuracy. Given the industrial demand for
real-time processing, single-stage detectors are more suitable
for steel surface defect detection tasks, where both speed and
efficiency are critical.

Chen et al. [12] proposed substituting the Spatial Pyramid
Pooling (SPP) module in YOLOX’s backbone network with
a Coordinate Attention (CA) mechanism. Their approach
also implemented the CLAHE technique to enhance the
low-contrast characteristics typical of steel surface defect
imagery. Cai et al. [12] proposed a multi-stage object
detection framework, Cascade R-CNN (Region-CNN), which
progressively improves defect detection quality through
resampling and effectively minimizes overfitting issues.Dou
et al. [13] proposed a lightweight YOLOv8-based algorithm
for few-shot steel plate defect detection, addressing the
issue of network model training failure due to insufficient
training samples. Zhou et al. [14] proposed an efficient
detection network, ETDNet, based on transformers. This
network extracts global features using a lightweight
vision transformer, fuses multi-level features through a
channel-modulated feature pyramid network, and resolves
representation inconsistencies between classification and
regression tasks in steel surface defect detection using
a task-oriented decoupled head. However, these methods
exhibit relatively low detection accuracy when addressing
the problem of small target defect detection.

To overcome the limitations of excessive parameterization
and computationally intensive operations in existing steel
defect detection algorithms, an improved algorithm based
on YOLOv8 for steel strip surface defect detection. Cao
et al. [15] introduced the E-YOLOX algorithm for steel
strip surface detection, which achieves real-time detection
by employing a novel feature extraction network, ECMNet,
and a new data augmentation method called Edge Cutout.
Yang et al. [16] designed an efficient aggregation network
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(ELAN-G), making the steel strip surface detection algorithm
more deployable on terminal devices. However, these
methods perform poorly when dealing with the detection of
similar defects, indicating a need for targeted improvements.

In conclusion, while existing defect detection algorithms
have achieved notable advancements, several critical
challenges persist in this domain. Specifically, the substantial
variation in target sizes leads to suboptimal detection
performance for defects with diverse shapes. Additionally,
the high similarity between abnormal and normal regions
results in issues such as false positives and missed detections.

To address the aforementioned issues, this study proposes
a CEC-YOLO method for steel surface defect detection. The
main contributions of this study are as follows:

1) A Dynamic Ratio IoU (DRI) regression strategy is
proposed, which adaptively adjusts the size of detection
boxes based on the size of the target and accommodates
different datasets, thereby achieving an IoU loss function
more suitable for industrial detection tasks.

2) A Cross-Channel Group Interaction (CCGI) module is
introduced to enhance the model’s feature extraction and
fusion capabilities, addressing the issue of low detection
accuracy for defects with diverse shapes.

3) A Sparse Spatial Reduction Self-Attention (SSRA)
module is proposed, enabling the model to focus on the
most critical regions for defect detection, thereby reducing
the occurrence of false positives and missed detections.
Experimental results on the NEU-DET and GC10-DET
datasets demonstrate that the improved model is well-suited
for real-time and high-quality steel surface defect detection
tasks.

II. RELATED WORK

A. YOLOv8

YOLOv8’s architectural design incorporates three
principal components: a feature extraction backbone
utilizing C2f modules, a multi-scale feature aggregation
neck based on PAN-FAN, and a task-specific detection head.
The C2f module serves as the core structural unit in the
backbone, achieving parameter efficiency while maintaining
robust feature representation capabilities through integrated
residual connections and bottleneck operations. The
detection head of YOLOv8 utilizes the Decoupled-Head
concept, which separates the regression and classification
branches. This design improves the efficiency of both
training and inference. Furthermore, YOLOv8 abandons the
traditional anchor-based approach and adopts an anchor-free
strategy, simplifying the model architecture and accelerating
the post-processing steps of non-maximum suppression
(NMS).

B. Attention Mechanism

In defect detection tasks, relying solely on local features
may sometimes be insufficient to capture critical defect
regions. The self-attention mechanism addresses this by
computing attention weights between different regions,
enabling the model to focus on the most crucial areas
for defect detection. This mechanism enhances the model’s
localization precision and accuracy in scenarios with
complex backgrounds and multiple defects. In industrial

defect detection, defects may exist across large areas of
an image. Traditional convolutional neural networks are
often limited by their local receptive fields, which can
hinder their ability to fully capture global image information
and long-range dependencies. The self-attention mechanism
effectively models relationships between different regions
of an image without introducing significant computational
overhead or additional parameters. This capability allows
the model to better understand the overall context, thereby
improving the accuracy of defect detection.

Spatial reduction attention (SRA) [17] has been widely
applied in previous work, effectively extracting global
information by leveraging sparse token-region relationships.
However, non-overlapping spatial reduction, used to reduce
token counts, can disrupt the spatial structure near patch
boundaries and degrade token quality. To address this
issue, Overlapping Spatial-Reduction Attention (OSRA)
[18] introduces overlapping spatial reduction (OSR) into
SRA, which better represents the spatial structure near
patch boundaries by using larger and overlapping patches.
In practice, OSR is implemented as depthwise separable
convolution. This paper further improves it into a sparse
spatial-reduction attention module, enabling more focused
attention on defect regions in detection tasks.

C. Intersection over Union (IoU)

This study conducted a statistical analysis of the USC
pedestrian dataset, where the aspect ratios of detection
boxes range from 0.26 to 0.48. In contrast, the aspect
ratios of detection boxes in the NEU-DET and GC10-DET
datasets range from 0.0027 to 0.952. Compared to datasets
for pedestrian detection and face recognition in daily
life, industrial detection datasets exhibit more complex
distributions of detection box sizes, making the detection
of small targets and similar defects more challenging.
Traditional Intersection over Union (IoU) calculation
methods may not effectively adapt to these variations, as they
simply treat two bounding boxes as fixed sizes for overlap
computation. InnerIoU [19] addresses this by dynamically
adjusting the scale factor based on the dimensions of each
pair of bounding boxes, enabling a more accurate evaluation
of their overlap. However, the current implementation of
InnerIoU uses a fixed scale factor for a given dataset,
which limits its adaptability to different tasks and datasets.
Therefore, we propose a more flexible Dynamic Ratio IoU
regression strategy to better meet the demands of industrial
detection tasks.

III. METHOD

A. CEC-YOLO Model Structure

Due to the influence of lighting, the grayscale values
of defect images within the same category can vary
significantly. Additionally, defects from different categories
may exhibit similarities. These factors can prevent the
model from focusing on critical defect regions, making
it difficult for the network to extract meaningful features.
The original YOLOv8 network does not fully utilize these
features, and the distribution of detection box sizes in
industrial detection datasets is more complex. Traditional
IoU calculation methods may not effectively adapt to these
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Fig. 1. Overall Structure of CEC-YOLO

variations, necessitating the introduction of a more flexible
and dynamic IoU algorithm. To address these limitations
of the original YOLOv8 network, we propose an improved
CEC-YOLO network architecture, as shown in Fig.1.First, a
CCGI module is added after the SPPF module to enhance
the model’s feature extraction capabilities. Second, an SSRA
module is incorporated to enable the model to focus on
critical defect regions. Finally, a DRI method is integrated
into the detection head to better detect defects with varying
characteristics, aiming to achieve a balanced improvement in
both real-time performance and detection accuracy.

B. Cross Channel Group Interaction(CCGI)

Recent studies [20] have shown that introducing 3 × 3
depthwise convolutions [21] into vision transformers can
effectively capture positional information from zero-padding.
The cross-channel grouped interaction module enables the
model to dynamically adjust its activation levels and outputs
based on the input content. Specifically, it filters out
unimportant information through a branch structure while
enhancing information interaction across different groups
and channels via grouped convolutions and channel shuffle
operations, thereby improving the model’s feature extraction
capabilities. This mechanism endows the model with greater
adaptability and flexibility, enabling it to handle complex
input data more effectively.

The CCGI module is illustrated in Fig.2. The input
of the network first passes through two parallel linear
transformation layers to extract preliminary features.
Subsequently, one branch of the data flow passes through
a 3×3 average pooling layer (AVG Pool) to reduce the

Fig. 2. CCGI moudule

spatial dimensions of the feature maps while preserving
critical discriminative characteristics. The other branch of
the data flow passes through a 1×1 group convolution layer
(GConv), which groups the input feature maps and performs
convolution operations on each group separately, thereby
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reducing the number of parameters and computational cost.
Specifically, after dividing into G groups, the number of
parameters in this layer is reduced to 1/G of the original.
By adjusting the number of groups, an optimal performance
balance can be achieved for different tasks and datasets. The
two branches of data flow merge after passing through a
channel shuffle layer [22]. The channel shuffle operation
rearranges the feature matrix, enabling better information
exchange between different groups. The network captures
positional information through a 3×3 depthwise separable
convolution, followed by a 1×1 group convolution for deeper
feature extraction and integration. This design retains the
advantage of reduced computational cost from depthwise
separable convolution while enhancing the model’s feature
extraction capability through channel shuffling. The output
is concatenated with a 3×3 average pooling layer to prevent
overfitting.

C. Sparse Spatial Reduction Attention(SSRA)

To address the issues of false detection and missed
detection induced by the high similarity between abnormal
and normal regions, we propose a sparse spatial reduction
self-attention module that enables the model to focus on
critical defect regions. The principle involves exchanging
the output channel features of intermediate layers with
retained features, fully utilizing the information from
intermediate layers to avoid information loss. Additionally,
the module incorporates the idea of TripletAttention [23]
to interact across all dimensions of the input tensor with
negligible computational overhead.This helps the model
better capture both global and local features, thereby
improving the accuracy of classification and detection.
Furthermore, a probabilistic sparse self-attention mechanism
and a multi-head self-attention spatial reduction mechanism
are introduced to enhance the computational efficiency and
performance of the model.

1) Probabilistic Sparse Self-Attention Mechanism
The probabilistic sparse self-attention mechanism [24]

selects the most important subset of attention weights
for computation using a probabilistic approach, while
disregarding weights that have minimal impact on the
results. Specifically, it measures the relative importance using
Kullback-Leibler (KL) divergence, and the metric is defined
by the following equation:

M(qi,K) = ln

LK∑
j=1

e
qik

T
j√
d − 1

LK

LK∑
j=1

qik
T
j√
d

(1)

The first part is the Log-Sum-Exp (LSE) operation,
which approximates the maximum value while maintaining
smoothness. The second part is their arithmetic mean, used
to measure the overall relevance between the query and the
keys. Here, qi represents the i-th value of the query vector,
and kj represents the j-th value of the key vector.

By incorporating the Kullback-Leibler (KL) divergence
constraint into the Softmax, the attention weight distribution
is guided to approximate the target sparse distribution.

Psparse = Softmax
(
QKT

√
d

− λM(qj ,K)

)
(2)

Based on the above formula, the formula for the
probabilistic sparse self attention mechanism can be
obtained:

A(Q,K, V ) = Softmax
(
QKT

c

)
V (3)

Here, A(Q,K, V ) represents the probabilistic sparse
self-attention score matrix, where Q is the set of query
elements corresponding to the top u largest M(qi,K) values.
Here, c = lnLQ, where c is the sampling factor, and L is the
length of the input sequence. Notably, to avoid the issue of
excessively small gradients, a spatial reduction operation is
applied to the key-value pairs using a scaling factor of 1/

√
d.

The computational complexity of the attention mechanism is
optimized from the original O(L2) to O(lnL).

2) Multi-head Self-attention Spatial Reduction Mechanism
Through parallelized processing of multiple attention

heads, the self-attention mechanism effectively learns
heterogeneous feature interactions across different input
subspaces. When combined with the probabilistic sparse
self-attention mechanism, each attention head can generate
distinct sparse key-value pairs, empowering the model
to adaptively attend to spatially distributed information.
This enhances the model’s representational capacity and
generalization ability. Assuming there are h attention heads,
each head has independent linear transformations for queries,
keys, and values. For the i-th head, its output hi can be
expressed as:

hi = f
(
W

(q)
i q,W

(k)
i k,W

(v)
i v

)
(4)

Here, W
(q)
i , W

(k)
i , and W

(v)
i are the trainable weight

matrices for the query, key, and value of the i-th head.
The outputs of all heads are concatenated and then mapped

to the output dimension through an additional trainable
weight matrix:

Head(Q,K, V ) = Concat(h1, h2, . . . , hi)WO (5)

Here, h1, h2, · · · , hi are the outputs of each head, and WO

is a trainable weight matrix.
As shown in Fig.3, the sparse spatial reduction

self-attention module begins by passing the input through
a series of 3x3 depthwise separable convolution (DWConv)
layers. These layers effectively extract spatial features
from the input data while reducing computational costs.
Subsequently, a 1x1 pointwise convolution layer is used to
further refine the feature extraction process, enhancing the
model’s capability to capture local features. The extracted
features are then concatenated and subjected to a channel
shuffle operation to increase feature diversity and expressive
power. Next, the network integrates features through a triplet
structure, which combines features and generates higher-level
abstract representations. A linear layer is then applied to
transform and adjust the feature dimensions, preparing them
for subsequent processing steps. In another branch of feature
processing, the model employs a spatial reduction operation,
which downsamples and pools the feature maps to reduce
data dimensionality and extract more abstract features. After
this, a sparse operation is applied to further filter important
features and remove redundant information. Finally, the
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Fig. 3. SSRA moudule

model utilizes a multi-head self-attention mechanism (MHA)
to establish connections between different feature subspaces,
capturing long-range dependencies and enhancing the
model’s ability to understand complex patterns. Through this
series of feature fusion and information processing steps, the
model can efficiently focus on critical defect regions.

D. Dynamic Ratio IoU(DRI)

In object detection, Intersection over Union (IoU) is
used to evaluate the intersection between two bounding
boxes. Samples with high IoU are easier for the model
to learn, while samples with low IoU typically contain
more challenging bounding boxes, such as those with partial
overlap or imperfect matches. Therefore, by dynamically
adjusting weights, the model focus more on these challenging
instances. As shown in Fig.4, the Dynamic Ratio IoU
regression strategy calculates IoU loss using auxiliary
bounding boxes. High-IoU samples utilize compact auxiliary
regions for loss computation to expedite convergence,
whereas expanded auxiliary regions are allocated to low-IoU
samples to enhance learning efficacy. For different datasets
and detectors, we introduce a dynamic weight adjustment
strategy. The core logic is to dynamically compute the
weight of each sample based on the difference between the
historical IoU average and the current IoU, thereby adapting
to changes in bounding box matching in object detection
tasks. This approach aims to balance the differences between
samples, emphasize the contribution of challenging samples,
and prevent underfitting caused by over-learning of simple
samples during training.

The calculation of dynamic weights primarily relies on the
difference between the current IoU and the historical average
IoU, as detailed below:

Fig. 4. Dynamic Ratio IoU

1) Auxiliary Prediction Box Calculation

dal = xa
m − wa · p

2
, dar = xst

m +
wst · p

2
(6)

dat = yam − ha · p
2

, dab = yam +
ha · p
2

(7)

dl = xm − w · p
2

, dr = xm +
w · p
2

(8)

dt = ym − h · p
2

, db = ym +
h · p
2

(9)

Here, xa
m and yam are the center of the annotated box, xm

and ym are the center of the predicted box, dal , dar , dat , and dab
are the left, right, top, and bottom of the auxiliary annotated
box in the red region, dl, dr, dt, and db are the left, right,
top, and bottom of the auxiliary predicted box in the green
region, and p is an adjustable ratio factor ranging from 0.5
to 1.5.

2) Dynamic IoU value calculation

inter =(min (dai , dr)−max (dai , dl))

∗ (min (dab , db)−max (dal , dl))
(10)

union = (wa · ha) · p2 + (w · h) · p2 − inter (11)

dcenter =

√
(xa

m − xm)
2
+ (yam − ym)

2 (12)

IoU =
inter + ϵ

union + ϵ
e−λdcenter (13)

Here, ϵ is a small constant used to prevent the IoU from
being zero. λ is a hyperparameter used to adjust the weight
of the center point distance. dcenter represents the Euclidean
distance between the centroids of the predicted bounding box
and its corresponding ground truth annotation.

3) Updating the Historical IoU Mean
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The historical IoU mean is calculated using exponential
moving average:

IoUmean = (1−m) · IoUmean +m · mean (IoUcurrent) (14)

Here, IoUmean is the historical mean of IoU, m is the
momentum coefficient that determines the update speed of
the historical mean, with 0 < m < 1, and mean (IoUcurrent)
is the mean IoU of the current batch of samples.

4) Weight Calculation
The weights are adjusted based on the difference between

the current IoU and the historical mean IoU:

wi =

{
1, if IoUi > IoUmean

exp (− (IoUmean − IoUi)) , if IoUi ≤ IoUmean
(15)

Here, IoUi is the IoU value of sample i, and
exp (− (IoUmean − IoUi)) is the dynamic weight used to
slow down the weight decay for low IoU samples, allowing
challenging samples to receive higher weights. The IoU
obtained using Dynamic Ratio IoU results in a loss function
more suitable for industrial detection tasks. Additionally, the
improved Dynamic Ratio IoU can automatically adjust the
detection box size based on different datasets, demonstrating
the generalization capability of the enhanced model.

IV. EXPERIMENTAL SETTING

A. Datasets and evaluation indicators

1) GC10-DET Dataset
The GC10-DET dataset includes 2,257 high-definition

(2048×1000) steel surface images representing ten industrial
defect categories, organized as: Welding Line (WI), Water
Spot (Ws), Crease (Cr), Crescent Gap (Cg), Oil Spot (Os),
Inclusion (In), Waist Crease (WI), Punching (Pu), Silk Spot
(Ss) and Rolled Pit (Rp).

2) NEU-DET Dataset
The NEU-DET dataset includes 1,800 steel surface

images(200×200). It contains six types of defects: patches,
pitted surface, inclusion, crazing, scratches and rolled-in
scale.

The datasets follows an 8:2 training-testing split protocol
for machine learning applications. This paper uses AP,
mAP, FPS, Precision and Recall to evaluate the strip defect
detection model. The formulas are as follows:

AP =

∫ 1

0

P (R) dR (16)

mAP =

∑c
i=1 APi

c
(17)

FPS represents the frame rate, reflecting the model’s
inference speed. The formula is as follows:

FPS =
Framenum

ElapsedTime
(18)

Here, Framenum represent the cardinality of processed
image samples, and ElapsedTime corresponds to the temporal
duration required for complete inference execution.

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

Here, TP represent correctly identified defect instances,
FP indicate misclassified non-defective regions, and FN
correspond to undetected actual defects in the evaluation set.

B. Experimental Environment and Setup

The proposed model was implemented and evaluated using
the PyTorch deep learning framework. The experimental
configuration comprised a CPU: Intel Xeon E5, GPUs:
NVIDIA GTX TITAN XP * 2, and an SGD optimizer
for model optimization. The model was trained with a
batch size of 8 using 640 × 640 pixel images over
300 epochs in this investigation. The training pipeline
incorporates multiple augmentation operations including
random spatial transformations and pixel-level intensity
modifications, supplemented by multi-scale processing.

C. Experimental Verification and Analysis

To systematically evaluate the enhanced model’s
performance, comprehensive experiments were performed
using the NEU-DET dataset. The experimental results
are presented in Table I, while a detailed comparison
with algorithms from the YOLO series is shown in Table
II. CEC-YOLO demonstrates significant superiority over
other methods in terms of both detection accuracy and
efficiency. Specifically, CEC-YOLO achieves a mAP of
78.8%, which is notably higher than YOLOv8n (77.0%). In
defect category detection, CEC-YOLO exhibits particularly
outstanding performance for cracks (Cr) and scratches (Sc),
achieving detection rates of 45.8% and 96.7% respectively,
significantly surpassing other algorithms. Furthermore,
CEC-YOLO has only 3.36 million parameters, substantially
fewer than the 12.1M of YOLOv3-tiny. It achieves 72
frames per second (FPS), second only to YOLOv8n’s 75
FPS, demonstrating its advantages in both lightweight
design and real-time performance.

TABLE I
PERFORMANCE METRICS ON NEU-DET DATASET

Metrics all Cr In Ps Pa Rs Sc

Precision/% 79.4 64.5 81.6 86.3 84.1 69.4 90.2

Recall/% 71.2 32.9 79.8 84.9 76.2 61.4 92.1

mAP@0.5/% 78.8 45.8 85.2 92.1 87.1 65.9 96.7

To assess cross-dataset generalization performance,
additional evaluations were performed on the GC10-DET
dataset. The experimental results are presented in Table III,
while a detailed comparison with algorithms from the YOLO
series is provided in Table IV. CEC-YOLO achieves a mAP
of 85.5%, representing a 3.5% improvement over the baseline
model YOLOv8n and a 15.4% enhancement compared
to YOLOv3-tiny.Notably, these performance improvements
are achieved while maintaining excellent computational
efficiency. Compared to YOLOv3-tiny, CEC-YOLO reduces
the number of parameters by 72.2%, and achieves a
63.1% reduction compared to YOLOv5s, while maintaining
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TABLE II
COMPARISON OF DETECTION RESULTS OF NEU-DET DATASET

Model Name Params FPS mAP/% Cr In Ps Pa Rs Sc

YOLOv3-tiny 12.1M 50 69.7 35.6 76.2 81.9 78.2 60.2 86.1

YOLOv5n 2.39M 36 74.0 37.1 84.2 89.0 82.6 61.8 89.4

YOLOv5s 9.1M 48 76.1 39.2 86.3 91.1 84.7 63.9 91.5

YOLOv6n 4.04M 45 74.9 38.5 81.7 90.3 83.4 62.9 92.5

YOLOX-Tiny 5.04M 35 74.5 38.9 82.4 89.1 85.6 60.2 90.9

YOLOv7-tiny 6.2M 62 74.7 39.3 83.4 88.6 83.3 62.3 91.2

YOLOv8n 2.87M 75 77.0 39.8 84.1 90.3 86.3 66.6 94.9

CEC-YOLO 3.36M 72 78.8 45.8 85.2 92.1 87.1 65.9 96.7

TABLE III
PERFORMANCE METRICS ON GC10-DET DATASET

Metrics all Pu WI Cg Ws Os Ss In Rp. Cr Wf

Precision/% 0.886 0.957 0.859 0.842 0.958 0.808 0.862 0.904 0.868 0.852 0.956

Recall/% 0.760 0.929 0.968 0.922 0.832 0.770 0.740 0.444 0.809 0.564 0.781

mAP@0.5/% 0.855 0.959 0.923 0.943 0.885 0.832 0.848 0.618 0.773 0.842 0.930

TABLE IV
COMPARISON OF DETECTION RESULTS OF GC10-DET DATASET

Model Name Params FPS mAP/%
mAP/%

Pu WI Cg Ws Os Ss In Rp Cr Wf

YOLOv3-tiny 12.1M 51 70.1 86.0 79.2 78.8 73.2 66.0 67.2 49.0 61.3 66.8 73.7

YOLOv5n 2.39M 33 78.1 93.7 88.6 92.7 85.1 77.7 82.7 43.6 65.6 68.1 82.9

YOLOv5s 9.1M 49 80.1 92.6 91.3 91.6 86.8 81.1 83.2 46.0 68.7 71.2 88.4

YOLOv6n 4.04M 46 79.2 91.6 91.3 90.6 87.8 80.1 81.9 45.3 67.4 69.1 86.5

YOLOX-Tiny 5.04M 34 79.6 92.4 90.1 91.4 85.6 80.9 82.2 50.0 67.7 70.2 85.4

YOLOv7-tiny 6.2M 60 80.2 95.2 90.9 93.1 85.6 76.9 83.8 49.1 67.8 73.6 85.8

YOLOv8n 2.87M 71 82.0 95.6 92.0 92.8 89.2 82.5 83.8 54.9 70.2 68.7 90.3

CEC-YOLO 3.36M 69 85.5 95.9 92.3 94.3 88.5 83.2 84.8 61.8 77.3 84.2 93.0

comparable inference speed to baseline models with
improved accuracy.

To validate the superiority of the proposed model, we
conducted comparative experiments with several advanced
models from recent years, with the results presented in
Table V. Experimental results demonstrate that CEC-YOLO
achieves outstanding performance on both NEU-DET
and GC10-DET benchmark datasets for industrial defect
detection. In terms of model complexity, CEC-YOLO
contains only 36.1% of the parameters of GDM-YOLO while
achieving superior detection accuracy (0.8% improvement
on GC10-DET). Compared with the lightweight HA-YOLO
model, CEC-YOLO improves mAP by 3.7% (NEU-DET)
and 4.0% (GC10-DET) while introducing only an additional
0.85M parameters. Notably, CEC-YOLO achieves an
11.1% improvement in inference speed compared with
Literature[28], while simultaneously increasing detection
accuracy by 1.8% (GC10-DET), demonstrating balanced
enhancements in both speed and precision. Furthermore,
when compared with the two-stage object detection algorithm
Faster R-CNN, CEC-YOLO achieves an 8.7% higher mAP
(NEU-DET) while reducing the parameter count to one-tenth
of the Faster R-CNN. Overall, CEC-YOLO demonstrates

comprehensively superior performance in detection accuracy,
category-specific performance, and computational efficiency.

TABLE V
COMPARISON WITH DIFFERENT METHODS

Model Params FPS
mAP%

NEU-DET GC10-DET

Faster RCNN 41.25M 11 70.8 76.9

ETDNet[14] 6.99M 50 77.5 82.4

Literature[25] 9.1M 24 76.6 81.8

Literature[26] 25.9M 63 77.6 83.7

Literature[27] 5.06M 38 76.1 81.0

HA-YOLO[28] 2.51M 65 75.1 81.5

YOLOv5-CGC[29] 7M 38 77.8 83.6

GDM-YOLO[30] 9.3M 52 78.3 84.7

CEC-YOLO 3.36M 70 78.8 85.5

Fig.5 and Fig.6 comparatively present the precision-recall
characteristics of both baseline and enhanced models across
the NEU-DET and GC10-DET datasets, respectively. It can
be observed that the accuracy for all defects except Rs
improved on the NEU-DET dataset. On the GC10-DET
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dataset, the accuracy for all defects except Ws improved. It
performs particularly well in challenging defect categories
such as In, Rp and Cr, which achieving mAP increases
of 6.9%, 7.1%, and 15.5% compared with the baseline
model YOLOv8. It demonstrates that the improved model has
significantly improved its ability to detect defects of different
shapes and similar defects.

D. Comparison of different IoU loss functions

To validate the effectiveness of Dynamic Ratio IoU,
we conducted comparative experiments with other IoU
loss functions. GIoU is insensitive to changes in the
aspect ratio of bounding boxes. When objects are highly
overlapping, GIoU degenerates into IoU, resulting in reduced
optimization efficiency. Although CIoU introduces penalties
for center point distance and aspect ratio, thereby improving
performance, it exhibits weak adaptability to extreme scale
variations (small objects). EIoU decouples the width and
height penalties based on WIoU, but fails to dynamically
adjust the optimization target ratio. MPDIoU optimizes based
on vertex distance, but provides weak constraints on the
overall shape of bounding boxes. DRI can dynamically adjust
the scale factor according to the size of each bounding
box pair, thereby more accurately evaluating their overlap
degree. Moreover, DRI can adaptively adjust the ratio
based on the selected dataset. As shown in Table VI, the
Dynamic Ratio IoU achieved optimal mAP and F1-score
performance on both NEU-DET and GC10-DET datasets.
DRI demonstrated improvements of 1.5% in mAP and 1.7%
in F1-score compared to GIoU on the NEU-DET dataset. For
the GC10-DET dataset, the maximum improvements reached
1.3% in mAP and 2.2% in F1-score.

TABLE VI
COMPARISON OF IOU LOSS FUNCTIONS

Loss Function
NEU-DET GC10-DET

mAP% F1% mAP% F1%

GIoU 76.3 72.8 81.9 79.1

CIoU 76.8 73.0 82.2 79.6

WIoU[31] 77.1 73.5 82.7 80.0

EIoU[32] 76.7 73.3 82.5 80.2

MPDIoU[33] 77.2 73.8 82.8 80.5

Dynamic Ratio IoU 77.8 74.5 83.2 81.3

E. Analysis of the Effectiveness of Attention Mechanism

To verify that the sparse spatial reduction self-attention
module can focus on key defect regions, a comparative
experiment was conducted under controlled conditions
with different attention mechanisms, and the results were
visualized for defects of various sizes. The visualization
results are shown in Fig.7. It clearly indicate that SE attention
missed small-sized defects, while PSA and ECA attention
did not sufficiently focus on the defects. CBAM attention
focused on non-defect regions. For large-sized defects, other
attention mechanisms failed to fully focus on the defect
regions, whereas the sparse spatial reduction self-attention
performed well across defects of all sizes. The detection
results of different attention mechanisms are shown in Table

VII. The sparse spatial reduction self-attention mechanism
outperformed the SE attention by 1.5% in mAP and 1%
in F1-score on the NEU-DET dataset. On the GC10-DET
dataset, SSRA achieved greater improvements of 3.1% in
mAP and 1.7% in F1-score.

TABLE VII
EVALUATION OF DIFFERENT ATTENTION STRATEGIES

Loss Function
NEU-DET GC10-DET

mAP% F1% mAP% F1%

CBAM[34] 77.0 73.1 81.4 79.8

SE 76.5 72.9 81.2 79.5

PSA[35] 77.1 73.4 82.8 80.1

ECA[36] 77.2 73.6 82.3 80.7

Ours 78.0 74.6 84.3 81.2

F. Ablation Experiment

Under controlled conditions, the impact of each
enhancement and the combination of various improvement
strategies on the enhanced model were tested. The ablation
experiment results are shown in Table VIII.

TABLE VIII
ABLATION RESULTS

Experiment DRI CCGI SSRA
mAP%

NEU-DET GC10-DET

YOLOv8 77.0 82.0

Experiment 1 ✓ 77.8 83.2

Experiment 2 ✓ 78.1 83.0

Experiment 3 ✓ 78.0 84.3

Experiment 4 ✓ ✓ 78.1 83.8

Experiment 5 ✓ ✓ 78.1 85.0

Experiment 6 ✓ ✓ 78.3 84.8

Experiment 7 ✓ ✓ ✓ 78.8 85.5

By comparing the YOLOv8 baseline model with
Experiment 7, quantitative analysis indicates that the
enhanced model achieved a significant enhancement in
detection accuracy, with improvements of 1.8% and 3.5%
on the NEU-DET and GC10-DET datasets, respectively.
From Experiment 1, it can be seen that DRI enables
flexible and dynamic adjustment of detection boxes across
different datasets, partially addressing the issue of excessive
variation in defect sizes. Experiments 2 and 3 demonstrate
that the improved model has enhanced feature extraction
capabilities and is more likely to focus on defect regions,
thereby mitigating issues of missed and false detections to
some extent. Experiments 4, 5, and 6 show that different
modules can be effectively combined, all contributing to the
performance improvement of the model.

G. Visualization of Test Results

To make the empirical findings more intuitive, we
visualized the detection results under different methods. The
visualization of the detection effects is shown in Fig.8.
(a)BBox displays the original images with bounding boxes,
where the first three rows present visualization results
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(a) P-R curves of YOLOv8 (b) P-R curves of CEC-YOLO

Fig. 5. PR curves: Baseline vs. Enhanced on NEU-DET dataset

(a) P-R curves of YOLOv8 (b) P-R curves of CEC-YOLO

Fig. 6. PR curves: Baseline vs. Enhanced on GC10-DET dataset

from the GC10-DET dataset and the last two rows show
detection outcomes from the NEU-DET dataset.As shown,
YOLOv5, YOLOv6, and YOLOv7 failed to effectively
detect defects, while the original YOLOv8 misclassified
Os defects as Rp defects and exhibited some false
negatives. Our improved model accurately detected both
defect locations and categories, demonstrating enhanced
feature extraction capability. Its superior performance across
different datasets further indicates improved generalization
ability and robustness. Additionally, we visualized the
attention regions of the model’s channels during the detection
process. As shown in Fig.9, the improved model can better
focus on the regions where defects exist, thereby enhancing
the accuracy and efficiency of the defect detection task.

V. CONCLUSIONS

In this paper, we propose an improved steel surface defect
detection model, CEC-YOLO, based on the YOLOv8 model,
with enhancements made to the backbone network and
the IoU component. Firstly, to enhance feature extraction
capability and expand the receptive field, we introduce
an improved cross-channel grouped interaction module.
Secondly, we propose an improved sparse spatial reduction
self-attention module, enabling the model to focus on
the most critical regions for defect detection. Finally,
we introduce an improved Dynamic Ratio IoU regression
strategy, which adaptively adjusts the size of detection boxes
based on the target size and adapts to different datasets,
thereby achieving an IoU loss function more suitable for
industrial detection tasks. Comparative experiments were
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(a) BBox (b) CBAM (c) SE (d) PSA (e) ECA (f) DRI

Fig. 7. Heat maps of different sizes

(a) BBox (b) YOLOv5n (c) YOLOv6n (d) YOLOv7-tiny(e) YOLOv8n (f) CEC-YOLO

Fig. 8. Visualization of detection results
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(a) BBox (b) YOLOv5n (c) YOLOv6n (d) YOLOv7-tiny(e) YOLOv8n (f) CEC-YOLO

Fig. 9. Visualization of channel focus

conducted on different attention mechanisms and IoU loss
functions on the different datasets to verify the effectiveness
and robustness of the added module. The enhanced model
demonstrates superior performance with mAP scores of
85.5% (GC10-DET) and 78.8% (NEU-DET), achieving
absolute gains of 3.5% and 1.8% respectively compared to
baseline methods. The experimental results substantiate the
robust performance of the proposed model across diverse
steel surface defect detection scenarios, demonstrating its
competitive advantage over existing approaches. Finally,
the detection outputs and corresponding channel attention
maps were visualized to facilitate model interpretation. In
summary, the proposed model meets the requirements of high
detection accuracy and real-time performance. However, the
performance of the model for some subtle small defects still
requires further improvement. In future research, we plan to
refine the network architecture, fine-tune multiple pre-trained
models, and explore multi-model fusion.
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