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Abstract—In modern materials science, metallographic anal-
ysis is an important method for evaluating the microstructure
and properties of materials. After spheroidizing annealing,
the morphology and distribution of pearlite in steel have a
significant impact on the subsequent heat treatment of the
material. This paper constructs a dataset of cementite in
spherical pearlite and proposes a YOLOv9-based method for
detecting cementite. This method innovatively introduces the
fusion-enhanced module C3_CD_CBAM to enhance the model’s
feature extraction capability. Built upon the C3 structure, this
module sequentially integrates channel attention and spatial
attention, adaptively optimizing feature weight distribution and
improving detection accuracy. Additionally, the introduction of
the CARAFE module further enhances the spatial resolution
of feature maps, significantly improving performance across
various visual tasks. The network also incorporates the SimAM
mechanism, which adaptively adjusts attention weights to
enhance feature representation, improving detection accuracy
without introducing extra parameters. Through experiments,
we demonstrate the effectiveness of the improved YOLOVY
model, achieving an average accuracy of 89.9% on the proposed
dataset—an improvement of 1.2% over the baseline YOLOVY
model. Leveraging the latest advancements in deep learning
architectures and data augmentation techniques, this study
enhances the automation and accuracy of spherical pearlite
evaluation, providing a novel solution for metallographic anal-
ysis.

Index Terms—Steel, Metallography, Spherical cementite, De-
tection, YOLOV9.

I. INTRODUCTION

TEEL is an essential raw material in mechanical design
and manufacturing. After spheroidizing annealing, the
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layered or networked carbides within steel aggregate into
spherical shapes, improving the material’s machinability by
reducing hardness and refining the microstructure[1-3]. This
structure, known as spheroidal pearlite, consists of a fer-
rite matrix and spherical cementite[4]. To comprehensively
evaluate the properties of steel based on the morphology
and distribution of spheroidal pearlite, researchers system-
atically classify the quantity and distribution of cementite
within spheroidal pearlite. Traditional classification methods
for detecting spheroidal cementite typically rely on manual
observation, which is not only inefficient but also prone to
errors due to visual fatigue under prolonged, high-intensity
work [5]. With the rapid development of deep learning
technology, computer vision-based methods have gradually
become a new trend in metallographic structure detection and
analysis [6, 7].

The development of deep learning-based object detection
techniques represents a paradigm shift from handcrafted
feature engineering to data-driven methodologies. The core
breakthroughs lie in the collaborative optimization of feature
representation and computational architecture[8]. Traditional
methods rely on manually designed feature descriptors, such
as Haar cascades, Histogram of Oriented Gradients (HOG),
and Support Vector Machine (SVM) classifiers, which locate
objects using a sliding window approach. However, these
methods are constrained by limited feature generalization
capabilities and excessive computational redundancy. The
introduction of Convolutional Neural Networks (CNNs) has
redefined feature extraction mechanisms. Hierarchical convo-
lution and pooling operations, through local receptive fields,
enable progressive abstraction from edge textures to seman-
tic structures, laying the foundation for multi-scale object
detection in complex scenarios [9, 10]. Two-stage detection
frameworks, exemplified by the R-CNN series, generate
candidate regions using a Region Proposal Network (RPN)
followed by refined classification and regression, offering
significant accuracy advantages due to their cascade-based
design. Fast R-CNN enhances efficiency by incorporating
Region of Interest (ROI) Pooling for feature sharing, while
Faster R-CNN further integrates candidate box generation
into an end-to-end training process, significantly improving
detection speed [11]. In contrast, single-stage detection mod-
els, represented by the YOLO series and SSD, adopt a global
regression strategy. By combining grid-based spatial parti-
tioning and multi-scale feature pyramids (FPN), these models
unify bounding box prediction and class determination within
a single forward pass, achieving real-time inference while
maintaining high mean Average Precision (mAP) [12].

The continued evolution of the YOLO series focuses on
optimizing the trade-off between accuracy and speed. Key
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advancements include the lightweight Cross-Stage Partial
Network (CSPNet), adaptive anchor box clustering algo-
rithms, and dynamic label assignment strategies. Further-
more, by integrating Visual Language Models (VLMs) for
cross-modal feature fusion, the detection accuracy of oc-
cluded objects and small-scale instances has been signifi-
cantly improved. As a highly efficient object detection model,
YOLOVY exhibits superior speed and precision, making it
particularly suitable for real-time image analysis. Therefore,
this paper proposes a YOLOvV9-based method for detecting
cementite in spheroidal pearlite. The improved YOLOvV9
model demonstrates enhanced performance in multi-scale
and complex environment object detection tasks, significantly
boosting overall detection accuracy.This method enables ac-
curate and rapid detection of the quantity and distribution of
spheroidal cementite in samples, thereby assisting inspectors
in completing grading tasks with greater efficiency and
precision.

The improved YOLOV9 model proposed in this paper
introduces the C3_CD_CBAM fusion module into the neck
network. This module optimizes multimodal feature repre-
sentation through a multi-dimensional attention coordina-
tion mechanism and cross-scale feature interaction strategy.
Based on the classic Cross Stage Partial (CSP) architec-
ture, it incorporates a dual-path attention-guided residual
learning paradigm for both channel and spatial dimensions,
constructing a composite feature fusion unit with dynamic
feature selection and contextual awareness capabilities. By
deeply integrating the Convolutional Block Attention Module
(CBAM) with cross-stage downsampling (CD) operations,
the model forms a multi-level feature enhancement system.

In the neck network, the upsampling module is replaced
with the CARAFE module, which significantly improves the
spatial resolution of feature maps through adaptive interpola-
tion and reassembly techniques. The SimAM (Simple Atten-
tion Module) is introduced after RepNCSPELAN4 to opti-
mize feature representation and improve detection accuracy.
SimAM adaptively allocates attention weights by calculating
the variance distribution within the feature map, without
requiring additional trainable parameters, thus enhancing
the response of target regions and suppressing irrelevant
background. It has lower computational overhead, and works
in synergy with RepNCSPELAN4 and CBFuse to optimize
feature fusion strategies, improving the detection capability
of small targets.

II. RELATED WORK

Metallography is the study of the structure of metals
and alloys. Metallographic analysis can be regarded as a
detection tool to assist in identifying a metal or alloy, to
evaluate whether an alloy is processed correctly, to inspect
multiple phases within a material, to locate and character-
ize imperfections such as voids or impurities, or to find
the damaged areas of metallographic images [13, 14]. The
preparation of metallographic samples is a prerequisite for
conducting metallographic analysis. It is crucial to select
and prepare representative samples. Typically, the prepara-
tion of metallographic samples involves the following steps:
sampling, embedding (which can sometimes be omitted),
grinding (coarse grinding and fine grinding), polishing, and
etching.

The detection work is generally carried out by manually
observing the surface of metallographic specimens under
a microscope to qualitatively describe the microstructural
features of the metal material, or by comparing with various
standard images to assess the microstructure. This method
often involves subjectivity and lacks high reproducibility and
accuracy.

With the development of computer vision technology, deep
learning-based object detection methods have shown great
potential in the field of metallographic analysis, among which
the YOLO series has been widely applied due to its efficient
detection capability and excellent real-time performance.
Against this backdrop, YOLOV9 has further improved detec-
tion accuracy and inference speed through multiple structural
optimizations while inheriting the efficient detection frame-
work of the YOLO architecture [15]. Its main architectural
features include the introduction of Dynamic Reparameteri-
zation, which allows multi-branch structures during training
to be merged into a single path during inference, thereby re-
ducing computational overhead and improving inference ef-
ficiency. Additionally, it adopts an improved Neck structure,
such as a more efficient feature fusion module, to enhance
multi-scale object detection capabilities, and incorporates a
lightweight attention mechanism in the Backbone to improve
feature representation. In the Head, the Anchor mechanism
has been optimized to make bounding box regression more
precise and generalizable. Moreover, YOLOVY introduces
advancements in training strategies, such as a new loss
function that optimizes bounding box matching, improving
the detection accuracy of small and overlapping objects.
Compared to previous YOLO models, YOLOvV9 has shown
significant improvements in mean Average Precision (mAP)
on datasets such as COCO and VOC while maintaining
superior real-time performance in terms of computational
complexity. Compared to YOLOVS, its enhanced feature
extraction structure allows for higher detection accuracy with
the same computational resources, while relative to YOLOV7,
its optimized Neck structure enhances the perception of small
objects, making it more advantageous in applications such as
remote sensing imagery, autonomous driving, and industrial
inspection. Furthermore, compared to YOLOvS5, YOLOvV9
offers faster inference speed and better object recognition
performance in complex backgrounds [16-19]. These ad-
vantages enable YOLOV9 to maintain a lightweight archi-
tecture while excelling in high-precision object detection
tasks. Therefore, we have chosen YOLOV9 as the baseline
model and will further optimize it to better suit our specific
detection objectives.

III. METHOD INTRODUCTION
A. Modules of the Improved YOLOVY Algorithm

While YOLOV9 can enhance detection accuracy by opti-
mizing the object localization and classification loss func-
tions, its performance may degrade when handling dense
and small targets. This is because the model struggles to
precisely identify and distinguish closely packed cementite
particles, especially when they are connected. Additionally,
YOLOVY has limited ability to separate adjacent targets due
to the insufficient resolution of feature maps, making it
difficult to effectively detect individual cementite particles
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Fig. 1: Overall improved architecture diagram

in high-density regions. Furthermore, the model may fail
to capture subtle structural differences within cementite
formations, leading to inaccurate detections. Therefore, al-
though YOLOVY demonstrates strong detection capabilities
in many scenarios, further improvements and optimizations
are necessary to effectively handle the challenges posed by
the cementite dataset.

To address these challenges, this paper proposes an en-
hanced structure for YOLOV9. The improved YOLOV9 ar-
chitecture is shown in Figure 1. First, the RepNCSPELAN4
module in the backbone network is replaced with the
C3_CD_CBAM module, where C3_CD enhances multi-scale
feature fusion, and the CBAM attention mechanism opti-
mizes key region perception, improving fine-grained target
recognition. Second, the traditional upsampling module is
replaced with CARAFE, which enhances spatial resolution
through content-aware feature reassembly, reducing small-
target information loss and improving localization accuracy.
Finally, the SIMAM module is integrated into the detection
head to enhance feature discrimination, suppress background
interference, and improve detection robustness. These im-
provements enhance YOLOV9’s accuracy and adaptability for
cementite detection.

B. C3_CD_CBAM

The C3_CD_CBAM module first inherits the structure
of the C3 (Cross-Stage Partial) module. The C3 module
efficiently performs feature fusion by partitioning the input

feature map into groups, avoiding potential gradient van-
ishing problems in traditional convolutional networks. The
C3 module divides the feature map into two parts, each un-
dergoing a convolution operation, followed by concatenation
of the results. The module further optimizes feature extrac-
tion efficiency through residual connections and bottleneck
structures. The architecture of the C3_CD_CBAM module
is shown in Figure 2. The core feature fusion process in C3
can be expressed as:

Y = Conv; (concat (Fp (Convy (X)), Conva(X))) (1)
where X is the input feature map, C'onvy, Convs and Convs
are convolutional operations, Fp represents the Bottleneck
transformation containing multiple 1 x 1 and 3 x 3 convo-
lutions, and concat(-) denotes channel-wise concatenation.
Equation (1) describes how the C3 module efficiently in-
tegrates information from two feature branches, enhancing
feature representation.

The CBAM module enhances the model’s attention to
critical feature regions. CBAM (Convolutional Block Atten-
tion Module) introduces both channel and spatial attention
mechanisms, enabling the model to focus more on important
areas and channels in the image while suppressing back-
ground noise and irrelevant features, thereby improving the
detection performance [20]. Specifically, the CBAM module
first extracts global maximum and average information from
the feature map through adaptive max-pooling and average-
pooling operations. These features are then fused via fully
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connected layers (FC) to generate the channel attention map.
The channel attention mechanism is computed as follows:

Qe =0 (WQ . ReLU(W1 : (Mavg + MmaX))) (2)

where M,y, and My, are the features obtained through
average-pooling and max-pooling, W; and W, are trainable
parameters, and o is the Sigmoid activation function. Equa-
tion (2) shows that the channel attention map «.. is generated
by applying a ReLU activation to the sum of the average and
max-pooled features, followed by two fully connected layers.
This attention mechanism allows the network to focus on the
most informative channels.

The spatial attention mechanism is computed as follows:

as = o (Conv(concat(Mayg, Mmax))) 3)

where M, and My, are the spatial features obtained
through global average-pooling and max-pooling, respec-
tively. The concatenated features are processed by a con-
volution operation to generate the spatial attention map «.
As shown in equation (3), the spatial attention map v, helps
the model focus on relevant spatial regions, enhancing object
localization.

The overall structure of the C3_CD_CBAM module com-
bines the C3 module and the CBAM module, fully utilizing
the advantages of both. It preserves the feature fusion effi-
ciency of the C3 module while enhancing the feature map’s
attention mechanism through CBAM. This significantly im-
proves the model’s detection accuracy in complex scenarios.
The module is particularly suitable for small object detection
tasks, such as cementite detection, and enhances the model’s
ability to perceive small-sized objects and robustness.

C. CARAFE

The CARAFE (Content-Aware ReAssembly of FEatures)
module is an advanced upsampling method that enhances
the preservation of fine details in feature maps. Unlike
traditional upsampling approaches such as bilinear interpola-
tion or transposed convolution, CARAFE generates adaptive
reassembly weights dynamically based on the input feature
content, thereby improving feature recovery. The module
consists of four key stages: channel compression, weight
encoding, feature unfolding, and feature reassembly [21, 22].
Its architecture is shown in Figure 3.

The first step is channel compression, where a 1 x 1
convolution is applied to the input feature map to reduce
its channel dimension. The channel compression operation
can be expressed as follows:

W = Convy x1(X) 4

where X is the input feature map, and W is the intermediate
feature map obtained by applying a 1 x 1 convolution to
reduce the number of channels. As shown in equation (4),
this step helps to decrease computational complexity while
retaining key feature information.

The second step is weight encoding, where a convolution
operation is applied to the intermediate feature map. The
output is then processed using a PixelShuffle operation,
producing a preliminary reassembly weight map. This weight
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Fig. 2: C3_CD_CBAM network architecture

map is further normalized using the Softmax function to
generate the final reassembly weight map:

K' = o (Convy,, (W)) ®)

enc

where o represents the Softmax activation function, and
Convy,,. denotes a convolution operation with kernel size
Kenc. As shown in equation (5), the reassembly weight map
is generated by applying a convolutional layer followed by
a softmax operation, ensuring that the learned weights are
spatially adaptive.

The third step is feature unfolding, where the input feature
map is upsampled using nearest-neighbor interpolation and
then unfolded using a sliding window operation. This extracts
local region features, which can be expressed as follows:

X' = Unfold(Upsample(X)) (6)

where X is the input feature map, and X’ represents the
unfolded features obtained after upsampling and applying a
sliding window operation. As shown in equation (6), this step
enables the extraction of local neighborhood features, which
are later reassembled using adaptive weights.

The final step is feature reassembly, where the unfolded
features are weighted by the reassembly weights. The final
output feature map is obtained through an element-wise
weighted sum:

k2,
Y =) K| X] (7
i=1

where K and X/ represent individual elements of the weight
map and unfolded feature map, respectively. As shown in
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equation (7), the final feature map Y is obtained by adap-
tively reassembling local features using learned attention-
based weights.

The overall structure of the CARAFE module enhances the
upsampling process by incorporating content-aware adaptive
weight generation. It effectively preserves fine details and en-
hances feature map resolution, making it particularly useful
for small object detection tasks, such as cementite detection
in metallographic images. By dynamically reassembling fea-
tures based on content, CARAFE improves the model’s abil-
ity to recover spatial details, ultimately enhancing detection
robustness in complex environments.

\ (

| Softmax |

X

Fig. 3: CARAFE network architecture

D. SimAM

SimAM (Similarity-based Attention Module) is a
lightweight and efficient attention mechanism that enhances
feature representation by refining spatial and channel-wise
information. Unlike traditional attention mechanisms,
SimAM does not require additional learnable parameters or
complex operations such as convolutions or pooling layers.
Instead, it applies a simple yet effective activation function
to adjust the feature responses.

The core idea of SimAM is to compute the variance of
each feature map across spatial dimensions and use this
variance to generate an attention map. The module first
calculates the squared difference between the feature map
and its spatial mean:

X' = (X - px)? (8)

where X is the input feature map, and py represents the
mean value of X across the spatial dimensions.

Next, SimAM normalizes the variance using the total
sum of squared differences and a small constant A\ to avoid
numerical instability. The normalization process is expressed
as follows: X

4 (ZNL + A)

where NNV is the total number of spatial positions minus one,
and ) is a small regularization term.

S +0.5 €))

Finally, the attention map is generated using a Sigmoid
activation function, and the input feature map is scaled
accordingly:

Y =X o(S) (10)

where o(S) represents the Sigmoid activation applied to the
normalized variance, and Y is the final output feature map.

SimAM efficiently enhances the feature representation by
leveraging spatial variance information without introducing
additional computational overhead. By applying element-
wise modulation, the module refines feature maps while
maintaining simplicity and efficiency.

IV. EXPERIMENTAL DESIGN AND IMPLEMENTATION
A. Dataset Introduction

The metallographic images containing spherical cementite
used in this paper come from the Metallographic Laboratory
of Zhejiang XCC Group CO., Ltd. After applying Gaussian
denoising and cropping, 120 images with a size of 640px *
640px were created. The spherical cementite in the images
was annotated using the T-rex label tool, the annotation
example of this dataset is shown in Figure 4. The labeled
COCO format files were then converted into the label format
required for YOLOV9 training. After completing the above
processing, the dataset was divided into a training set and a
validation set, with a ratio of 8 : 2, containing one category:
spherical cementite.

[ 1
R

L g ]-
§ O
IS (e

Fig. 4: Annotation examples in our dataset.

B. Experimental environment and parameter configuration

The experiments in this study were conducted on a server
equipped with an NVIDIA GeForce RTX 3080Ti graphics
card, which has 10GB of VRAM, effectively supporting the
efficient training of deep learning models. The operating
system was Windows 11, and the main software environment
included CUDA 11.8, Python 3.8.10, and Pytorch 2.0.0. The
model training was set for a total of 300 epochs. The batch
size was set to 4. Additionally, the learning rate was set to
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0.01 to balance training speed and model convergence. Other
parameters were kept at their default values.

C. Model evaluation metrics

Single-class detection, as a specific binary classification
problem, evaluates the model’s performance on this class
using four elements: True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN).

In this experiment, Precision (P) and Recall (R) were
chosen as the evaluation metrics for spherical cementite de-
tection results. Precision indicates the proportion of positive
samples among the predicted positive samples, as shown in
formula (11).

TP
P=——-—
TP+ FP
Recall indicates the ratio of correctly predicted positive

samples to the total labeled positive samples, as shown in
formula (12).

(1)

TP
RiTP—i—FN

Precision (P) and Recall (R) are negatively correlated.
To comprehensively assess the quality of the algorithm, the
Precision-Recall (PR) curve is typically plotted with Recall
on the x-axis and Precision on the y-axis.

YOLOV9 baseline model and the improved model’s PR
curve are shown in Figure 5. The red curve represents
the baseline model, while the blue curve represents the
improved model. The Precision-Recall (P-R) curve in the
figure illustrates the differences in detection performance of
the YOLOV9 model on the cementite dataset before and
after improvements. The improved YOLOV9 model shows an
increase in the mean Average Precision (mAP@0.5) for this
category from 0.887 to 0.899, with significant enhancements
in both detection accuracy and recall.

12)

Precision-Recall Curve

1.0
{— cementite 0.899
0.8 == all classes 0.899 MAP@0.5
—— cementite 0.887
e 3|l classes 0.887 mMAP@0.5
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Fig. 5: Precision-Recall Curve

D. Comparison results of different models

To comprehensively evaluate the performance of our pro-
posed YOLOV9-based object detection model on metallo-
graphic images, we conducted detailed experiments on the
cementite dataset. Table 1 summarizes the experimental
results of various models, systematically comparing Im-
age Size, Precision, Recall, and mean Average Precision
(mAP). The results show that our model performs excellently
across all metrics, particularly achieving an mAP of 89.9%,
surpassing the baseline YOLOV9 model (88.7%) as well
as other models such as YOLOv8, YOLOv10, YOLOv11
and yolovl2 . Overall, our improved model demonstrates
significant accuracy improvements on the cementite dataset,
laying a solid foundation for future research and applications.

TABLE I: Compare Different categories pairwise

Method ImageSize Precision Recall mAP
YOLOv8 640%640 88.2 88.0 87.9
YOLOV9 640640 914 87.0 88.7
YOLOv10 640*%640 94.2 86.0 88.1
YOLOv11 640%640 85.9 86.0 88.5
YOLOv12 640%640 90.9 86.0 88.9
ours 640*%640 92.6 88.0 89.9

E. Ablation experiments

To verify the impact of each module on the performance
of our proposed improved YOLOv9 model on the cementite
dataset, we conducted ablation experiments, with the results
shown in Table 3. In this ablation study, we separately
tested the C3_CD_CBAM module, SARAFE module, and
SimAM module. By progressively adding or removing these
modules, we were able to observe their influence on the
overall performance of the model. The experimental results
in the table display the Precision, Recall, and mean Average
Precision (mAP) for different combinations of modules.

The baseline model achieves performance of 91.4%,
87.0% and 88.7% in terms of Precision, Recall and mAP,
respectively. Experimental results indicate that introducing
the C3_CD_CBAM module leads to a slight decrease in Pre-
cision by 1.9 percentage points but effectively improves mAP
to 89.0%. Meanwhile, the CARAFE feature re-sampling
technique enhances mAP by 0.6 percentage points to 89.3%
while maintaining Recall stability. Notably, the SimAM
attention mechanism, when applied independently, causes a
significant drop in Precision by 8.7 percentage points but still
preserves the robustness of the mAP metric.

Further analysis reveals that the combined application
of CARAFE and SimAM exhibits a significant synergistic
effect, boosting Precision to a breakthrough level of 91.9%
and increasing mAP by 1.0 percentage point to 89.7%. When
fully integrating C3_CD_CBAM, CARAFE and SimAM,
the model achieves optimal overall performance: Precision
increases by 1.2 percentage points to 92.6%, Recall remains
stable at 88.0%, and mAP improves by 1.2 percentage points
to 89.9%.
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Fig. 6: Results Comparison

Overall, this ablation study clearly illustrates the perfor-
mance improvements contributed by each module, validates
the effectiveness of our proposed improved model, and
provides a reference for further optimization research.

F. Experimental Design and Result Analysis of Model Gen-
eralization Capability

To further evaluate the adaptability and generalization ca-
pability of the proposed model in different task scenarios, we
selected the publicly available steel surface defect detection
dataset NEU-DET as the benchmark for comparison. This
dataset contains six typical types of industrial surface defects,
which differ significantly from our self-constructed dataset
in terms of defect categories, image texture, and background
noise. Therefore, it serves as an effective platform to test
the detection performance of models across different data
domains.

In this experiment, our model and several mainstream
object detection algorithms (including YOLOvVS, YOLOV9,
YOLOv10, YOLOvI1l and yolovl2) were independently
trained and evaluated on the NEU-DET dataset to ensure
fairness. Evaluation metrics include Precision, Recall, and
mAP, and the results are shown in Table 2. Our model
achieved a high precision of 83.8%, matched YOLOvI11
in recall (99%), and attained a nearly optimal mAP of
79.7%, outperforming YOLOvV9 and YOLOv10. These re-
sults demonstrate the proposed model’s strong generalization
ability and robustness across different scenarios.

TABLE II: Compare dDifferent categories pairwise

Method ImageSize Precision Recall mAP
YOLOvS 200%200 80.2 97.0 71.8
YOLOV9 200*200 83.6 96.0 79.3
YOLOv10 200%200 79.0 95.0 74.1
YOLOv11 200*200 85.2 99.0 81.0
YOLOvV12 200*200 88.1 97.0 77.6
ours 200*200 83.8 99.0 79.7

G. Random Image Detection

In this spherical cementite dataset, the object detection task
is challenging due to the small size of the targets, their large
quantity, and the occurrence of target adhesion. The detection
results are shown in Figure 6, where the red boxes represent
the detections using the baseline model weights, and the
blue boxes represent the detections using the modified model
weights. From the comparison images, it is evident that the
improved YOLOV9 model achieves more precise bounding
box localization in complex backgrounds and dense target
scenarios. The original YOLOV9 model exhibited missed
detections in some images, and the boundary localization was
inaccurate in three images. These results indicate that the
improved YOLOV9 model significantly enhances detection
performance on this dataset, effectively reducing missed
detections. Overall, the detection accuracy has been greatly
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TABLE III: Ablation experiments

C3_CD_CBAM CARAFE SimAM Precision/% Recall/% mAP
YOLOV9 - - - 91.4 87.0 88.7
YOLOV9 v - - 89.5 87.0 89.0
YOLOV9 - v - 89.8 88.0 89.3
YOLOV9 Vv 82.7 87.0 89.1
YOLOV9 v v - 91.9 88.0 89.7
YOLOv9 v v v 92.6 88.0 89.9

improved, validating the effectiveness of our model improve- [10] X. Zhao, L. Wang, Y. Zhang, X. Han, M. Deveci, and M. Parmar, “A

ments.

V. CONCLUSION

This paper constructs a spherical cementite dataset with
rich samples and proposes an improved algorithm based
on YOLOVY, specifically optimized for small object de-
tection tasks in metallographic images. By incorporating
the C3_CD_CBAM module, CARAFE module, and SimAM
module, we have developed a model more suitable for
spherical cementite detection on the basis of YOLOVO.
These modules integrate advanced techniques such as fea-
ture extraction, feature grouping, multi-level feature fusion,
and contextual information processing, significantly enhanc-
ing the model’s performance in complex backgrounds and
small object detection. Experimental results on the dataset
demonstrate a remarkable improvement in detection accu-
racy, reaching 89.9%, and achieving precise identification of
spherical cementite. This not only promotes the development
of metallographic analysis technology but also showcases the
broad application potential of deep learning in the field of
materials science.
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