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Abstract— Salient object detection has emerged as a
critical research direction in image processing technology.
To address the challenges of inference efficiency and feature
fusion in dual-modal salient object detection, this paper
proposes an enhanced multi-modal salient object detection
method. Specifically, a SimAM module (a parameter-free
attention mechanism) is integrated into the early convolutional
layers of CDINet to enhance key feature extraction, thereby
improving the subsequent layers’ ability to capture critical
information. Furthermore, the bidirectional feature fusion
(BiFPN) mechanism is adopted in the decoder stage, where
deep separable convolution replaces standard convolution to
reduce computational load, achieve efficient feature fusion,
and improve multi-scale detection capabilities. Lastly, focal
loss and weighted cross-entropy loss functions are employed
to enhance the model’s handling of unbalanced data. In
contrast, the intersection-over-union (IoU) loss function is
combined to refine boundary prediction accuracy. Experimental
results demonstrate that the F-measure of the improved
model (SbICDINet) surpasses that of the original CDINet
model by 1.15%, 3.93%, 1.01%, 3.10%, and 1.66% on five
datasets(DUTS, LFSD, STERE, NLPR, NLU2K), respectively,
with a reduction in computational complexity of 19.8%.
Compared to other models, the SbICDINet model not only
enhances inference efficiency and feature fusion but also
effectively reduces computational complexity. The experimental
data further corroborate the efficacy and superiority of this
approach in multi-modal image saliency target detection.

Index Terms—Significance target detection, Computer vision,
Attention mechanism, Feature fusion, BiFPN strategy.

I. INTRODUCTION

ITH the rapid development of the Internet and

information technology, the generation and usage
of image data have increased dramatically. Especially
in the field of Salient Object Detection (SOD), thanks
to the color independence, illumination invariance, and
location uniqueness of Depth images, it provides valuable
supplementary information for salient object extraction
in complex environments. As the core task of image
understanding, Salient Object Detection (SOD) has shown
important value in the fields of autonomous driving,
augmented reality (AR), and medical image analysis.
Recently, the introduction of multimodal data, such as
RGB-D images, has provided new research dimensions
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for SOD tasks. Compared with traditional RGB images,
the Depth modality has the characteristics of illumination
invariance and uniqueness of spatial structure, which can
effectively supplement the target semantic information in
complex scenes (such as low light and haze environments)
[1]. However, existing RGB-D SOD algorithms still face
two major challenges: (1) insufficient mining of high-level
semantic information in the process of cross-modal feature
fusion; (2) The model complexity increases due to
the inefficiency of multi-scale feature interaction. How
to construct an efficient and robust cross-modal fusion
framework has become the focus of research in this field.
Although RGB-D images have shown significant
advantages in salient object detection, it is still a challenge
for SOD to accurately segment the boundaries of complex
objects in clutched backgrounds, especially when the objects
have complex shapes or edges. As a result, multi-modal
(e.g. RGB-Depth/RGB-Thermal) fusion algorithms have
shown great potential to improve semantic segmentation in
complex scenes (e.g., indoor/low-light conditions) [2].
Current RGB-D SOD methods mainly focus on
cross-modal feature fusion and attention mechanism.
Cross-modal fusion is a technique that integrates information
from RGB and depth data to improve the accuracy and
robustness of object detection [3].In recent years, attention
mechanisms have demonstrated significant effectiveness in
capturing crucial differences in feature space and channels
across various computer vision tasks [4]. Internationally,
Xiao et al. [5] proposed a Deep Guided Fusion Network
(DGFNet) to enhance the guiding effect of depth features
on RGB modalities through a channel weighting strategy.
Although this proves the auxiliary of depth feature
information for salient object detection, cross-modal fusion
methods mainly rely on low-level features such as color,
texture, and edge. Their limited attention to high-level
semantic information often leads to poor performance
in complex scenarios. With the rise of deep learning,
neural network-based saliency detection methods have
become a prominent research hotspot. The deep network
structure can provide more discriminative semantic features
and greatly enhance detection performance in diverse
and complex environments. Yuan’s team [6] designed
a collaborative mechanism between self-attention and
cross-attention, which improved cross-modal semantic
consistency but caused a surge in computational complexity
due to multi-level feature stacking. Chen et al. [7] used a
context-based attention mechanism to dynamically adjust the
contribution optimization fusion process of RGB and depth
modalities, which improved the robustness of cross-modal
object detection, but it may be difficult to transfer to
different tasks depending on the training equipment.
Domestic scholars have also made remarkable progress
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in this field: The Cross-modal Differential Interaction
Network (CDINet) proposed by Zhang et al. [8] realizes
the differential interaction between modalities through the
bidirectional induction module (RDE/DSE), and achieves
SOTA performance on the public data set. However, its
Dense Decoding and Reconstruction (DDR) structure
has parameter redundancy, which restricts the real-time
application. In addition, the existing methods generally use
binary Cross Entropy (BCE) loss function, which makes it
difficult to solve the class imbalance problem in complex
boundary regions. The above studies show that the existing
models have not yet achieved an effective balance between
feature fusion efficiency, computational complexity, and
boundary accuracy.

To solve the above problems, this paper proposes an
enhanced RGB-D SOD model SbICDINet, whose innovation
is mainly reflected in the following three aspects: Firstly, the
DDR module is reconstructed based on BiFPN (Bidirectional
Feature Pyramid Network), and the standard convolution is
replaced by depthwise separable convolution, which reduces
the computational complexity of the model by 19.8% while
maintaining the ability of multi-scale feature expression.
Secondly, the SimAM (Simple Paramet-free Attention
Module) module is embedded in the early convolutional
layer, and the cross-modal key features are dynamically
strengthened through three-dimensional attention weights,
which significantly improves the detection accuracy of small
targets and complex boundaries (F-measure is increased
by 1.44%). Finally, Focal Loss, Weighted Cross Entropy
(WBCE), and IoU Loss were fused, the dynamic weight
allocation strategy (A1 + A2 + A3 = 1) was used to balance
the class sensitivity and boundary matching degree, and
the MAE index was reduced by 0.5% on LFSD and other
datasets. Experiments show that SbICDINet outperforms
existing models on five benchmark datasets, such as DUTS
and NJU2K, and its inference speed reaches 153 FPS
(256x256 resolution), which provides a new solution for
real-time saliency detection. This study not only promotes
the development of lightweight multimodal fusion theory but
also lays a technical foundation for practical applications
such as autonomous driving environment perception and
AR/VR scene reconstruction.

II. RELATED WORK

CDINet combines RGB modality in different ways of
unidirectional and bidirectional interactions, emphasizing
that the interaction between the two modalities should
be carried out in an independent and differentiated
manner. Low-level RGB features can help Depth features
distinguish different objects in the same depth range,
while high-level Depth features can further enrich RGB
semantics and effectively suppress the interference of
complex backgrounds. On this basis, CDINet proposes
the RGB-induced Detail Enhancement (RDE) module, as
shown in Fig. 1. This module achieves the fusion of two
modal visual features by a two-layer cascade convolution
to generate the fusion feature pool FPOOL, as shown in
Equation 1. Where i € {1,2} denotes the underlying coding
layer feature layer, [f;, fi] denotes the channel level splicing
operation of RGB features and depth features, and convN|()

denotes a convolutional layer with a kernel size of NxN.

f;()ol = CO’H/U3(COTM)1([ 27 frzl])) (1)

For Depth features, a spatial attention template is
generated through a series of operations, and finally mask
is multiplied with the feature pooling information to reduce
the interference of irrelevant RGB features to obtain the
required supplementary information from the depth modality.
The whole process can be described as Equation 2:

Fiut = o(comvT(eproT(max pool (F)* Fioar + i @)

Where o() and maxpool() denote maxpool operation in
channel dimension and sigmoid function, respectively, and *
denotes element-by-element multiplication. The feature f¢,,
will be used as input to the next layer of the depth branch.
By using the splicing operation instead of passing the RGB
features directly to the depth branch, the common detail
information between the two modalities can be enhanced
while weakening the irrelevant features.

In the Depth-induced Semantic Enhancement (DSE)
module, the weight vectors are learned through a global
average pooling (GAP) layer, two fully connected layers
(FC), and a sigmoid function as shown in Equations 3 and
4:

Cucignt = o(FC(GAP(f},))) 3)

tht = Cweight X frls (4)

In the Dense Decoding Reconstruction (DDR) module,
as shown in Fig.2. The features f!, generated at each
layer in the encoding phase constitute a list of jump
connections, which are labelled as fl,, (i € {1,2,3,4,5})
for easy differentiation. Semantic block B is generated
using higher-level encoder features to constrain the jump
connection information of the current corresponding encoder
layer. This design enhances the effectiveness of feature fusion
and ensures that the decoding process can make full use
of the rich contextual information The semantic block B is
defined as follows:

B = conv?)(COTlUl([Up(f;Z_i;)’ o

up(foip)]))  (5)

Where up() denotes the up-sampling operation by bilinear
interpolation. The obtained fjkip combines the decoded
features of the previous layer and gradually restores the
image details by up-sampling and successive convolution
operations. Finally, the decoded features of the last layer are
used to generate the predicted saliency map by the sigmoid
activation function.

III. IMPROVEMENT STRATEGIES FOR THE
ALGORITHMIC MODEL

In this article, two primary optimizations are implemented
to address the various metrics of the detection of RGB-D
image saliency, utilizing the characteristics of the CDINet
algorithm: optimization of the DDR module and adjustment
of the loss function. The CDINet decoder is tasked with
decoding the depth features extracted by the encoder to
achieve effective saliency detection. The first part focuses
on optimizing the DDR dense reconstruction decoder. As
the fundamental feature extractor for the detection task, the
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Fig. 2. The architecture of Dense Decoding Reconstruction.

decoder’s primary role is to map high-dimensional encoder
features to lower-dimensional outputs while preserving
as much critical information as possible. To enhance
the decoder’s performance, this paper incorporates a
bidirectional feature pyramid network (BiFPN) into the
design, thereby improving the feature fusion effect. The
enhanced model structure, referred to as SblCDINet, is
illustrated in Fig. 3, showcasing the refined design of the
DDR module and its application in the saliency detection
task.

A. The SimAM module is improved to enhance feature
extraction

In deep learning and Convolutional Neural Networks
(CNN), the attention mechanism has been proven to be
an important tool to improve model performance. However,
many attention modules introduce additional parameters

or computational complexity, especially in the channel or
spatial dimension, which poses challenges for lightweight
models deployed in resource-constrained environments. To
solve this problem, a simple parameter-free attention module
(SimAM [9]) is integrated into the improved CDINet model
to enhance feature interaction. Through the analysis, the
RDE block in the CDINet model focuses on enhancing
the interaction of RGB and depth features. However, the
observation of Fig.2 in Chapter II of this paper shows
that the attention mechanism that can selectively focus on
important spatial regions or channels of the feature map is
missing in this block. As shown in Fig.4(a),(b), traditional
attention mechanisms usually compute one-dimensional
channels or two-dimensional spatial weights. In contrast,
SimAM estimates 3D attention weights (Fig. 4c), enabling
finer-grained control over feature maps by simultaneously
modeling spatial and channel dimensions. In this paper,
we adopt the SimAM module to improve the feature
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Fig. 3. Schematic diagram of the overall structure of SbICDINet.

representation ability of the model in the RGB-D SOD
task, while keeping the computational cost low. Specifically,
SimAM first applies global average pooling over the channel
dimension of the entire feature map to capture global
statistics. Subsequently, the interaction relationship between
channels is calculated by a one-dimensional convolution
operation, which combines information from both spatial
and channel dimensions to generate the final 3D attention
weights. These weights are normalized by a Sigmoid
activation function and used to adaptively reweight the
original feature map to enhance the expressive power of key
features.

Compared with the traditional attention mechanism, the
core advantage of SimAM is that it can effectively measure
the importance of each feature in spatial and channel
dimensions without additional parameters or large-scale
calculations. This mechanism is especially suitable for the
RDE (RGB-Depth Enhancement) module. In the process of
fusion of RGB and Depth information, SimAM can highlight
the information expression of salient regions and improve the
ability to capture the boundary and detail of the object by
modeling the difference and complementarity of the features.
In addition, the calculation method of SimAM is optimized,
the power calculation is replaced by the square operation
(i.e. 22), and the eigenvalues are processed by a two-step
smoothing term (defined as the smoothing function ) to
S(x) = i enhance the numerical stability. Experimental
results show that after integrating the improved SimAM, the
performance of the model is improved on multiple RGB-D
SOD benchmark datasets, while maintaining the lightweight
advantage in computational overhead.

Prediction

B. Bi-directional multi-scale feature fusion of BiF PN module

is improved

Bidirectional Feature Pyramid Network (BiFPN [10],
Bidirectional Feature Pyramid Network) introduces an
efficient method for dealing with multi-scale features by
enabling bi-directional connections between neighboring
layers in the feature pyramid. Unlike traditional FPNs that
contain only top-down feature refinement paths, BiFPN
allows information to flow in two directions top-down and
bottom-up, and uses learnable weights to ensure optimal
feature fusion, as shown in Feature Fusion Equation 6. This
approach enhances the ability of the model to aggregate
features from different levels, resulting in a more efficient
multi-scale feature representation.

ffilsed =w1 X ftop—bottom + wa X fbottom—up (6)

Where  fiop—bottom 1s the top-down feature map,
fvottom—up 1s the bottom-up feature map, w; and wy are
learnable parameters, which are automatically optimized
by back-propagation. Specifically, a differentiable weight
fusion mechanism is adopted, which dynamically adjusts the
weights by minimizing a loss function during the training
process without manual setting. The weights are initialized
with a uniform value of 0.5 and eventually converge to the
optimal balance of contributions to multi-scale features, the
weight coefficients.

In the CDINet model, inspired by the multi-scale feature
fusion of BiFPN, a lightweight version of this module
is integrated into the Dense Decoding Reconstruction
(DDR) process, mainly to improve the multi-scale feature
processing and fusion capability and efficiency in the
decoding stage, which optimizes the model’s training
speed and computational resource shown in Fig.5, the
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BiFPN DDR block utilizes depth-separable convolution
(DepthwiseConv()) to efficiently extract spatial features as
shown in Equation 7, followed by point-by-point convolution
(PointwiseConv()) to adjust the number of channels
for each input feature map as shown in Equation 8.
These operations allow the model to perform feature
refinement across multiple scales while significantly reducing
computational cost.

fdepthwise = DepthwiseComj(fm, k3><3) (7)
fpointwise - POintWiseconV(fdepthwise7 k1><1) (8)
feirpN = Upsample( fpointwise) )

Where f;, denotes the input feature map, kyxny is the
convolution kernel of N x N size, and Upsample() denotes
the up-sampling operation via bilinear interpolation. By
adding the multi-scaleup-sampling operation Equation 9 to
the DDR, the BiFPN layer can refine and reconstruct the
feature map layer by layer, which makes the final output

feature map optimized in terms of both spatial resolution and
semantic information. Experiments have demonstrated that
after introducing the multi-scale feature fusion mechanism
of BiFPN into the dense decoding and reconstruction (DDR)
module, the whole network not only improves the fusion
ability of multi-scale features but also refines the features
with different resolutions in the decoding process. This
design is especially critical for multi-scale target localization
in saliency target detection tasks.

ffinal = Conyg(concat(fBiFPN7 flatm’al)) (10)

Thus, the final output ffine: is shown in Equation
10, where fiqterqr the feature map from the neighboring
layers, Concat() is the splicing operation at the channel
level, and ConuN() is the convolution operation with a
convolution kernel size of N. The more effective optimization
of SbICDINet is reflected in the light weight of the model
and the improvement of the computational efficiency. BiFPN
significantly reduces the number of parameters and FLOPs
(floating point operation counts) through the combination of
deeply separable convolution and point-by-point convolution,
which drastically reduces the amount of computation under
the premise of guaranteeing the performance of the model.
In addition, the up-sampling operation adopts bilinear
interpolation to gradually restore the feature map to its
original size, which effectively improves the detailing
performance of the reconstruction. With this design, the
model achieves a good balance between multi-scale feature
processing and decoding efficiency. The incorporation of this
modified BiFPN into the DDR module in this paper has
had a profound impact on the performance of the CDINet
model. Due to the reduction in computational complexity
and more efficient use of resources, the training time for
100 epochs is reduced from around 5 hours to around 3.6
hours. In addition, both the parameter counts and ELORs
(floating point operations) of the model are significantly
reduced without affecting the performance. As a result of
the experimental exploration, the improvement of the DDR
module highlights the advantages of using the BiFPN style
multi-scale feature fusion in improving the efficiency and
accuracy of the saliency target detection task.

C. Optimization of the loss function

The original model employs the Binary Cross Entropy
(BCE) loss function, which can result in ambiguous
boundaries during training. To achieve clearer boundaries in
the saliency map and enhance the robustness and detection
accuracy of the model, a hybrid loss function is utilized.
Traditional BCE loss tends to bias training towards the
majority class in imbalanced datasets; therefore, Focal Loss
[11] is introduced to mitigate the impact of easily classified
samples and emphasize the contribution of challenging
samples. Furthermore, the Weighted Binary Cross-Entropy
(WBCE) loss function [12] is applied to diminish the
influence of an excessive number of negative samples
on the optimization process, ensuring the model focuses
more on salient regions. Additionally, to improve the shape
matching of the predicted mask, IoU Loss is adopted, directly
optimizing the intersection between the predicted and true
masks, thereby enhancing overall detection accuracy and
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edge quality.

(1) Focal Loss function (Focal Loss)

Focal loss function (Focal) is proposed to solve the problem
of category imbalance, where « is the weights to balance the
positive and negative samples and is the focus parameter to
regulate the weights of easy-to-category samples. Here the
focal loss is calculated for each sample and then averaged.
The formula is expressed as:

(1)

(2) Weighted Binary Cross-Entropy Loss function (Weighted
Binary Cross-Entropy Loss)

Binary Cross Entropy (BCE) loss is a very widely used loss
in binary classification and segmentation, n is the number
of samples, y; is the true label of the i’th sample, and
p(y;) is the probability that the model predicts a positive
class. BCEWithLogitsLoss is used here instead of BCELoss
because the former combines the Sigmoid activation function
and the binary cross-entropy loss, which can be more stable.
The pos-weight parameter is used to deal with the problem
of category imbalance, and its value is usually set to be the
inverse of the ratio of the number of positive samples to the
total number of samples. Its formula is expressed as:

Lossyp; = —a(l — p;)7 log(p;)

Losspor = —— > yslog(p(y)) + (1 = ) log(1 — p(y:)
i=1

(12)
(3) Intersection and integration ratio loss (IOU Loss)
In target detection networks, target localization heavily
relies on a module that performs bounding box regression

[13]. The Intersection and Merger Ratio Loss (IOU) was
originally used as a measure of similarity between two sets
and later used as a standard evaluation metric for target
detection and segmentation. Also known as Jaccard loss,
it is used to measure the similarity between predicted and
true regions. Where gy is the predicted mask, y is the true
mask, Intersection() denotes the intersection of the two,
and Union() denotes the concatenation of the two. Here the
predictions are converted into probabilities by the Sigmoid
function, then intersection and concatenation are calculated,
and finally, the loU loss is calculated. The formula is given
below.

Intersection(§, )

Lossjoy =1 — 10U =1 — (13)

Union(y,y)

During training, these three loss functions were combined
to train the model with one total loss. This combination
utilizes the strengths of each loss function to improve the
accuracy of the saliency effect map, with a particular focus
on hard-to-detect regions through the use of a focal loss
function and accurate boundary prediction using the IOU
loss function, as shown in Equation 14:

ALossg + AaLossper + A3Lossi,y = NewLoss (14)

Where Aq, A2, A3 is a dynamically allocated positive
integer(A; + A2 + A3 = 1). In the experiments, we evaluated
the impact of different combinations of loss function weights
(A1, A2, A3) on model performance. The results indicate
that when the weight of Focal Loss (A1) is excessively
high, its influence is amplified, making the model more
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sensitive to difficult samples but potentially leading to
overfitting. When the weight of WBCE Loss (\2) is too
large, it enhances the model’s focus on foreground regions,
which may compromise its ability to suppress background
regions. An overly high weight for IoU Loss (A3) improves
mask shape optimization but might degrade classification
performance. Based on validation set experiments, we
adjusted the hyperparameters such that their sum equals 1
and selected the optimal weight combination to achieve the
best F-measure and overall performance. In this study, we
adopted a combined strategy of Focal Loss, WBCE Loss, and
IoU Loss. The primary advantages of this approach are as
follows: Focal Loss addresses class imbalance, WBCE Loss
enhances learning of salient objects, and IoU Loss improves
mask shape matching quality. By reasonably allocating
the weights, the loss function optimizes both classification
accuracy and mask shape, thereby consistently improving
model performance across multiple datasets and enhancing
the overall performance of SOD tasks.

IV. ANALYSIS AND DISCUSSION OF EXPERIMENTAL
RESULTS

A. Introduction to the dataset

In the field of saliency target detection, with the continuous
progress of technology, numerous high-quality RGB-D
datasets have been proposed to validate and enhance the
performance of detection models. In this paper, in the
experimental stage, the model is trained and evaluated on
five widely recognized public datasets as follows:

(1) DUTS dataset [14]: this dataset covers 1200 images
containing both indoor and outdoor complex scenes and
provides the corresponding depth information image for each
image.

(2) NLPR dataset [15]: this dataset consists of 1000 pairs
of images, including RGB images of indoor and outdoor
scenes such as supermarkets, campuses, streets, and their
corresponding depth images.

(3) NJU2K dataset [16]: this dataset contains 1985 RGB
images and their corresponding depth images from the web,
3D movies, and shots from the Fuji W3 camera.

(4) STEREO dataset [17]: this dataset consists of 797 stereo
images, which were collected from an online image library,
and depth maps were predicted by analyzing the left and
right views.

(5) LFSD dataset [18]: this dataset contains 100 RGB-D
images captured by the Lytro 1 light-field camera with
manually labeled precision data.

Out of these datasets, a total of 2985 RGB-D images are
selected as the training set in this paper, which is assigned as
1485 images from the NJU2K dataset,700 images from the
NLPR dataset, and800 images from the DUTS dataset. The
test set, on the other hand, consists of the remaining images
from the DUTS, NLPR, NJU2K, STEREO, and LFSD
datasets. Such a dataset assignment aims to ensure that the
model can be adequately trained through diverse scenarios
and effectively evaluate its performance on multiple different
datasets. In this paper, three commonly used standard
evaluation metrics are used for quantitative evaluation:
structural measure [19]( S — measure), F-measure [20]
(Fj3, where $=0.3), and mean absolute error (M AE). To

ensure a fair comparison, this paper used either reported
results in other papers or reproduced results under the same
recommended data setting.

B. Model implementation details

The experimental setup involves both hardware facilities
and software configuration. The hardware platform used in
this study is equipped with two NVIDIA GeForce RTX
2080 Ti GPUs, each with 45 GB of graphics memory. On
the software side, all experiments are based on the VGG16
model pre-trained on the ImageNet dataset. In this paper,
the Adam optimizer is chosen to initialize the backbone
parameters of the model, and the initial learning rate is set
to le-4. During the training process, 100 training cycles
(epochs) are set, and 4 images are processed in each batch
(batch size of 4). In addition, every 40 epochs, the learning
rate is decayed by a factor of 5.

The entire model is trained in an end-to-end manner
without any preprocessing steps. After about 3.63 hours
of training, a final model with 100 epochs completed can
be obtained. In the testing phase, using the above GPU
configurations, inference is performed on images of size 256
X 256 pixels with an average processing speed of 153 FPS
and a standard deviation of 15 FPS. These parameters and
settings ensure the high efficiency of the experiments and the
accuracy of the model.

C. Analysis of experimental results

To validate the impact of the proposed modules (SimAM,
BiFPN-DDR, and hybrid loss function), we conducted
comprehensive experiments. Table I presents the ablation
study results, while Table II compares the performance of
SbICDINet with state-of-the-art saliency detection models.

To verify the effectiveness of SbICDINet, this paper
evaluates the independent contributions of the optimization
modules (SimAM, BiFPN-DDR, and hybrid loss function) by
gradually splitting them. The first row in Table I shows the
MaxF values of the baseline model (AbsoluteAbs-CDINet)
on the DUT, LFSD, and STERE datasets in this experimental
environment are 0.9281, 0.8676, and 0.8798, respectively,
and the MAE values are 0.0314, 0.0708, and 0.040,9,
respectively. It is used as a reference to calculate the
improvement range. On DUT and STERE datasets, after
the introduction of the SimAM module, MaxF is increased
to 0.9307 (+0.28%) and 0.8813 (+0.17%) respectively, but
MAE is increased to 0.0323 (+2.87%), and 0.0690 (+19.8%).
It indicates that SimAM may reduce the generalization of
simple scenes due to excessive attention to complex features.
However, on the LFSD dataset, the MaxF is increased to
0.8813 and the MAE is reduced to 0.0690, which verifies
the effectiveness of SimAM in complex boundary detection.

After the DDR part of the CDINet model fuses the BiFPN
mechanism, on the DUT dataset, the MaxF is increased
to 0.9332, and the MAE is reduced to 0.0305, indicating
that the bidirectional multi-scale fusion strategy effectively
reduces parameter redundancy through depthwise separable
convolution, while preserving low-level details. On the LESD
dataset, MaxF is increased to 0.8755 (+0.91%), but MAE is
increased to 0.0714 (+0.85%), which reflects that the fusion
of multi-scale features in deep fuzzy regions needs to be
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TABLE 1
COMPARISON OF ABLATION EXPERIMENTS ON DUT AND LFSD DATASETS

Composition DUT LFSD STERE
MaxF T MAE | S-measure T | MaxF T MAE ] S-measure T | MaxF T MAE ]  S-measure T

Acu-baseline-CDINet 0.9281 0.0314 0.9212 0.8676 0.0708 0.8587 0.8798 0.0409 0.9031
baseline-CDINet+SimAM 0.9307 0.0323 0.9198 0.8813 0.0690 0.8635 0.8813 0.0490 0.9035
baseline-CDINet+BiFPN_DDR | 0.9332 0.0305 0.9206 0.8755 0.0714 0.8614 0.8895 0.0314 0.8614
baseline-CDINet+Loss 0.9310 0.0314 0.9191 0.8677 0.0651 0.8602 0.8677 0.0351 0.9002
baseline-CDINet+SimAM+

BiFPN_DDR+Loss (ours) 0.9388 0.0283 0.9221 | 0.8820 0.0655 0.8654 | 0.9069 0.0374 0.9033

further optimized. On the STERE dataset, the MaxF reaches
0.8895 and the S-measure reaches 0.8614, which verifies
the robustness of BiFPN-DDR for multi-object detection in
stereo scenes.

Experimental results show that after adding SimAM,
BiFPN-DDR and a hybrid loss function to CDINet, the
MaxF of the complete improved model (SbICDINet) on
DUT, LFSD, and STERE datasets reached 0.9388 (+1.15%),
0.8820 (+1.66%), and 0.9069 (+3.10%), respectively.
MAE decreased to 0.0283 (-9.87%) and 0.0655 (-7.49%),
and S-measure increased to 0.9221, 0.8654, and 0.9033
synchronously. The synergistic effect of Multi-scale feature
fusion (BiFPN-DDR) and attention mechanism (SimAM)
can significantly enhance the detection ability of the model
for complex boundaries and small objects. The hybrid loss
function effectively alleviates the class imbalance problem
and optimizes the boundary accuracy of the saliency map
through the dynamic weight allocation strategy. SbICDINet
achieves robust saliency detection in multiple scenes while
maintaining high inference efficiency (153 FPS), which
provides a reliable solution for autonomous driving and
AR/VR applications.

The ablation experiments quantify the contribution of the
individual optimization modules and demonstrate their effect
on the overall performance improvement. Fig. 6 demonstrates
the detection results of the improved model SbICDINet
on the public test set. It can be seen that the improved
model performs well in small object detection and complex
background processing, and can accurately identify salient
objects. In particular, the images in the second row and
third column in Fig.6 show that the SbICDINet proposed
in this paper is able to successfully segment the subtle gaps
in the character’s hand when he/she puts his/her hand in
his/her pocket, thanks to the spatial information provided
by the depth map, which is not even reflected in the real
labels. It is also demonstrated in Fig.6 that the improved
model of this paper is also able to recognize better in the
case of multiple targets, which fully demonstrates the clarity
and meticulousness of the improved model in dealing with
the edges of salient objects. Therefore, it can be concluded
that depth information is particularly effective in providing
spatial information and texture-free foreground-background
separation, which helps in SOD-related tasks. In order to
demonstrate the superiority of the SbICDINet algorithm
more comprehensively, this paper compares it with 10
state-of-the-art and representative saliency target detection
models. The tests were conducted on three datasets, namely,
LFSD, NLPR, and STERE, and the detection performance
of the models was measured using the F-measure, the MAE,
and the S-measure as evaluation metrics.

The decreasing trend of the loss value (Loss)during the

training process of the two different models is shown in
Fig. 7. The blue curve represents the loss value of the
original CDINet model, and the orange curve represents the
improved model in this paper. It can be observed from the
figure that compared to the CDINet model, the loss value
of the improved model decreases faster in the early stage
of training, which indicates that the improved model can
learn effective features faster in the early stage and has
better initial convergence. In the middle and late stages of
training, the loss value of the improved model tends to be
stable, and the overall loss value is lower, which indicates
that the training process of the model is more stable, and
it is not easy to have oscillation or overfitting: The loss
value of the improved model is always lower than that of
the CDINet model throughout the training process, which
indicates that the improved model has a better fitting effect
and generalization performance on this task.

Table II shows the performance comparison between
the SbICDINet model and the current mainstream saliency
detection models on LFSD, NLPR, and STERE datasets. The
results in Table 2 show that the accuracy of SbICDINet on
LFSD, NLPR, and STERE datasets reaches 88.2%, 92.6%,
and 90.7%, respectively. Compared with the benchmark
model Acu-CDINet, the accuracy is relatively increased by
1.6%, 1.2%, and 0.9%. MAE decreased by 7%, 4.2% and
7.3%. The S-measure increases by 0.7%, 0.2%, and 0.2%
relative to the baseline model. These improvements benefit
from the innovation of SbICDINet in feature extraction and
fusion methods. The synergistic effect of the Multi-scale
Feature Fusion module (BiFPN-DDR) and the 3D Attention
Mechanism (SimAM) significantly enhances the semantic
understanding ability of the model for complex scenes,
thus achieving stable performance improvement in multiple
datasets.

The proposed algorithm has better performance than other
algorithms in the three data sets. The experimental results
show that the optimization algorithm significantly improves
the effectiveness of the model by introducing a multi-layer
feature fusion module, an attention mechanism, and an
adjusted loss function. In the comparative tests on multiple
data sets, the advantages of the improved scheme have
been fully verified, and its effect is demonstrated by visual
means, as shown in FIG. 8. It can be seen from the figure
that the proposed method can more clearly detect salient
objects in various application scenarios, especially when the
discrimination between the saliency map and the background
is low, and it is superior to other algorithms.

The algorithm in this paper performs better relative to
other algorithms in all three datasets. Several experimental
results show that the optimized algorithm significantly
improves the effectiveness of the model by introducing a
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Fig. 6. Test effect diagram.

TABLE I
COMPARISON OF EXPERIMENTAL RESULTS ON LFSD, NLPR, AND STERE DATASETS

Model Venue LFSD NLPR STERE
maxFt MAE] S-mT | maxFt MAE| S-mf | maxFt MAE| S-m{
JL-DCF [21] CVPR 0.821 0.103 0.817 0.891 0.029 0.909 0.874 0.050 0.885
PGAR [22] ECCV 0.839 0.081 0.844 0.915 0.024 0.929 0.900 0.042 0.905
DANet [23] ECCV 0.841 0.103 0.837 0.901 0.028 0.915 0.819 0.071 0.841
D3Net [24] TNNLS 0.806 0.102 0.816 0.896 0.029 0.911 0.849 0.057 0.868
ASIFNet [25] TCyb 0.860 0.080 0.852 0.890 0.029 0.907 0.880 0.048 0.882
Acu-CDINet ACM 0.868 0.071 0.859 0.915 0.024 0.925 0.899 0.041 0.903
Ours — 0.882 0.066 0.865 0.926 0.023 0.927 0.907 0.038 0.905
1 20% compared to the original CDINet model. This
o reduction stems from the integration of a lightweight,
0.8 . . .
- dense reconstruction decoder for multi-scale feature fusion,
:E inspired by the Bidirectional Feature Pyramid Network
. (BiFPN). The inclusion of optimizes the BiFPN effectively,
e feature reuse and fusion strategy, reducing the computational
03 cost while maintaining the high performance of the model.
0.2 In addition, experiments on the NJU2K dataset show
0.1 that the MaxF of the improved model SbICDINet reaches
° N ETELES L ARG LE D& 0.9239 while maintaining structural consistency, which is
e ST TT T T ESSS 0 1.01% higher than that of the baseline model (0.9147).
The effectiveness of multi-scale feature fusion and attention
i ] ) mechanisms in complex scenes is verified. The S-measure of
Fig. 7. Comparison of convergence of model loss function.

multi-layer feature fusion module, an attention mechanism,
and an adjusted loss function. The advantages of the
improved scheme are fully verified in comparison tests
on multiple datasets, and its effectiveness is demonstrated
by visual means, as shown in Fig. 8. From the figure,
it can be seen that the method in this paper can detect
salient objects more clearly in various application scenarios,
especially when the salient map is poorly differentiated from
the background is better than other algorithms.

The computational effort of the original model is
96,007,095,296, while the computational effort of the
improved model is reduced to 77,001,786,368which reduces
the computational complexity of SblCDINet by about

SbICDINet remains 0.9157 (which is equal to the baseline
model), indicating that the model has strong robustness
in retaining the target structure information, and there is
no structural distortion introduced by module optimization.
The MAE increased slightly from 0.0329 of the baseline
model to 0.0371 (the absolute difference was 0.0042). It
is speculated that the model introduces slight noise in the
boundary refinement of low-contrast regions, which can be
further optimized by adjusting the weight of the loss function
in the future.

SbICDINet not only improves the detection accuracy but
also maintains the structure consistency, which confirms the
stability of its improvement strategy. The small fluctuation
of MAE suggests that it is necessary to balance accuracy
and error sensitivity in subsequent work, for example, by
dynamically adjusting the IoU Loss weight to suppress
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background noise.

V. CONCLUSION

In this paper, we propose an innovative RGB-D image
saliency detection method aimed at enhancing the feature
processing capability. Within the existing network structure,
we elaborately design and integrate a multi-scale feature
fusion module, which achieves deep extraction of features
through auxiliary jump connections and effectively fuses
cross-level feature information, thus significantly enhancing
the representation power of features. In addition, the
introduced cyclic attention module, which is borrowed
from the human brain’s attention mechanism, significantly
improves the efficiency of scene information processing. This
module optimizes the localization accuracy of salient objects
by reducing the saliency weights of background pixels.
The improved model, compared with the original CDINet
algorithm, improves all three metrics on each dataset,
with the following details of improvement in accuracy:
DUTS:1.1%, NJU2K:1%, NLPR:1.1%, STEREO:0.8%, and
LFSD:1.4%, with a reduced number of parameters and a
significant optimization of training time. The model proposed
in this paper still effectively maintains the balance of the
three evaluation metrics while reducing the model size.
The future research direction will be devoted to further
simplifying the network structure without sacrificing the
accuracy of the model, with the expectation that the model
will be able to quickly identify road signs and obstacles in the
field of automatic driving thus significantly improving safety
and reaction speed; in the field of medical image analysis,
effectively separating lesion regions and providing doctors
with more accurate diagnostic references. In addition, the
application of the method in more fields, such as augmented
reality is explored, to promote the wide application and
continuous optimization of saliency detection technology.
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