

Abstract—Recently, attention mechanisms have become

increasingly prominent in recommendation algorithms,
particularly for enhancing personalization and addressing
computational complexity in large-scale datasets. However,
traditional attention mechanisms frequently encounter
obstacles, including high data sparsity and inadequate capture
of domain information. This paper proposes a recommendation
algorithm based on a Dual-Attention Fusion Self-Supervised
Graph Transformer (DSGRec) to address these challenges. The
model integrates sparse attention mechanisms with
domain-aware attention mechanisms, thereby reducing
computational complexity and enhancing the capture of
domain-specific information. Furthermore, self-supervised
learning bolsters the model's robustness and generalization
capabilities. DSGRec leverages graph neural networks (GNNs)
to capture global and local graph structural information,
emphasizing key relationships through sparse processing while
incorporating domain-aware feature mechanisms for dynamic
adjustments of the attention weights across different domains.
Experimental results on three real-world recommendation
datasets demonstrated that DSGRec outperformed existing
baseline models, particularly in sparse data scenarios, showing
higher accuracy and more personalized recommendation
capabilities.

Index Terms—Sparse Attention, Domain-aware Attention,
Self-supervised Learning, Recommendation

I. INTRODUCTION
ith the rapid development of internet technologies and
the continuous surge in data volume, as the demand for

personalized services and content recommendations
continues to grow, recommendation algorithms have become
increasingly crucial. These algorithms are pivotal in
enhancing user experience and commercial promotion by
analyzing user behavior data and predicting preferences, as
evidenced by the growing reliance on such technologies in
sectors like e-commerce, news, and social media. However,
despite the success of traditional recommendation algorithms
(such as collaborative filtering[1] and content-based
recommendation), they still face many challenges, especially
in large-scale, sparse data scenarios with diverse user needs,
where the accuracy and reliability of recommendation results

Manuscript received January 2, 2025; revised June 5, 2025.
Shuhui Han is a postgraduate student at School of Computer Science and

Software Engineering, University of Science and Technology Liaoning,
Anshan, China (e-mail: hsh_yeying@163.com).

Dan Yang is a professor at School of Computer Science and Software
Engineering, University of Science and Technology Liaoning, Anshan,
China (corresponding author to provide email: asyangdan@163.com).

Xi Gong is a lecturer at School of Computer Science and Software
Engineering, University of Science and Technology Liaoning, Anshan,
China (e-mail: askdjy05gx@163.com).

remain limited. This paper investigates self-supervised[2]
recommendation algorithms, aiming to accurately predict
user needs and provide recommendations that meet these
needs in large-scale and diverse contexts.
Recently, Graph Neural Networks (GNNs) and

Transformer models have emerged, offering fresh insights
and methodologies for enhancing recommendation
algorithms. GNNs excel at modeling complex relationships
between users and items, while Transformers[3] demonstrate
outstanding capabilities in handling long-range dependencies
and information fusion through their powerful attention
mechanisms, particularly in tasks involving sequence
modeling[4] and contextual understanding. Self-supervised
learning, a training approach that does not require large
amounts of labeled data, has also witnessed significant
progress in recommendation algorithms. Predicting user
behavior and item features, as demonstrated by the success of
collaborative filtering and content-based filtering algorithms,
significantly enhances the model's generalizability and
robustness. However, despite the advancements in
recommendation algorithms, challenges such as
computational efficiency and information loss persist. For
example, computational efficiency and information loss are
issues. Traditional attention mechanisms[5] often suffer from
high computational complexity and may fail to capture
fine-grained information in sparse data. The challenge of
domain awareness in recommendation algorithms is
significant, as they must navigate the complexities of various
domains or contexts to provide appropriate recommendations.
However, existing attention mechanisms do not fully account
for domain feature differences. Improving the utilization of
graph-structured information remains an area of focus. The
fusion of GNNs and Transformer models for graph data
processing still has significant room for enhancement,
particularly in recommendation tasks involving large-scale
user behavior data and item relationship networks. The
standard attention mechanism used in related work[6] has not
captured the complex, fine-grained relationships between
users and items. In particular, the attention matrix's
computational demands can hinder models' deployment
within large-scale recommendation systems, especially when
dealing with sparse data. Furthermore, Although Transformer
models excel at capturing long-range dependencies through
global attention, in graph data processing applications, they
often neglect domain-specific differences, such as user
behavior and item features, resulting in limited domain
awareness.
This paper proposes a recommendation algorithm based on

the Dual-Attention Fusion Self-Supervised Graph
Transformer (DSGRec) to address these issues. This
approach aims to optimize the learning process of

Dual-Attention Fusion Self-Supervised Graph
Transformer for Recommendation

Shuhui Han, Dan Yang, Xi Gong

W

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3086-3095

__

graph-structured information by combining sparse
attention[7] and domain-aware attention[8] mechanisms and
introduces self-supervised learning further to enhance the
accuracy and robustness of the model. The main
contributions of this paper are summarized as follows:
 Combining sparse attention and domain-aware attention

mechanisms to effectively handle large-scale sparse data
while improving the model's personalized
recommendation ability.

 Leveraging SSL-enhanced strategies and incorporating
adaptive masking and adaptive enhancement mechanisms
can significantly improve the performance and robustness
of recommendation systems.

 Experimental validation shows that the proposed model
outperforms existing methods across multiple
recommendation tasks, especially in sparse data scenarios,
where it significantly enhances both recommendation
accuracy and personalization.

II. RELATEDWORK

This section will review some important research
directions in the field of recommendation algorithms, with a
focus on the combination of Graph Neural Networks (GNNs)
and Graph Transformers[9], as well as the application of
self-supervised learning in recommendation algorithms.

A. Recommendation Algorithms Based on Graph
Transformer
With the rapid development of the recommendation

system field, graph neural networks (GNNs) have emerged as
a pivotal technology for addressing recommendation tasks.
The prevalent utilization of graph data within
recommendation systems allows GNNs to capture user-item
interactions via the graph's structural connections, enhancing
the precision of recommendation outcomes. Building on
GNNs, Transformer models, known for their powerful
self-attention[10] mechanisms, are introduced to
recommendation systems to enhance the model's
expressiveness and computational efficiency.
Graph Transformer models combine graph structure and

self-attention mechanisms, constructing dependencies
between nodes through the adjacency relationships of the
graph to perform node embedding learning. Related work[11]
proposes a new framework based on a continuous-time
bipartite graph and a Time-Aware Collaborative Transformer
(TCT) layer. This layer enhances the self-attention capability
through a collaborative attention mechanism, allowing it to
simultaneously capture the collaborative signals between
users and items while considering the impact of temporal
dynamics on sequential patterns. In related work[12],
multi-path transformers extract aligned multimodal features
from raw data and applied to top-k recommendation tasks.
The Graph Transformer significantly improves performance
when combined with the commonly used recommendation
loss functions in the UGTmodel. In related work[13], a linear
attention module is integrated with the Graph Transformer
architecture to efficiently denoise noisy user/item
embeddings.

B. Recommendation Algorithms Based on Self-Supervised
Learning
Self-supervised learning[14] is a learning method that does

not require a large amount of manually labeled data. In recent
years, it has gained widespread attention in recommendation
algorithms. Self-supervised learning harnesses unlabeled
data by creating proxy tasks, allowing models to learn feature
representations autonomously. By designing suitable proxy
tasks, recommendation algorithms can autonomously
discover latent information and user preferences from
behavior data without needing labeled data, thus enhancing
their performance and improving the model's
recommendation accuracy and robustness. Related work[15]
classifies existing self-supervised recommendation methods
into four major categories: contrastive learning, generative
learning, predictive learning, and hybrid learning, and
introduces three key data augmentation methods that play an
important role in self-supervised recommendation. Related
work[16] proposes a multi-task self-supervised learning
framework for large-scale item recommendations to address
the label sparsity problem by capturing the latent
relationships between item features. Related work[17]
introduces a novel multimodal self-supervised learning
method, which designs a data augmentation paradigm
through adversarial perturbation, effectively capturing the
intertwined effects of user interactions. Related work[18]
presents a contrastive self-supervised learning framework for
the sequential recommendation, introducing two information
enhancement operators that generate high-quality views by
leveraging the correlations between items. These correlations
are subsequently utilized for contrastive learning.

C. Recommendation Algorithms Based on Self-Supervised
Learning
Recently, the attention mechanism has gained widespread

use in recommendation algorithms, mainly to improve their
modeling of complex user-item relationships. The MIND
model[19] is an attention-based model that employs two
different attention mechanisms: the first is the self-attention
mechanism[20], which allows the model to focus on different
parts of the input sequence with varying degrees of
importance, and the second is the additive attention
mechanism[21], which computes a weighted sum of values
based on the alignment scores. The MIND model calculates
alignment scores using a feed-forward network with hidden
layers and calculates the final scores by applying the softmax
function to the alignment scores, which helps normalize the
scores into a probability distribution. The NRMS[22] model
introduces a neural news retrieval method with multi-head
self-attention. The multi-head self-attention mechanism
enhances news representation by learning from headlines,
simultaneously modeling word interactions, and capturing
the context of the news content more effectively.

III. PRELIMINARIES

This section of the paper is an essential guide to employing
fundamental symbols consistently throughout the document.
It thoroughly explains each symbol's meaning, making it
clear and understandable for readers. Furthermore, it
concisely overviews the paper's main problem area. To
further assist the reader, Table I has been included below.

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3086-3095

__

This table provides a comprehensive list of specific symbol
descriptions, allowing for quick reference and aiding in
comprehending the complex concepts discussed within the
paper.

TABLE I SYMBOL DESCRIPTION

Symbol Description

 1 2, ,..., IU u u u the set of users

 1 2, ,..., JI i i i the set of items
I JA  the interaction between the user and the item

,i ja the interaction between the user iu and the item ji

 ,G V E user-item interaction graph

V U I  the set of nodes of the graph, including all users and
items

, ,{ | 1}i j i jE e a  the set of edges in G

i,jŷ
the interaction score between the user iu and the

item ji

(;)f G  function based on graph G and model parameters 

Definition 1. The collection of users and items. In a
specific scenario where we have I number of users and J
number of items, the set of users  1 2, ,..., IU u u u symbolizes
the entire group of users. In contrast, the set of items

 1 2, ,..., JI i i i represents the entire collection of items. This
means that every user in this system is included within the set
of users. Similarly, every item available or considered within
this framework is included within the set of items.
Definition 2. Matrix of interactions between users and

items. The matrix I JA  represents the user-item
interaction matrix, which is a matrix with I rows and J
columns that ,i ja indicate whether the user iu interacts with
the item ji or not.
Definition 3. User-Item Interaction graph. Define a

user-item interaction graph  ,G V E , where V is the set of
graph nodes representing all users and items in the system.
The node set V includes all users and items, i.e. V U I  . E
is the set of edges of the graph, representing the interactions
between users and items. The edge set E includes all

user-item interaction pairs, i.e., indicating an interaction
between the user iu and the item ji .
In DSGRec, the user-item graph G is constructed by

transforming the interaction matrix from the original data.
The interaction information , 1i ja  indicates an interaction
between the user iu and the item ji . Suppose , 0i ja  it
indicates no interaction between the user iu and the item ji .
When the graph  ,G V E is constructed, the
recommendation algorithm can predict the interaction
between the user and the item through the graph's structure.
The prediction function of the recommendation algorithm is
defined as follows:

i,jŷ (;)f G  (1)
Here, i,jŷ it represents the predicted rating between the

user and the item. At the same time, it is a function based on
graph G and model parameters, which calculates the
predicted value using graph structure and node features.

IV. ALGORITHM FRAMEWORK

This section provides a detailed introduction to the
proposed recommendation algorithm, DSGRec, which is
divided into four parts: 1) Feature Embedding, via anchor
nodes, captures global topological information, refining user
and item node embeddings. This enhances collaborative
modeling and enriches representations for self-supervised
learning; 2) Feature Extraction involves personalized
knowledge transfer, deriving the final embedding
representations of users and items by considering factors
from both the user and item sides; 3) Adaptive Fusion
leverages a graph masking autoencoder to enhance the
user-item interaction graph, with a masking strategy that
prioritizes relevant interactions, thereby improving the
recommendation algorithm's performance; 4)
Recommendation Prediction, which uses a loss-based
approach combined with Bayesian Personalized Ranking
(BPR) loss[23] for model optimization and the final
recommendation prediction. The model diagram of DSGRec
is shown in Figure 1.

Fig. 1. Overall Framework of the DSGRec. The selected anchor nodes are aggregated through the GCN layer to obtain the aggregated topological embedding,
with distances and weights labeled. After passing through sparse attention and domain-aware attention, a pooling operation is performed, followed by adaptive
enhancement to obtain the final embedding.

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3086-3095

__

A. Feature Embedding
First, several user-item pairs are selected from the

user-item interaction graph  ,G V E , referred to as the
anchor node-set AV V , and sampled. Anchor nodes are
crucial for capturing global topological information and
enhancing the model's understanding of graph structure
through their relationships with target nodes. Next, the
distance between the target node and each anchor node is
computed. For each target node kv , the distance ,k ad to each
anchor node av is calculated. This distance is the minimum
number of edges that must be traversed in the graph to reach
from kv to av . These distances measure topological
proximity between the target and anchor nodes, forming the
basis for subsequent embedding updates. The relevance
weight ,k a ​ between the target node kv and the anchor
node av is determined by their distance, and the calculation
formula is as follows:

,
,,

1 ,
1

0,

k a
k ak a

ifd q
d

otherwise


   



(2)

Here, q is a maximum distance threshold that limits the
influence of distant anchor nodes on the target node. In this
way, the model can focus more on anchor nodes with a
stronger association with the target node. During the
propagation process in each graph layer, the target node
embedding is updated based on the anchor node weights.
The formula is as follows:

1 1
,W /

a A

l l l l
k k a k a A

v V
h h h V  



        (3)

l
kh is the embedding representation of the target node kv

at the l-1-th layer. 1l
kh
 ​ And 1l

ah
 ​ represent the

embeddings of the target node kv and anchor node av at the
l-1-th layer, respectively. Wl is a learnable linear
transformation matrix used to map node embeddings into a
new feature space.     Denotes the concatenation
operation of vectors from the target node embedding to the
anchor node embedding. After multiple layers of graph
propagation (a total of L layers), the resulting embedding
matrix LH contains higher-order global topological
information of the graph. These embeddings are further
injected into their corresponding node representations to
form the final global topological embeddings, as shown in
the following formula:

  ; T
lH TE H W (4)

TE is a parameterized Transformer designed to
incorporate global topological information into node
embeddings, capturing the complex collaborative
relationships between user embedding uh and items

embedding ih (,u ih h H).

B. Feature Extraction
The attention layer of DSGRec is implemented by

combining sparse attention and domain-aware attention. In
graph neural networks, the attention layer is crucial for
determining the attention weights that reflect node similarity.

These weights are then leveraged to update the node
embeddings, effectively capturing the graph's structure and
relationships. These attention weights are based on the
graph's adjacency information and the relationships between
nodes, and they are ultimately used to improve the
embedding representations of the recommendation model.
1) Sparse Attention
In DSGRec, the sparse attention module calculates

attention weights only between adjacent nodes in the
user-item graph to reduce computational complexity while
preserving local relationships between nodes. Sparse
attention aims to highlight key node relationships efficiently
by minimizing computations on non-essential pairs. For any
given node pair (,)k av v , sparse attention selects important
connections by calculating the weighted attention weights

,k as ​ with the specific computation formula as follows:

,

() ()
max()k Q a k

k a

hW hW
s Soft

d


 (5)

Here ah ​ are the embeddings of the target node kv and
item av , respectively. QW and KW are the learned query and
key projection matrices, where d represents the dimension of
the embeddings used for scaling purposes. The softmax
function confines the range of the attention weights.
Then, through the sparsification operation, the attention

range is restricted to the high-importance neighborhood:
, ,

,

, ,
0,
k a k a

k a

s ifd q
s

otherwise
 


 (6)

,k ad ​ represents the distance between the nodes, and q is
the predefined maximum distance threshold. Sparse
attention is computed only for adjacent nodes, avoiding the
high computational complexity of calculating over the entire
graph, and it effectively captures the local interaction
information between users and items.
2) Domain-Aware Attention
To address the domain discrepancy problem arising from

interactions between users and items, such as clicks,
favorites, etc., domain-aware attention computes the
similarity between nodes based on different interaction types
and dynamically adjusts the attention weights. This
improves the interaction between nodes of different
interaction types in the graph. Domain-aware attention
adjusts the weights of different domains by introducing
domain embeddings, enhancing the ability to capture
cross-domain semantics. The domain-aware similarity is
calculated using the following formula:

, ((,))k a k R a k ag h W h Domain v v   (7)

RW ​ is the learned matrix for the domain embeddings.
(,)k aDomain v v is the weighted function of domain relevance,

typically computed by the dot product of the domain
embeddings, and  is the activation function.
Based on the domain-aware similarity, the domain

attention weight ,k aw ​ is given by:

, , ,k a k a k aw s g  (8)
This means that the sparse and domain-aware attention

weights are multiplied for fusion.
3) Fusion of Dual Attention
Fusing these two attention mechanisms allows the model

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3086-3095

__

to consider the relationships between nodes and dynamically
adjust the weights based on the interaction types between
users and items, thus achieving more detailed node
representations. To integrate the efficiency of sparse
attention with the semantic modeling capabilities of
domain-aware attention, this paper introduces a fusion
module that blends the outcomes of both attention
mechanisms with weighted consideration. Using the overall
performance of the model. The final attention weight is
given by:

, ,
()

exp(() ())
exp(() ())

k Q a K
k a k a

k Q b Kb N k

hW hW
w

hW hW








 


(9)

The aggregation is performed to obtain the probability
scores for the graph edges:

, ,
1

/
H

h
k a k a

h
H 



 (10)

,

,(,)

(, |)
k a

k a
k a

k av v

p v v G













(11)

From the edge set E, edges are independently sampled
according to their probability scores (, |)k ap v v G ​ , where

| |R E  edges are selected. The hyperparameter R 
controls the size of the selected important subset of edges.

C. Adaptive Fusion Module
This module provides personalized features for individual

tasks, delivering customized suggestions catering to users'
needs. More precisely, the model utilizes embeddings
generated by the graph Transformer and applies advanced
reasoning methods to predict user preferences across various
items. This process can be formally represented as follows:

1
, ,

(,)

;
k a R

L L L l
i j i j k k a a

v v

y z z z z


 



    (12)

0
1 ,(, ()) ||H h h

h k a V a ka
Z GT G TE H W h h   (13)

,i jy  represents the predicted probability that the user

iu will choose item ji . The embeddings L
iz and L d

jz  ​
are used to predict the interaction between the user and item,
while the embedding L

kz of vertex kv is obtained through L
layers of LightGCN. RE ​ represents the sampled edge set

from the graph RG .In , 1/k a k ad d  , kd and ad ​ are the
degree-normalized Laplacians of nodes kv and av . The
zero-order embeddings 0Z ​ are aggregated through the
multi-head attention of the topology-aware graph
Transformer, where H is the number of attention heads and

/h d H d
VW

 represents the value transformation matrix in
the self-attention mechanism. A residual connection is
employed, with the topology-aware embeddings ah ​
serving as input.
1) Adaptive Masking
The adaptive module first computes the relevance score

for each user-item interaction edge to determine which
edges represent the most important interaction relationships
in the recommendation algorithm. These scores generate the
masked graph  ,M MG V E , where edges with high
relevance scores are retained, while edges with low scores
are masked. The generation of the masked graph is based on
sampling the inverse of the relevance scores:

, ,
() () \

(|)
k a M k a M

M M
M M M k a k a

v v E v v E E

E p E G  
 

   (14)

,
, ,

, ,
(,)

1| | | |; ;

k a

M
k aM M

M M k a k aM
k a k a

v v E

E E


  
  



  


(15)

In the masked graph, the edge sampling probability is
denoted as ()M  ​ ​ , ,

M
k a representing the probability of

selecting the edge between nodes kv and av in the masking
generator. ,

M
k a ​ is the unnormalized attention score, which

is computed from the inverse of the edge weight ,k a ​ , and
a small value  is added to avoid division by zero. The edge
density in the masked graph is higher than that of the
reasoning graph, ensuring that only the most important
reasoning edges are removed, thus achieving noise-resistant
encoding. The masked graph MG with edge set ME ​ is
input to the autoencoder network, and the process is
represented as follows:

1
,

(,)

(, ());
k a M

lL l
M k a a

v v E

S GT G TE S s s


   (16)

where ()I J dS   represents the final embedding in the
autoencoder. ()GT  and ()TE  represent the graph
Transformer network and the topology information encoder,
respectively. The initial embeddings of the L-layer local
node LS ​ encoded by LightGCN are the initial
embeddings. The edge density in the masked graph is higher
than in the relevance graph, meaning that only the most
important relevance edges are removed in the masked graph.
This reduces the noise impact and enhances the model's
stability.
2) Adaptive Enhancement
The generated masked graph MG ​ is input into the graph

masking autoencoder, which learns valuable interaction
patterns by reconstructing the masked user-item interactions.
Specifically, the graph masking autoencoder workflow
involves the following steps: The graph transformer and
topology information encoder process the masked graph.
The graph transformer integrates the masked node
embeddings with locally encoded node embeddings (via
LightGCN) to refine the initial node representations.
Reconstruction Objective: The autoencoder aims to
reconstruct the masked user-item interactions. The model
learns important interaction patterns during training by
minimizing the reconstruction error.
Adaptive enhancement enhances the user-item interaction

graph via graph masking autoencoder, utilizing relevance
score-based masking. It enables the model to concentrate on
crucial interaction relationships, thus significantly boosting
recommendation algorithm performance. Adaptive
enhancement minimizes noise impact, yielding more precise
feature representations for SSL.

D. Recommendation List Generation
The model determines user preferences for items by

calculating user and item embeddings. Specifically, its
prediction task revolves around estimating the interaction
scores between users and items. Various loss functions are
devised to enhance the model's predictive accuracy, each
playing a pivotal role in distinct modules, thereby aiding the
model in discovering the underlying patterns of user-item

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3086-3095

__

interactions.
For each user iu and item ji , their interaction score is

calculated as follows:
,ˆi j i jy s s (17)

is ​ and js are the embedding representations of the user

iu and item ji . These embeddings are obtained through the
propagation process of the graph transformer, capturing the
complex interactions between users and items.
During the training phase, the embedding matrix

()I J dS   is used to train the recommendation model. The
goal of model optimization is to minimize the following
pointwise loss function:

, 1

Re
'

exp()
log

exp()
i j j

i j
c

a p P i j

s s
L

s s







  
(18)

The MAEL loss is used to reconstruct the masked user-item
interaction patterns, and the objective of the adaptive
enhancement module is to learn more effective interaction
representations by minimizing the reconstruction error. The
specific calculation is as follows:

,
(,) \

ˆ()
k a M

MAE k a
v v E E

L y


  (19)

By masking the important edges in the graph structure and
using the graph transformer for reconstruction, the loss
function MAEL ​ helps the model focus on more important
interaction patterns, reducing noise interference.
The model predicts user preferences for items based on

the embeddings and reasoning information extracted by the
graph transformer, with the calculation process as follows:

'

1
, ',

(,)

,
k k R

L L L L
i j k k k ki j

v v E

y z z z z 



    (20)

,i jy ​ represents the predicted score of the user iu for the
item ji , and L

kz ​ is the L-th layer embedding of vertex kv .
The aggregation is performed using the edge set of the
sampled reasoning graph RE , which , ' '1 /k k k kd d   is the
Laplacian normalization coefficient based on the vertex
degrees. The model completes multi-head embedding
aggregation through the topology-aware graph Transformer,
combining residual connections to obtain the zero-order
embedding

0
Z . Based on the predicted score for each

user-item interaction (,)i ju i , the calculation is as follows:

RD , ,
(, ,)

log ()
i j j

i j i j
u p p

L y y  

 

   (21)

(, ,)i j ju p p  forms a triplet of user, positive, and negative
items, and ()  is the sigmoid function.
By combining all of the aforementioned loss functions,

the model completes training by optimizing the following
objective function:

2
Re 1 2c MAE RD F

L L L L       (22)

1 and 2 are hyperparameters used to balance the loss
functions. The last term is the Frobenius norm regularization
applied to the parameters to prevent overfitting.

V. EXPERIMENTS

This section introduces the datasets and evaluation

metrics used in the experiments, presents extensive
comparative and ablation studies, and provides a detailed
analysis of the experimental results.

A. Experimental Setup
1) Datasets
The model is tested on three widely used real-world

datasets to evaluate recommendation algorithms. These
datasets include Yelp, Ifashion, and LastFM, covering user
rating behaviors across various items. The Yelp dataset
contains user reviews of businesses and is widely used for
location-based research and business recommendations.
iFashion is a publicly accessible dataset focused on
fashion-related research, providing suggestions for
appropriate fashion items.is based on user preferences and
historical behaviors. The LastFM dataset, known for its
extensive user ratings and listening history, is a cornerstone
in music recommendation research, as evidenced by its
application in studies such as those in references 1 and 2.
Detailed information is provided in Table II.

TABLE II STATISTICAL INFORMATION OF THE DATASETS

Datasets Yelp Ifashion LastFM

Users 42,712 31,668 1,889
Items 26,822 38,048 15,376

Interaction 182,357 618,29 51,987
Density 1.6

4e 5.1
4e 1.8

3e

2) Evaluation Metrics
Two common evaluation metrics are used to assess the

recommendation performance of the model: Recall@k and
Normalized Discounted Cumulative Gain (NDCG@k),
where @k indicates the ranking position, typically referring
to the top-k items in the recommendation list. In this case,
k=10,20,40.
 Recall@k. This measures the overlap between the items

the algorithm recommends and the items the user is
interested in. It is commonly used to evaluate the
comprehensiveness of the recommendations. The
calculation is as follows:

 
:

Re @

k
rel

uu

rel
u

i i

call k

 



    
   (23)

Where rel
u represents the set of all relevant items for user

u, and
 k

u


are the top-k items recommended by the
algorithm for user u.

 NDCG@k. This is a metric used to evaluate the ranking
quality. It considers not only the relevance of the
recommended items but also the order in which they are
presented. NDCG is particularly suitable for
ranking-based recommendation tasks (such as movies,
products, etc.), and the calculation is as follows:

1
2

1 1@
log (1)

k

j
j

NDCG k
k i


 (24)

Where ji denotes the position of the relevant j-th item in
the recommendation list. If the j-th item is not in the

recommendation list, the
2

1
log (1)ji 

becomes 0.

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3086-3095

__

To evaluate the model's performance, metrics such as
precision and recall are used to assess the top-10, top-20, and
top-40 items in the recommendation list. The interaction
data of each dataset is split into training, validation, and test
sets in 0.7:0.05:0.25 ratio. A comprehensive ranking
protocol is employed to evaluate the accuracy of
recommendations for users across the entire item set. This
protocol helps reduce evaluation bias caused by negative
sampling. The higher the metric value, the better the
recommendation performance of the DSGRec model.
3) Baselines
The DSGRec model is compared with the following 11

baseline methods:
 BiasMF[24]. Through matrix factorization, BiasMF

maps users and items into a latent space and introduces
bias terms to account for the personalized preferences of
users and items, thereby improving prediction accuracy.

 NGCF[25]. NGCF captures higher-order collaborative
information through a multi-layer graph neural network,
thus delving into the complex relationships between users
and items.

 AutoRec[26]. AutoRec uses an autoencoder structure to
learn user and item embedding representations by
reconstructing observed interactions, making it
particularly suitable for handling sparse data.

 GCCF[27]. GCCF leverages graph convolutional
networks (GCNs) to capture higher-order information on
users and items for collaborative filtering, removing
nonlinear transformations and introducing residual

connections to enhance the stability of graph
convolutions and recommendation accuracy.

 LightGCN[28]. LightGCN is a simplified version of
graph convolutional networks, commonly used for
recommendation tasks, which remove unnecessary
feature transformations and nonlinear activations.

 NCL[29]. NCL uses the EM algorithm to cluster users
and then performs neighborhood-enhanced contrastive
learning within the clusters to improve recommendation
accuracy.

 HCCF[30]. NCCF builds global and local views based on
hypergraphs for contrastive learning, better capturing the
complex relationships between users and items.

 SGL[31].SGL builds multiple views through random
data augmentation techniques (such as node dropout,
edge dropout, etc.), enhancing the model's learning of
interaction structures and improving robustness.

 GFormer[32]. GFormer combines graph neural networks
and Transformer architecture in a rationally aware
generative self-supervised learning process, focusing on
capturing long-range dependencies in graph-structured
data.

 PinSage[33]. PinSage combines graph convolutional
networks with a random walk-based message-passing
mechanism to efficiently encode large-scale user-item
interaction graphs.

 SLRec[34]. This method employs contrastive learning on
node features to enhance the regularization of
recommendation learning.

TABLE III PERFORMANCE COMPARISON OF DSGREC WITH BASELINES ON THREE DATASETS

Dataset
s Metric BiasMF AutoRe

c
PinSag

e NGCF GCCF LightG
CN SLRec NCL HCCF SGL GForm

er
DSGRe

c

LastFM

Recall
@10 0.0609 0.0543 0.0899 0.1257 0.1230 0.1490 0.1133 0.1491 0.1502 0.1496 0.1574 0.1591

NDCG
@10 0.0696 0.0599 0.1046 0.1498 0.1452 0.1739 0.1384 0.1745 0.1773 0.1775 0.1831 0.1858

Recall
@20 0.0980 0.0887 0.1343 0.1918 0.1816 0.2188 0.1747 0.2196 0.2210 0.2256 0.2355 0.2397

NDCG
@20 0.0860 0.0769 0.1229 0.1759 0.1681 0.2018 0.1613 0.2021 0.2047 0.2070 0.2142 0.2179

Recall
@40 0.1450 0.1550 0.1990 0.2794 0.2649 0.3156 0.2533 0.3130 0.3180 0.3156 0.3300 0.3331

NDCG
@40 0.1067 0.1031 0.1515 0.2146 0.2049 0.2444 0.1930 0.2437 0.2484 0.2498 0.2567 0.2591

Yelp

Recall
@10 0.0122 0.0230 0.0278 0.0438 0.0484 0.0422 0.0422 0.0493 0.0518 0.0522 0.0561 0.0569

NDCG
@10 0.0070 0.0133 0.0171 0.0269 0.0296 0.0254 0.0259 0.0301 0.0318 0.0319 0.0350 0.0352

Recall
@20 0.0198 0.0410 0.0454 0.0678 0.0754 0.0761 0.0650 0.080 0.0796 0.0819 0.0878 0.0885

NDCG
@20 0.0090 0.0186 0.0224 0.0340 0.0378 0.0371 0.0327 0.0402 0.0391 0.0410 0.0442 0.0449

Recall
@40 0.0303 0.0678 0.0712 0.1047 0.1163 0.1031 0.1026 0.1193 0.1244 0.1249 0.1328 0.1345

NDCG
@40 0.0117 0.0253 0.0287 0.0430 0.0475 0.0411 0.0418 0.0482 0.0510 0.0517 0.0551 0.0558

Ifashio
n

Recall
@10 0.0302 0.0309 0.0291 0.0375 0.0373 0.0437 0.0373 0.0474 0.0489 0.0512 0.0542 0.0547

NDCG
@10 0.0281 0.0264 0.0276 0.0350 0.0352 0.0416 0.0353 0.0446 0.0464 0.0487 0.0520 0.0523

Recall
@20 0.0523 0.0537 0.0505 0.0636 0.0639 0.0751 0.0633 0.0797 0.0815 0.0845 0.0894 0.0899

NDCG
@20 0.0360 0.0351 0.0352 0.0442 0.0445 0.0528 0.0444 0.0558 0.0517 0.0603 0.0625 0.0642

Recall
@40 0.0858 0.0921 0.0851 0.1062 0.1047 0.1207 0.1043 0.1283 0.1308 0.1345 0.1425 0.1432

NDCG
@40 0.0474 0.0483 0.0470 0.0585 0.0584 0.0677 0.0583 0.0723 0.0744 0.0773 0.0818 0.0823

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3086-3095

__

4) Parameter Setting
To ensure a fair comparison, the DSGRec model is

implemented using the PyTorch framework, and the Adam
optimizer is used for parameter updates, with a learning rate
set to 1 3 and no learning rate decay applied. For the
hyperparameters of the DSGRec model, the embedding
dimension is set to d=3 by default, the size of the anchor
node-set is set to AV 32 ​ , and the graph inference
retention rate R is adjusted within the range of [0.5, 0.9].
The coefficients for the various loss functions are searched
and optimized. Within the following
ranges  1 0.5,1,2,4,8  ,  1 2 3 4

2 1,1e ,1e ,1e ,1e     ,

 3 4 5 6 7 8
3 1e ,1e 1e 1e 1e 1e       ， ， ， ， . Additionally, the number of

graph Transformer layers is adjusted within the range of [1,
6], and the number of graph convolutional layers is tuned
within the range of [1, 5].

B. Analysis of Experimental Results
Extensive experiments are conducted on the LastFM, Yelp,

and iFashion datasets, and compared with ten baseline
methods. The experimental results are shown in Table III.
The results indicated that:
 The models (BiasMF, AutoRec) utilize traditional

collaborative filtering methods, where BiasMF optimizes
matrix factorization by introducing bias scores, and
AutoRec learns embedding representations by
reconstructing interaction data using an autoencoder.
These methods demonstrate effectiveness in
recommendation tasks. The models (PinSage, NGCF,
LightGCN, GCCF) are based on graph neural network
methods, which effectively capture higher-order
collaborative signals between users and items through
different message-passing mechanisms. These models,
namely NCL, SGL, and HCCF, significantly improve
recommendation performance by leveraging
self-supervised learning strategies. NCL integrates
clustering with contrastive learning, SGL employs various
data augmentation techniques to create views for
contrastive learning, and HCCF constructs global and
local views using hypergraphs to enhance performance.
The introduction of self-supervised learning proves its
significant effect on recommendation algorithms.

 Experimental results indicate that the DSGRec model
consistently surpasses all other baseline models, achieving
notable enhancements in evaluation metrics. This
underscores the significant improvement in model
performance attributed to the fusion of sparse attention
and domain-aware attention within the attention layer.
Among the datasets, the LastFM dataset stands out for its
rich user-item interaction data. Users on this platform
exhibit diverse interests, which could greatly benefit from
the application of sparse attention and domain-aware
attention.

C. Model Analysis
This section delves into the efficacy of each module within

the DSGRec model, scrutinizing the influence of pivotal

parameters. It is accompanied by pertinent ablation
experiments and a detailed parameter sensitivity analysis to
understand better their respective roles in the model's overall
performance. We will explore how each component of the
DSGRec model contributes to its effectiveness, examining
the key parameters that drive its functionality. Through a
series of ablation studies, we aim to isolate and evaluate the
impact of individual modules, thereby gaining insights into
their importance. Additionally, a comprehensive parameter
sensitivity analysis will be conducted to assess how
variations in these parameters affect the model's behavior and
accuracy. This thorough examination will provide a deeper
understanding of the intricate interplay between the model's
components and performance, ultimately shedding light on
optimizing the DSGRec model for enhanced outcomes.
1) Ablation Experiments
In order to ascertain the extent to which data augmentation

techniques and attention mechanisms contribute to the
model's performance, two distinct variants of the DSGRec
model are created by systematically removing various
modules. To be precise, DSGRec-n stands for a variant of the
model that does not employ sparse attention when computing
the relationships between adjacent nodes. At the same time,
DSGRec-a denotes a variant that does not utilize
domain-aware attention to fine-tune the attention weights.

TABLE IV PERFORMANCE COMPARISON OF DSGREC WITH OTHER
ABLATION METHODS

Datasets Metrics DSGRec-n DSGRec-a DSGRec

Yelp

Recall@10 0.0563 0.0571 0.0569

NDCG@10 0.0351 0.0353 0.0352

Recall@20 0.0888 0.0878 0.0885

NDCG@20 0.0446 0.0439 0.0449

Recall@40 0.1341 0.1339 0.1345

NDCG@40 0.0553 0.0554 0.0558

LastFM

Recall@10 0.1579 0.1580 0.1591

NDCG@10 0.1844 0.1839 0.1858

Recall@20 0.2362 0.2366 0.2397

NDCG@20 0.2153 0.2149 0.2179

Recall@40 0.3305 0.3308 0.3317

NDCG@40 0.2571 0.2570 0.2577

Ifashion

Recall@10 0.0544 0.0547 0.0547

NDCG@10 0.0525 0.0520 0.0523

Recall@20 0.0897 0.0898 0.0899

NDCG@20 0.0640 0.0647 0.0642

Recall@40 0.1429 0.1432 0.1432

NDCG@40 0.0821 0.0819 0.0823

To illustrate the impact of these changes, experiments are
conducted using the Yelp, the Ifashion, and LastFM datasets,
with the results presented in Table IV.
To evaluate the contributions of the key components in

DSGRec, we conduct ablation experiments by removing the
sparse attention mechanism and the domain-aware attention
mechanism separately. As shown in Table IV, the complete
DSGRec consistently achieves the best performance across
all three datasets and most evaluation metrics, indicating the

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3086-3095

__

effectiveness of the proposed architectural components.
Specifically, the DSGRec-n variant, which omits the sparse
attention mechanism, shows a slight but consistent drop in
performance. For instance, Recall@40 decreases from
0.1345 to 0.1341 on the Yelp dataset, and NDCG@20
decreases from 0.0449 to 0.0446. This suggests that the
sparse attention mechanism is crucial in filtering noisy or less
relevant neighboring information, enabling more focused and
informative user-item interaction modeling.
Similarly, the DSGRec-a variant, which removes the

domain-aware attention module, performs worse than the
entire model, particularly on the LastFM and iFashion
datasets. The decline in NDCG scores (e.g., from 0.2179 to
0.2149 on LastFM at NDCG@20) highlights the importance
of domain-aware attention in adjusting attention weights
according to domain-specific characteristics. This adaptive
weighting strategy helps the model capture heterogeneous
semantics across different domains better. Overall, these
ablation results demonstrate that both modules—sparse
attention and domain-aware attention—complement each
other in enhancing the expressiveness and precision of the
learned representations, contributing significantly to the
overall performance of DSGRec.
2) Analysis of Hyperparameters
Discussion on the Impact of Hyperparameters b2-value

and keeprate on DSGRec Results.
 Impact of b2-value.b2-value controls the influence of the

BPR loss. When b2's value becomes excessively high, the
BPR loss may dominate the overall loss, changing the
model's optimization path. Using the LastFM dataset as an
example, with all other hyperparameters fixed, the
b2-value is adjusted between 1 and 4. The experimental
results are shown in Figure 2:

Fig. 2. Performance Comparison of different b2-values

The figure shows that the model's performance peaks when
b2=3. This suggests that the BPR loss function is pivotal in
the recommendation model's loss function.
 Impact of keeprate
keeprate controls the proportion of edges retained when

constructing the graph's relevance. Extracting a subgraph
from the original graph determines how many user-item
interaction relationships are preserved. With all other
hyperparameters held constant, retention rates in the ranges
of {0.9, 0.95, 0.99, 0.999} for keeprate are evaluated using
the LastFM dataset as a case study. The results are shown in
Figure 4:
As depicted in the illustration, the performance of the

model's recommendations exhibits a significant variation in
response to alterations in the keeprate parameter. When the
keeprate is set to 0.99, the model demonstrates its optimal
performance. It is essential to recognize that hyperparameter
values that stray too far in either direction be it excessively
large or small, can lead to a decline in the model's
performance. This decline may manifest as underfitting,
where the model fails to capture the underlying pattern of the
data, or overfitting, where the model becomes overly
complex and performs well on training data but poorly on
unseen data. Therefore, selecting an appropriate keeprate
value is essential for ensuring the model reaches its peak
performance potential.

Fig. 3. Performance Comparison of different keeprates

VI. CONCLUSION
In this paper, we propose a dual-attention fusion

self-supervised recommendation framework, DSGRec, based
on a graph transformer algorithm. It effectively addresses the
issues of sparse data modeling and domain discrepancy
stemming from varied user-item interaction patterns in
recommendation algorithms. By combining sparse attention
and domain-aware attention mechanisms, DSGRec
significantly enhances the model's ability to capture the
complex relationships between users and items while
reducing computational complexity and storage requirements.
Furthermore, DSGRec incorporates self-supervised learning,
enhancing its robustness and generalization in large-scale,
sparse data environments. Experimental results have shown
that DSGRec outperformed several existing methods on the
LastFM, Yelp, and Ifashion datasets, demonstrating its

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3086-3095

__

effectiveness and practicality. Future work will incorporate
real-time data update mechanisms to implement more
dynamic recommendations and improve the model's
performance in complex real-world scenarios.

REFERENCES
[1] L. Boratto, F. Fabbri, G. Fenu, et al., "Fair Augmentation for Graph

Collaborative Filtering," in Proc. 18th ACMConf. Recommender Syst.,
pp. 158–168, 2024.

[2] C. Huang, L. Xia, X. Wang, X. He, and D. Yin, "Self-supervised
learning for recommendation," in Proc. 31st ACM Int. Conf. Inf.
Knowl. Manage. (CIKM), pp. 5136–5139, 2022.

[3] Y. Xiang, H. Yu, Y. Gong, et al., "Text Understanding and Generation
Using Transformer Models for Intelligent E-commerce
Recommendations," ArXiv Preprint 2024, Available:
https://arxiv.org/abs/2402.16035.

[4] Y. Dang, E. Yang, G. Guo, et al., "Uniform sequence better: Time
interval aware data augmentation for sequential recommendation," in
Proc. AAAI Conf. Artif. Intell., vol. 37, no. 4, pp. 4225–4232, 2023.

[5] C. Zhou, et al., "Atrank: An attention-based user behavior modeling
framework for recommendation," in Proc. AAAI Conf. Artif. Intell.,
vol. 32, no. 1, pp.4564-4571, 2018.

[6] Z. Hou, X. Liu, Y. Cen, et al., "GraphMAE: Self-supervised masked
graph autoencoders," in Proc. 28th ACM SIGKDD Conf. Knowl.
Discov. Data Min., pp. 594–604, 2022.

[7] W. Huang, Y. Deng, S. Hui, et al., "Sparse self-attention transformer
for image inpainting," Pattern Recognition, vol. 145, Art. no. 109897,
2024.

[8] L. Yang, Z. Liu, Y. Dou, et al., "ConsisRec: Enhancing GNN for social
recommendation via consistent neighbor aggregation," in Proc. 44th
Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, pp. 2141–2145,
2021.

[9] L. Xia, C. Huang, Y. Xu, et al., "Knowledge-enhanced hierarchical
graph transformer network for multi-behavior recommendation," in
Proc. AAAI Conf. Artif. Intell., vol. 35, no. 5, pp. 4486–4493, 2021.

[10] Z. Fan, Z. Liu, Y. Wang, et al., "Sequential recommendation via
stochastic self-attention," in Proc. ACM Web Conf., pp. 2036–2047,
2022.

[11] Z. Fan, Z. Liu, J. Zhang, et al., "Continuous-time sequential
recommendation with temporal graph collaborative transformer," in
Proc. 30th ACM Int. Conf. Inf. Knowl. Manage., pp. 433–442, 2021.

[12] Z. Yi and I. Ounis, "A unified graph transformer for overcoming
isolations in multimodal recommendation," in Proc. 18th ACM Conf.
Recommender Syst., pp. 518–527, 2024.

[13] Z. Yi, X. Wang, and I. Ounis, "A directional diffusion graph
transformer for recommendation," ArXiv Preprint 2024, Available:
https://arxiv.org/abs/2404.03326.

[14] C. Huang, X. Wang, X. He, et al., "Self-supervised learning for
recommender system," in Proc. 45th Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, pp. 3440–3443, 2022.

[15] X. Ren, L. Xia, Y. Yang, et al., "SSLRec: A self-supervised learning
framework for recommendation," in Proc. 17th ACM Int. Conf. Web
Search Data Min., pp. 567–575, 2024.

[16] Z. Hu, G. Xu, X. Zheng, et al., "SSL-SVD: Semi-supervised
learning--based sparse trust recommendation," ACM Transactions on
Internet Technology (TOIT), vol. 20, no. 1, pp. 1–20, 2020.

[17] W. Wei, C. Huang, L. Xia, et al., "Multimodal self-supervised learning
for recommendation," in Proc. ACMWeb Conf., pp. 790–800, 2023.

[18] Z. Liu, Y. Chen, J. Li, et al., "Contrastive self-supervised sequential
recommendation with robust augmentation," ArXiv Preprint 2021,
Available: https://arxiv.org/abs/2108.06479.

[19] T. Liu, C. Xu, Y. Qiao, et al., "News recommendation with attention
mechanism," ArXiv Preprint 2024, Available:
https://arxiv.org/abs/2402.07422.

[20] Y. Hou, W. Gu, K. Yang, et al., "Deep reinforcement learning
recommendation system based on GRU and attention mechanism,"
Eng. Lett., vol. 31, no. 2, pp. 695-701, 2023.

[21] Y. Zhang, Y. Wang, P. Lan, et al., "Conversational recommender based
on additive attention and positional encoding," Journal of Intelligent &
Fuzzy Systems, vol. 46, no. 3, pp. 6491–6503, 2024.

[22] C. Wu, F. Wu, S. Ge, et al., "Neural news recommendation with
multi-head self-attention," in Proc. 2019 Conf. Empirical Methods
Natural Lang. Process. (EMNLP-IJCNLP), pp. 6389–6394, 2019.

[23] A. Milogradskii, O. Lashinin, et al., "Revisiting BPR: A replicability
study of a common recommender system baseline," in Proc. 18th ACM
Conf. Recommender Syst., pp. 267–277, 2024.

[24] Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques
for recommender systems," Computer, vol. 42, no. 8, pp. 30–37, 2009.

[25] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, "Neural graph
collaborative filtering," in Proc. Int. Conf. Res. Develop. Inf. Retrieval
(SIGIR), pp. 165–174, 2019.

[26] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, "AutoRec:
Autoencoders meet collaborative filtering," in Proc. 24th Int. Conf.
World Wide Web, pp. 111–112, 2015.

[27] L. Chen, L. Wu, R. Hong, K. Zhang, and M. Wang, "Revisiting
graph-based collaborative filtering: A linear residual graph
convolutional network approach," in Proc. AAAI Conf. Artif. Intell.,
vol. 34, pp. 27–34, 2020.

[28] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, "LightGCN:
Simplifying and powering graph convolution network for
recommendation," in Proc. Int. Conf. Res. Develop. Inf. Retrieval
(SIGIR), pp. 639–648, 2020.

[29] Z. Lin, C. Tian, Y. Hou, and W. X. Zhao, "Improving graph
collaborative filtering with neighborhood-enriched contrastive
learning," in Proc. Web Conf. (WWW), pp. 2320–2329, 2022.

[30] L. Xia, Y. Xu, C. Huang, P. Dai, and L. Bo, "Graph meta network for
multi-behavior recommendation," in Proc. Int. Conf. Res. Develop. Inf.
Retrieval, pp. 757–766, 2021.

[31] J. Wu, X. Wang, F. Feng, X. He, L. Chen, J. Lian, and X. Xie,
"Self-supervised graph learning for recommendation," in Proc. Int.
Conf. Res. Develop. Inf. Retrieval (SIGIR), pp. 726–735, 2021.

[32] C. Li, L. Xia, X. Ren, et al., "Graph transformer for recommendation,"
in Proc. 46th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, pp.
1680–1689, 2023.

[33] R. Ying, R. He, K. Chen, et al., "Graph convolutional neural networks
for web-scale recommender systems," in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Min., pp. 974–98, 2018.

[34] T. Yao, X. Yi, D. Z. Cheng, F. Yu, T. Chen, A. Menon, L. Hong, E. H.
Chi, S. Tjoa, J. Kang, et al., "Self-supervised learning for large-scale
item recommendations," in Proc. Int. Conf. Inf. Knowl. Manag.
(CIKM), pp. 4321–4330, 2021.

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3086-3095

__

	I.INTRODUCTION
	II.RELATED WORK
	A.Recommendation Algorithms Based on Graph Transform
	B.Recommendation Algorithms Based on Self-Supervised
	C.Recommendation Algorithms Based on Self-Supervised

	III.PRELIMINARIES
	IV.ALGORITHM FRAMEWORK
	A.Feature Embedding
	B.Feature Extraction
	C.Adaptive Fusion Module
	D.Recommendation List Generation

	V.EXPERIMENTS
	A.Experimental Setup
	B.Analysis of Experimental Results
	C.Model Analysis

	VI.CONCLUSION
	REFERENCES

