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Abstract—To comply with the criteria of the optimum
power flow issue in power systems, this research offers a
multi-strategy enhanced POA (MPOA). In response to the
problems of delayed convergence and easy trapping in local
optima in the original pelican optimization algorithm during
the solution process, this paper introduces four improvement
strategies: using the Logistic chaotic sequence to get started
the sample to increase the variety of the original population.
By adopting an inertia weight component to strike an
equilibrium between global exploration along with local
exploitation, as well as using a periodic mutation method to
improve the algorithm's capacity to avoid local optima. And
designing a fitness-driven evolutionary direction decision
making mechanism to accelerate convergence and improve the
quality of the solution. The performance of the improved
algorithm was verified on the CEC2022 test function set. The
findings showed that MPOA beat the original method in terms
of solution correctness and convergence efficiency.
Furthermore, this paper applies MPOA to the IEEE 30-bus
system, with fuel cost, system loss, and bus voltage deviation
as the optimization objectives for single-ohjective solution,
and compares it with other algorithms. The simulation results
show that MPOA has good optimization performance and
engineering application value in solving the OPF problem

Index Terms—QOptimal power flow, POA, Periodic mutation,
Inertia factor, Evolution mechanism

[. INTRCDUCTION

ptimal Power Flow (OPF) i1s one of the most
significant 1ssues for power system planners and
operators. The fundamental goal of OPF is to discover the
optimal configuration for a particular power system
network [1], maximize specified objective functions, and
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meet power flow equations, system security, and equipment
operating restrictions [2].

The traditional solutions for optimal power flow include
nonlinear programming and linear programming. Nonlinear
programming can be further divided into simplified
gradient methed [3], Newton method [4-5], quadratic
programming [6] and interior point method [7]. However,
traditional optimization methods rely on derivative
operations, making it difficult to guarantee the acquisition
of the global optimal solution. They also require the
assumption that the objective function i1s convex and
differentiable to simplify the solution process. Nevertheless,
the OPF is inherently non-convex, non-smooth, and non-
differentiable, with highly nonlinear characteristics and the
possibility of multiple local optimal solutions, which makes
it difficult for traditional methods to solve effectively.
Therefore, there is an urgent need for optimization methods
that can overcome these limitations. In recent vyears,
artificial  intelligence optimization algorithms have
developed rapidly and have been widely applied in various
fields. Compared with traditional methods, these algorithms
have a simple concept, do not require the construction of
strict mathematical models, can effectively solve non-
convex optimization problems, avoid local optimal traps,
and have played a vital part in the research field of
electrical system optimization, especially in the solution of
optimal power flow, demonstrating significant advantages
and promising development prospects.

Layth et al. employed an augmented differential
evolution approach to handle the optimal flow of electricity
issue in an IEEE 30 bus network. The goal function sought
to reduce producing unit fuel costs, pollution, and power
losses in transmission lines, among other factors [8].
Khunkitti et al. introduced a multi-objective power flow
issue based on the SMA algorithm, which included cost,
emissions, and ftransmission line losses as objective
functions in the power system, and utilized the TEEE 30, 57,
and 118-bus systems to validate the performance [9].
Alanazi proposed a new adaptive teaching-learning-based
optimization algorithm (AGTLBO), and used test systems
conforming to the TEEE standards of 30-bus, 57-bus and
118-bus to verify the performance of the proposed
algorithm. A total of 12 different scenarios were introduced
to evaluate the algorithm, collectively verifying that the
proposed AGTLBO is more efficient [10]. Mohamed
provided an improved particle swarm optimization method
to solve the OPF problem, minimizing the fuel cost of
power generation for public utility and industrial companies
while satisfying a set of system constraints, and compared
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the obtained results with those from the PSO algorithm and
other algorithms [11]. Nadimi et al. suggested an effective
WOA (EWOA-OPF) for tackling the OFF problem, and
employed standard TEEE 6,14,30,118-bus platforms to
assess the EWOA-OPF for overcoming OPF difficulties in
systems of various sizes [12].

Pelican Optimization Algorithm [13] optimizes problems
by simulating the behavior and strategies of pelicans.
Scholars have widely used it to a variety of sectors. Alamir
et al. applied the POA to optimize the energy management
system of microgrids, aiming to enhance the economic
benefits of microgrid operators and reduce overall
operational costs [14]. Tuerxun et al. employed an
upgraded POA to optimize parameters including the
amount of feature nodes, enhanced nodes, and mapping
layers of features in a generalized learning svstem, and then
applied it to diagnose the defect kinds of wind turbine units
[15]. Khaleel suggested two optimization methods, the
POA and PSO, to offer the 1deal route for mobile wheeled
robots to avoid collisions in the presence of impediments
[16].

This research provides a multi-strategy enhanced POA
(MPOA) and applies it to the solution of the optimal power
flow problem. The second portion offers mathematical
modeling of the system and the optimization objective
function. The third part elaborates on the basic framework
of POA and the improvement strategies, including: using
the Logistic chaotic sequence to imtialize the population,
introducing the inertia weight factor, adopting the periodic
mutation strategy, and introducing the fitness-driven
evolutionary direction decision mechanism to enhance the
convergence efficiency. The fourth part evaluates the
performance of MPOA on the CEC2022 test functions and
compares it with other optimization algorithms, verifying
its advantages in solution accuracy and convergence speed.
The fifth part applies MPOA to the TEEE 30-node system,
optimizing and solving with fuel cost, system loss, and bus
voltage deviation as single objectives respectively, further
demonstrating its effectiveness. The sixth part summarizes
the entire paper.

II. MATHEMATICAL MODELING OF THE SYSTEM AND
OBIECTIVE FUNCTION

A.  System Mathematical Modeling

The optimal power flow problem in power systems 1s to
determine the setting parameters of system control
variables under the given network structure parameters and
power system load, so as to satisfy the operating constraints
of system equipment and improve the desired variables
such as system fuel cost, active power loss, and bus voltage
deviation. It is a core issue in energy safety, grid arranging,
and reliability analysis, as well as a nonlinear constrained
issue. It can be briefly expressed by the following
mathematical model:

Minmize f(x, ) (1)
stooglxy) (2)
hlx,yy<0 (3)

In Eq. (1)-(3), flx,y) represents the objective function of
the OPF problem, g(xy) implements the equality
restrictions, the inequality constraints are hA(cy). xy
respectively represent the control variables and state
variables. The g(x,y) and A(xy) of this paper are detailed in
Ref. [17].

This study's test environment is the IEEE 30-bus. Fig. 1
illustrates the particular structure. The detailed topology of
this system can be found in Ref. [18], which consists of 6
generators, 4 transformers and 2 sets of reactive power
compensation capacitors. The system uses 100 MVA as a
base, with a rated active power demand of 283.4 MW and a
reactive energy requirement of 1262 MVAR. The
generator's power bus has a voltage range of 0.95-1.10 p.u.,
whereas the load bus's voltage range 1s limited to 0.95-1.05
p-u. Among them, bus 1 is set as the slack bus.

B. Function 1: Fuel Cost

Generally speaking, the operating cost function
relationship of each generator can be expressed as a
quadratic function relationship:

NG
F,, =Ya+bE, +cE: )
i=1
where, a;, b;, ¢; are the generator's expense coefficients for
producing output power. In the formula, NG represents the
number of generating units, and Po: represents the active
power output of unit i. The cost coefficients of the entire
power generation system can be found in Ref. [17].

C. Objective Function 2: Active Power Loss of the System

Due to the inherent resistance in the transmission lines,
the active power generated by the generator is inevitably
subject to losses.

MM ) ) (5)
FPIoss = ZZ GK][VI. + V’] _2V;V:ico"s(5z _5 ])]

i=1 =i

Let M represent the set of all branches, I is the absolute
value of the node voltage, J is the angle of the voltage, and
(3 1s the line conductance.

D. Objective Function 3: Bus Voltage Deviation

Fig. | IEEE 30-node structure diagram.
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The change in the operation mode of the power supply
and distribution system and the slow variation of the load
will cause the voltage at each point in the power supply and
distribution system to change accordingly. At this time, the
difference between the actual voltage at each point and the
nominal voltage of the system 1s called voltage deviation,
which is expressed by the following formula:

M
Fy =V, 10| ©)

m=1

where, Favis the ratio of the actual voltage to the nominal
voltage of the power grid.

III. IMPROVING THE POA USING MULTIPLE
STRATEGIES

In this section, the basic principle of the POA and
various improvement strategies for this algorithm are
introduced. Specifically, the improvement measures mainly
include the following four aspects: First, the Logistic
chaotic sequence 1s adopted to imtialize the pelican
population to generate a more uniformly distributed nitial
population, thereby its global search capabilities and speed
of convergence. Second, an inertia weight factor is
introduced to dynamically adjust the correlation between
the new position of the pelican and the current position
information of the pelican, enhancing the balance of the
algorithm in different search stages. Third, a periodic
mutation strategy is used, by perturbing individuals within
specific iteration cycles, to increase the diversity of the
population and prevent the algorithm from getting trapped
in local optima. Finally, a fitness-determined evolution
direction mechanism is introduced, which dynamically
adjusts the search direction based on the fitness value of
individuals, ensuring the dominant role of superior
individuals in population evolution and further improving
the quality of the solution and convergence efficiency.
These improvement measures work together to
significantly enhance the global search ability, local search
accuracy, and population diversity of the POA, and
strengthen the algorithm's adaptability and robustness in
solving complex optimization problems.

A. Model of Pelican Optimization Algorithm

POA is a new meta-heuristic algorithm, which has the
advantages of fast convergence speed, few parameters and
strong robustness. Its inspiration mainly comes from two
hunting stages of pelicans: the stage of approaching prey
and the stage of capturing prey. The initial population
position is randomly generated by Eq. (7):

xj,j:lbj+rand-ubj7lbj 9

where, x;; indicates the location of the i-th pelican in the
J-th dimensional space, /b; and ub; denote the bottom and
top limits of the j-th dimensional solution space, and rand
provides an arbitrary number between O and 1.

(1) The Stage of Approaching the Prey

At this stage, the pelican locates its prey and travels in
that direction. The specific mathematical model is as
follows:

x, +R-(P,~I-x,) .F, <F, (®
xU+R-(xU7P.) Lelse

J

P
i

. xz_p ’F;p <F; (9)
"l x Lelse

Let x;; denote the position of individual i in the j-th
dimension, R represent a random number within the range
of [0,1], and F; indicate the location of the target in the j-th
dimension. I, and Fi respectively stand for the fitness
values of the prey and individual i. 7 is a random number of
either 1 or 2. X represents the new position of x;; after
the first stage. F}, 1s the fitness value of the prey. F? 1s the
fitness value of x" after the position update of the pelican
individual. After the pelican individual moves towards the
prey, if the function value improves, it updates its position
through Eq. (9), otherwise, no position update 1s made.

(2) The stage of capturing prey

After the pelican reaches the water surface near its prey,
it will skim the water to collect the prey. The main purpose
of this stage is to enhance the development capability of
POA.

xP=x, +R(1-t/T)-(2-R-1)-x, (10)

e eE .
r X, Lelse an

where, x%7 represents the updated position of the current
stage, R is a random number with a range of [0,1], I is an
integer at random with a range of [1, 2], f is the present
iteration , and 7" is the maximum number of repetitions. and
FiP is the fitness value of the updated position x2? of the
pelican individual. After the pelican individual skims the
water surface, if the fitness value is improved, it updates its
position through Eq. (11), otherwise, it does not update its

position.

B. Improving the Pelican Optimization Algorithm with
Multiple Strategies

(1) Imtialization Based on Logistic Chaotic Sequence

The initialization of the pelican population affects the
convergence speed and search ability of POA. The original
POA uses the random method to generate the initial pelican
population position, but the individuals it generates have
poor traversal in the search space and are prone to local
aggregation, thereby limiting the global exploration
capability. Therefore, we choose the Logistic chaotic
mapping with strong randomness and traversal to perform
initialization, to improve the stability of the mapping,
generate a more uniform initial population to expand the
search range.

X TAX; (1'x:' ) (1 2)

where, ¢ 1s a control parameter, taking values in the range
(0,4]. The larger the value of a, the higher the degree of
chaos. When a=4, it is in a state of complete chaos. The
range of chaotic orbit state values is (0,1). In this paper, the
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value of a is set to 3.

(2) Improve the Correlation between the New Place of the
Individual and the Current Individual.

In the optimization process of meta-heuristic algorithms,
the coordination of local and global search capacity is a
critical component determining the algorithm's correctness
and convergence speed. Because the position update in the
first stage is heavily reliant on the current individual's
position, the original POA algorithm is prone to being stuck
in local optima. As a result, this study provides an inertia
weight factor w to alter the correlation degree between the
pelican's new and present positions, as demonstrated in Eq.

(13).
w=—0.5*(cos(pi* t/T)—l) (13)

During the beginning stage of the algorithm iteration, the
inertia weight factor w is quite small. At this point, the
optimizing individual's position update is less impacted by
the current pelican location, which contributes to the
expansion of the search space and so improves the
algorithm's global exploration capabilities. As the iteration
progresses, the value of w steadily increases, making the
optimizing individual's position update more dependent on
the current pelican location, reducing the search range and
accelerating the algorithm's convergence to the optimal
solution. This method not only increases the algorithm's
capacity to leverage local resources, but it also speeds
convergence. The modified formula for pelican position is
given below:
~1-x,) F,<F,

X! = ‘ (14)
‘ w-x.+R‘(x, —P/.) ,else

(3) Increase Population Diversity by Using Periodic
Mutations

In the second stage of the Pelican Algorithm, periodic
mutations are introduced to the first half of the population
to promote species variety and facilitate escaping from
local optima. A pelican's fitness value is lower than the
population's average fitness value, indicating that it is in an
aggregated condition. Currently, to boost pelican variety,
periodic mutations are carried out every ten generations
until the pelican's fitness value exceeds the population's
average. Then, the original pelican position updating
mechanism is used.

.
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Fig. 2 The graph of w.

x-(1+A-(0.5—rand (l,dim))) F"<F,;

Py _
Xi] =

andmod (iter, AT )== 0 (15)
x,+R-(1-t/T)-(2-R-1)-x;, else

Fayvc represents the average fitness value, A is the
mutation amplitude, AT is the mutation interval, which is
set to 10 in this paper, and the value taken in this paper is 1.
dim is the dimension of the independent variable for the
problem to be solved.

(4) Introduce the Mechanism Where Fitness Determines
the Direction of Evolution.

In this paper, fg represents the global best fitness value
and fw represents the global worst fitness value. When fi >
fg, the pelican is on the edge of the population and is
extremely vulnerable to predator attacks. When fi = fg, it
indicates that pelicans in the middle of the population are
likewise in danger and should approach other pelicans to
lessen their chances of being preyed upon. Inspired by SSA,
we introduces a fitness-determined evolution direction
mechanism for the second half of the pelican population in
the second stage, and its formula is as follows:

Ko *BI X = Xoes | S1> 12

+1 1
X”v] = X, K | Xl’/ _Xworxl |
i TR
(fi-fw)+e

16
Jifﬁ=fg (19

where, Xy stands for the present global optimal status, £ is
a random number from the standard normal distribution
that is used as the step size regulate parameter, K is a
random quantity between -1 and 1, fi is the current pelican
individual's fitness score, fg is the global best wellness
value, fw is the global worst wellness value, and ¢ remains
the constant that keeps the equation from dividing by zero.

IV. SIMULATION EXPERIMENTS AND RESULT
ANALYSIS OF TEST FUNCTIONS

The CEC2022 Optimization Function Test Suite is a set
of widely applied benchmark test sets, including 12
single-objective functions. Among them, F1 is a classic
uni-modal function, while F2-F5 are multi-modal functions
with multiple local extreme points, aiming to evaluate the
global search ability of algorithms in complex solution
spaces. F6-F8 are hybrid functions, which combine
different types of optimization problems to test the
adaptability and robustness of algorithms in various
different environments. F9-F12 are composition functions,
consisting of multiple sub-functions, each with different
weights and bias values. This further increases the
complexity of the optimization problem, requiring
algorithms to be capable of handling multi-level and multi-
dimensional optimization tasks.

To verify the effectiveness of the improved algorithm,
the CEC2022 optimization function test set was selected for
this experiment. In the experiment, 500 iterations were set
for each function's test, the population size was 30, and the
average value was taken after 30 independent experiments.
The improved Pelican Optimization Algorithm (MPOA)
was compared with the original POA, BOA [19], RSA [20],
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SCSO [21] and WOA. The experimental results fully

demonstrated the advantages of the proposed improved the performance of each
algorithm in terms of solution efficiency and accuracy, comparison with existing

showing strong global search capabilities and faster
convergence speed. This validates the efficiency and

adaptability of MPOA

in  handling complicated

F d

( Start

\if/

optimization issues. Through comprehensive evaluation of
comparison algorithm and

optimization methods,

improvement effect of MPOA was further verified. The
specific algorithm parameter settings are given in Table 1.

Set an initial population size N and the maximum amount of iterations 7',
and other relevant parameters.

v

Based on the Logistic chaotic sequence for population initialization and
calculating the fitness value of each individual.

Innovation
Point 1

E e e == == o s

Use a weight factor to improve the association between the pelican's new position s

and its existing position.

formula.

Use the original algorithm's prey 1
capture stage position update

Yes ‘Whether the individual nmumber No

Whether the individual's fitness
is lower than the average fitness.

‘Whether the interval of iteration
times with the current individual is equal
to the mutation cycle.

belongs to the first half of the
population.
v

Innovation
Point 2

Introduce a fitness-driven evolution
direction mechanism.

Whether the individual's fitness is
greater than the global best fitness.

Use the first stage in
Eq.(16) for position update.

Use the second stage in
Eq.(16) for position update.

Perform mutation using
a periodic mutation
formula.

Use the original algorithm's prey |
capture stage position update
formula.

&)

) Innovation
Point 3

h 4

A

Greedy method to select the optimal solution.

'

Update the positions of population individuals, as well as the global best,
worst, and average fitness values.

— t=tH1 [«

t<T
No

Retum the global optimum value and its
associated fitness.

Fig. 3 Flowchart of the improved pelican optimization algorithm.
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Based on the experimental findings, as indicated in Table
I and Fig. 4, MPOA achieved the best average values in all
the tested functions F1 to FI12, demonstrating its
outstanding stability and optimization ability when dealing
with various optimization problems, and effectively
avoiding getting trapped in local optimal solutions. It
obtained the optimal average value, minimum value and
optimal standard deviation in F1, F2, F8 and I'9, indicating
the effectiveness of optimization. In the tests of F3 to F7,
MPOA still showed strong competitiveness, and the overall
stability (lower standard deviation) indicated that MPOA
had better robustness in multiple runs. In the tests of F3, F4
and F7, the average value of MPOA was significantly
better than other algorithms, and the standard deviation was
lower, indicating that its result convergence was stronger.

In the test of Fé, the average value and standard deviation
of MPOA were much lower than those of other algorithms,
indicating that its search ability in high-dimensional
complex functions was more advantageous. In the tests of
F10 to F12, MPOA still maintained the best average value,
and obtained the minimum standard deviation in F11 and
F12, indicating that its solution stability was the highest.

In conclusion, compared with other optimization
algorithms, MPOA demonstrated the best performance on
multiple tested functions, especially in terms of
convergence stability and search accuracy, outperforming
other algorithms significantly. This indicates that MPOA
can provide stronger solving capabilities in different types
of optimization problems and is suitable for complex
optimization scenarios.

TABLE I. THE CORRESPONDING PARAMETERS FOR EACH ALGORITHM

Number Algorithm Parameter settings
1 POA and its variants R=rand, Flor2
2 BOA =08, a=0.1, ¢=0.01
3 RSA Alpha=0.1, Beta=0.005
4 SCSO 582y Fe=sur-((2F s 0/(27TY)
5 WOA a=2*(1-Gt'T)), A=2*g*rand-a, C=2*rand(1,dim)
TABLE II. COMPARISON RESULTS WITH OTHER ALGORITHMS
Function Meteic POA MPOA BOA RSA SCS0 WOA
Ave 6.928E+02 3.042E+02 9453E+03 9 875E+03 6.543E+03 2.654E+04
F1 Std 7.104E+02 9.328E+00 3.746E+03 3.437E+03 3.375E+03 1.130E+04
Best 3.301E+02 3.000E+02 3.882E+03 4.536E+03 9.109E+02 6.507E+03
Ave 4.269E+02 4.080E+02 2.376E+03 1.005E+03 4.879E+02 4.45TE+02
F2 Std 2.804E+01 1.248E+01 1.154E+03 4.762E+02 9.113E+01 3.325E+01
Best 4.003E+02 4.000E+02 8.517E+02 5.423E+02 4.006E+02 4.062E+02
Ave 6.234E+02 6.070E+02 6 484E+02 6.500E+02 6.288E+02 6.414E+02
F3 Std 1.067E+01 T.7T8EA00 9.573E+00 T.571E+00 1.192E+01 1.274E+01
Best 6.052E+02 6.000E+02 6.313E+02 6.319E+02 6.072E+02 6.162E+02
Ave 8.241E+02 8.228E+02 8.531E+02 8.505E+02 8.291E+02 8.458E-+02
F4 Std 6.132E+00 5.328E+00 7 .802E+00 8.590E+00 7.793E+00 2.193E+01
Best 8.101E+02 8.129E+02 8.321E+02 8.323E+02 8.187E+02 8.099E+02
Ave 1.118E+03 1.075E+03 1.362E+03 1.531E+03 1.222E+03 1.584E+03
F5 Std 1.292E+02 2.394E+02 1.532E+02 1.556E+02 1.926E+02 3. 418E+02
Best 9.076E+02 9.001E+02 1.085E+03 1.136E+03 9.461E+02 1.014E+03
Ave 3.697E+03 2.258E+03 1.323E+08 8.233E+07 5.833E+03 5.700E+03
Fo Std 2.258E+03 S5.093E+02 1.918E+08 7.238E+07 4.417E+03 3.937E+03
Best 1.842E+03 1.847E+03 1.001E+04 4.896E+06 1.988E+03 2.085E+03
Ave 2.039E+03 2.030E+03 2.102E+03 2.140E+03 2.058E+03 2.077E+03
F7 Std 1.205E+01 1.777E+01 1.840E+01 2.831E+01 2.144E+01 2.773E+01
Best 2.014E+03 2.008E+03 2.073E+03 2.080E+03 2.026E+03 2.037E+03
Ave 2.228E+03 2.221E+03 2.356E+03 2.269E+03 2.236E+03 2.238E+03
F8 Std 3.008E+01 6.042E+00 1.243E+02 4.848E+01 2.314E+01 1.210E+01
Best 2.204E+03 2.204E+03 2.238E+03 2.235E+03 2.223E+03 2.226E+03
Ave 2.549E+03 2.5329E+03 2.831E+03 2. 744E+03 2.581E+03 2.611E+03
F9 Std 3.180E+01 1.410E-01 9.693E+01 5.922E+01 3.015E+01 4.457TE+01
Best 2.529E+03 2.529E+03 2.678E+03 2.644E+03 2.530E+03 2.530E+03
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Ave 2.551E+03 2.536E+03 2.575E+03 2.659E+03 2.712E+03 2.624E+03
F10 Std 6.280E+01 6.009E+01 7.958E+01 9.616E+01 3.106E+02 2.031E+02
Best 2.500E+03 2.500E+03 2.502E+03 2.514E+03 2.500E+03 2.500E+03
Ave 2.801E+03 2.783E+03 3.360E+03 3.232E+03 2.870E+03 2.853E+03
F11 Std 1.822E+02 1.238E+02 5.429E+02 4.086E+02 2.031E+02 1.544E+02
Best 2.602E+03 2.600E+03 2.769E+03 2.846E+03 2.622E+03 2.673E+03
Ave 2.871E+03 2.868E+03 2.954E+03 2.967E+03 2.916E+03 2.916E+03
F12 Std 1.440E+01 5.589E+00 5.754E+01 7.203E+01 2.831E+01 4.697E+01
Best 2.862E+03 2.861E+03 2.870E+03 2.884E+03 2.868E+03 2.868E+03
—e—POA oA
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Fig. 4 Simulation results of test functions for each algorithm.

V. RESULTS AND ANALYSIS OF THE OPTIMAL POWER
FLow CASE STUDY

To verify the effectiveness of the improved Pelican
Optimization Algorithm (MPOA), in this section, the
results are validated using the IEEE 30-bus system. In this
experiment, three single-objective functions are used,
namely fuel cost, active power loss, and bus voltage
deviation. Each algorithm's population count is established
at 50, with a maximum of 100 iterations. They are

independently run 30 times for each case, and the average
values are plotted.

A.  Results of the Fuel Cost Case Study

Fig. 5 shows the iterative convergence curves of each
algorithm, and the Table III respectively presents the
minimum value, maximum value and average value of each
algorithm, and lists the active power loss (Ploss) and bus
voltage deviation (VD) of the system corresponding to the
minimum fuel cost of each algorithm, so as to conduct a
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more comprehensive and objective evaluation of the
algorithm performance.

Among all the algorithms, MPOA performed the best in
fuel cost optimization, achieving the optimal average value
of 800.4818 $/h and the minimum value of 799.1879 $/h.
Compared with the original POA, the average fuel cost was
reduced by 0.17%, demonstrating better economic
efficiency. Additionally, the maximum fuel cost of MPOA
was 801.9365 $/h, which was 0.50% lower than that of
POA at 805.9783 $/h. This indicates that MPOA can
maintain a lower fuel consumption in multiple experiments,
showing stronger stability and global search capability, and
effectively avoiding local optimal solutions. Overall,
MPOA outperforms other algorithms in terms of fuel cost,
effectively reducing the generation cost while ensuring
search accuracy, and demonstrating stronger stability and
robustness under different operating conditions. It provides
an efficient and reliable solution for economic dispatch in
power systems.

We use the radar chart Fig. 6 to visually represent the
ranking of the average fuel cost of each algorithm. And we
use the radar chart Fig. 7 to show the ranking of the results
of other objective functions when the fuel cost is optimal.
The results indicate that MPOA demonstrates balanced and
stable comprehensive performance, especially excelling in
minimizing fuel cost. In terms of fuel cost, MPOA achieved
the lowest value of 799.1879 among all algorithms, ranking
first, significantly outperforming the others. This indicates
that MPOA can effectively reduce the economic cost of
power generation when optimizing the power generation
dispatch plan. In terms of Ploss, MPOA ranked third with a
result of 8.6893, only behind BOA and POA, still at an
excellent level. Considering that active power loss directly
affects energy utilization efficiency, MPOA maintaining a
low value in this aspect indicates its strong adaptability in
improving system efficiency. In the radar chart, although
the overall contour of MPOA is slightly weaker in the VD
direction, it is significantly better than other algorithms in
the Fuel cost and Ploss directions, which can be intuitively
reflected in its core advantages from the graph.

Overall, MPOA has an absolute advantage in fuel cost,
maintains an excellent level in active power loss, and is at a
controllable level in voltage deviation, demonstrating good
trade-off capabilities.

1000 T T T T T T
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Fig. 5 Results of fuel cost for each algorithm.

TABLE III. FUEL COST RESULTS OF EACH ALGORITHM

Algorithm Min Max Mean Rank
POA 799.4926 805.9783 801.8120 2
MPOA 799.1879 801.9365 800.4818 1
BOA 839.6819 1070.7650 932.8447 4
RSA 819.3466 853.3661 839.4743 5
SCSO 816.8220 879.2313 842.7588 6
WOA 799.4692 812.3927 805.0487 3
POA [ Fuel cost Mean Rank‘
6
5
1
WOA 3 MPOA
\ )
1
SCso \ BOA
RSA

Fig. 6 The average ranking of fuel cost.

TABLE IV. COMPARISON OF THE OPTIMAL SOLUTIONS OF EACH
ALGORITHM IN THE FUEL COST CASE

Algorithm Fuel cost Rank Ploss Rank VD Rank
POA 799.9619 3 8.5886 2 2.2250 5
MPOA 799.1879 1 8.6893 3 2.4973 6
BOA 838.6819 6 7.4317 1 0.7824 2
RSA 818.3466 5 11.7882 6 1.8275 3
SCSO 816.8220 4 11.7826 5 0.6966 1
WOA 799.4692 2 8.8010 4 22152 4
POA Fuel cost
6 Ploss
VD
SCSO BOA

RSA

Fig. 7 Ranking of objective function results at fuel cost optimum.

B. Active Power Loss Case Results

The smaller the active power loss is, the more active
power can reach each load, thereby improving the
transmission efficiency of the power system.Fig. 6 shows
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the iterative convergence curves of each algorithm, and the
Table V presents the minimum, maximum and average
values of each algorithm under this objective. The fuel cost
and bus voltage deviation corresponding to the minimum
active power loss of each algorithm, to comprehensively
evaluate the performance of the algorithms in the power
system.

Among all the algorithms, MPOA performs the best in
terms of active power loss, achieving the minimum average
value of 1.2033 MW and the minimum value of 1.1503
MW. Compared with the original POA with 1.4395 MW
and 1.1840 MW, it has decreased by 16.41% and 2.85%
respectively, effectively reducing the power loss of the
power system, indicating that it has stronger local search
ability and better solution accuracy. At the same time, the
maximum value of active power loss of MPOA is also
significantly reduced, only 1.6058 MW, far lower than
2.1505 MW of POA, further demonstrating the stability and
robustness of this algorithm in multiple experiments.

Compared with other algorithms, MPOA also
demonstrates significant advantages in active power loss.
Compared with the third-ranked WOA, the average active
power loss of MPOA is reduced by 30.10%, indicating that
it is more efficient in reducing power transmission loss and
can achieve better energy transmission in complex power
systems.At the same time, MPOA also outperforms WOA
in the minimum active power loss index, reducing it by
10.91%, further verifying its effectiveness and robustness
in power loss optimization. Overall, when the active power
loss is the optimization objective, MPOA can effectively
reduce the loss during power transmission and maintain a
lower average value and a better minimum value in
multiple experiments, highlighting its outstanding
performance in power system dispatching.

We use the radar chart Fig. 8 to visually rank the active
power loss results of each algorithm. And we use the radar
chart Fig. 9 to express the ranking of other objective
function results when the active power loss is the smallest.
The results show that MPOA performs most prominently in
terms of active power loss, ranking first with the minimum
value of 1.1503, indicating its significant advantage in
reducing system energy loss and making it the preferred
algorithm for this optimization objective. Although MPOA
does not have an advantage in fuel cost and voltage
deviation, its absolute lead in the main objective function
makes it the overall best-performing solution.
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Fig. 6 Power loss results graphs of each algorithm.

TABLE V. THE ACTIVE POWER LOSS RESULTS OF EACH ALGORITHM

Algorithm Min Max Mean Rank
POA 1.1840 2.1505 1.4395 2
MPOA 1.1503 1.6058 1.2033 1
BOA 1.9393 4.8280 3.3923 5
RSA 2.0746 5.3021 3.6772 6
SCSO 1.3733 4.8271 2.7385 4
WOA 1.2913 3.1013 1.7215 3

POA Ploss Mean Rank

WOA MPOA

<

-~ <

SCSO BOA

RSA
Fig. 8 The average ranking of Ploss.

TABLE VI. COMPARISON OF THE OPTIMAL SOLUTIONS OF EACH
ALGORITHM IN THE ACTIVE POWER LOSS CASE

Algorithm  Fuel cost Rank Ploss Rank VD Rank
POA 1480.4550 4 1.1840 2 2.6072 4
MPOA 1486.3485 5 1.1503 1 2.6954 6
BOA 1416.1191 2 1.9393 5 2.1051 1
RSA 1210.3307 1 2.0746 6 2.4578 3
SCSO 1467.5702 3 1.3733 4 2.3639 2
WOA 1496.9215 6 1.2913 3 2.6692 5
POA | Fuel cost
6 Ploss
VD

MPOA

SCSO BOA

RSA
Fig. 9 Ranking of objective function results at Ploss optimum.

C. Case Results of Bus Voltage Deviation

When the voltage deviation (VD) is taken as the
optimization objective, a lower target value indicates a
higher voltage quality, with the voltage being closer to the
rated value. Fig. 7 shows the iterative convergence curves
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of each algorithm, and the Table VII provides the minimum,
maximum, and average values of each algorithm.
Furthermore, it lists the corresponding fuel cost and active
power loss of the system when the voltage deviation is at its
minimum for each algorithm, to comprehensively evaluate
the optimization effect of each algorithm.

We use the radar chart Fig. 10 to visually represent the
ranking of bus voltage deviation for each algorithm. And
we use the radar chart Fig. 11 to show the ranking of other
objective functions when the bus voltage deviation is the
smallest. From the perspective of bus voltage deviation,
MPOA ranks first with the minimum value of 0.1557,
performing the best among all algorithms, effectively
maintaining voltage stability and contributing to improving
the power quality of the power system. Besides, MPOA
also ranks high in the other two indicators. The fuel cost is
1129.6343 dollars, ranking second, only behind RSA,
demonstrating good economic performance; the active
power loss ranks second, only behind POA, indicating a
high level of control over system losses. Overall, MPOA
ranks first, second, and second in the three objective
functions respectively, with an extremely high overall
ranking and no obvious weaknesses, making it the
algorithm with the best comprehensive performance among
all. In conclusion, MPOA not only achieves the best result
in bus voltage deviation but also ranks second in fuel cost
and active power loss, demonstrating extremely strong
comprehensive optimization capabilities. Its balanced,
stable, and energy-saving characteristics make it stand out
in multiple performance dimensions, making it the best
algorithm choice in this optimization.

Among all the algorithms, MPOA performs the best in
terms of voltage deviation, achieving the minimum average
value of 0.1823 p.u. and the minimum value of 0.1557 p.u.,
which are 7.83% and 5.86% lower than the 0.1978 p.u. and
0.1654 p.u. of the original Pelican Optimization Algorithm,
respectively. This indicates that MPOA has a significant
advantage in improving voltage quality. Compared with
other algorithms, MPOA also demonstrates outstanding
performance and stronger adaptability. The average value
of voltage deviation of MPOA is 34.10% lower than that of
the third-ranked WOA (0.2766 p.u.), and the minimum
value is 17.63% lower, indicating that it is more effective in
enhancing the voltage quality of the system.
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Fig. 7 The results graphs of bus voltage deviation for each algorithm.

TABLE VII. THE RESULTS OF BUS VOLTAGE DEVIATION FOR EACH

ALGORITHM
Algorithm Min Max Mean Rank
POA 0.1654 0.2606 0.1978 2
MPOA 0.1557 0.2654 0.1823 1
BOA 0.2345 0.4362 0.3748 5
RSA 0.2279 0.2608 0.2462 3
SCSO 0.2627 0.5323 0.4193 6
WOA 0.1890 0.3778 0.2766 4
POA _VD Mean Rank
6
5
4
WOA \ 3 MPOA
1
SCSO ™ Boa
RSA

Fig. 10 The average ranking of bus voltage deviation.

TABLE VIII. COMPARISON OF THE OPTIMAL SOLUTIONS OF EACH
ALGORITHM IN THE BUS VOLTAGE DEVIATION CASE

Algorithm  Fuel cost Rank Ploss Rank VD Rank
POA 1559.7245 4 3.4052 1 0.1654 2
MPOA 1129.6343 2 3.4627 2 0.1557 1
BOA 1785.4560 5 5.5655 4 0.2345 5
RSA 915.4837 1 21.1181 6 0.2279 4
SCSO 1533.6098 3 5.3854 3 0.2627 6
WOA 1983.2572 6 8.7395 5 0.1890 3
POA _ |Fuel cost
6 Ploss
VD
5
WOA MPOA
SCSO BOA
\

Fig. 11 Ranking of objective function results at VD optimum.

In summary, MPOA excels in the optimization targeting
bus voltage deviation, demonstrating stronger global search
capability and optimization stability. Compared with other
algorithms, MPOA can maintain high voltage quality while
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reducing fuel consumption and power loss, providing a
more efficient, economical and reliable solution for power
system dispatching.

VI. CONCLUSION

This research provides a multi-strategy enhanced POA
(MPOA), which integrates four innovative strategies to
enhance its optimization performance. Specifically, the
proposed strategies include the following four points. (1)
Utilize Logistic chaotic sequences for imtialization to
increase the diversity of the initial solutions. (2) Introduce
an inertia weight factor to balance both local and global
search potential and speed up resolution. (3) Use a periodic
mutation method to improve the algorithm's capacity to
escape from local optima. 4) Implement a fitness-based
evolutionary direction mechanism to adaptively adjust the
search direction during the process and improve the global
search capability.

To verify the effectiveness of the improved algorithm,
this paper conducts performance tests on the CEC2022 test
function set and compares it to other optimization strategies.
The outcomes suggest that MPOA performs well on
multiple standard test functions, demonstrating its stronger
global optimization ability and faster convergence speed.
This paper also applies MPOA to the IEEE 30-node power
system and optimizes three single-objective functions: fuel
cost, active power loss, and bus voltage deviation.
Comparisons are made with POA, BOA, RSA, SCSO, and
WOA. The experimental results indicate that MPOA can
achieve the optimal solutions in all three objectives, further
verifying its effectiveness and wide applicability in power
system optimization.
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