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Abstract—This study addresses the challenges of
multi-attribute group decision-making (MAGDM) under
uncertainty by proposing a dual-innovation framework that
leverages single-valued neutrosophic set (SVNS) to improve
decision-making processes. Traditional methods face two major
limitations: (1) static weight vectors that fail to capture the
dynamic preference structures of decision-makers (DMs) across
attributes and alternatives, and (2) aggregation operators
that are weight-dependent and computationally complex. To
overcome these problems, we introduce a novel entropy-driven
two-dimensional weight matrix to dynamically capture
variations in attribute preferences across alternatives, thus
replacing the rigidity of fixed-weight models. Additionally, we
develop a truncated mean aggregation approach that eliminates
the need for precise weight assignment by adaptively filtering
out extreme evaluations, creating a robust decision-making
paradigm that is resistant to outliers. These innovations
are integrated into the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) framework and validated
through a case study, demonstrating improved alignment with
DMs’ preferences. Furthermore, the framework’s compatibility
with other neutrosophic measures makes it a versatile tool for
complex decision-making applications in the future.

Index Terms—MAGDM, Entropy, SVNS, Truncated mean
approach, TOPSIS

I. INTRODUCTION

ACCURATE preference representation and efficient
information processing remain fundamental challenges

in multi-attribute decision-making (MADM), particularly in
uncertain environments. Zadeh’s fuzzy set (FS) [1] was the
first to quantify uncertainty through membership functions
µA(x), which sparked the development of subsequent
extensions [2]–[5]. However, these extensions do not
address all types of uncertainty encountered in real-world
applications. For example, a statement may have a truth
degree of 0.5, an uncertainty degree of 0.2, and a falsity
degree of 0.6. To overcome this, Smarandache’s neutrosophic
set (NS) [6] introduced independent membership functions
for truth (T ), indeterminacy (I), and falsity (F ). While this
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framework possesses theoretical strengths, it was initially
constrained by using non-standard intervals ]0−, 1+[. Wang
et al. [7] addressed this by introducing the single-valued
neutrosophic set (SVNS), where T, I, F ∈ [0, 1],
ensuring both mathematical rigor and operational feasibility.
Since then, SVNS has significantly advanced MADM by
allowing for independent handling of uncertainty. Traditional
decision-making methods such as TODIM [8], TOPSIS [9],
VIKOR [10], and ELECTRE [11] have been adapted to work
within SVNS environments, improving conflict resolution
and managing incomplete data [12]–[14]. Furthermore, tools
like distance metrics [15], [16], similarity indices [17],
[18], score functions [19], [20], correlation coefficients
[21], entropy measures [22], [23], and aggregation
operators [24], [25] have contributed to creating a robust
framework for SVNS-based decision analysis. Despite
these advancements, two ongoing challenges—weight
determination and aggregation mechanisms—still impede the
broader application of SVNS.

Weight allocation is critical for prioritizing criteria
in MADM. Xu et al. [26] proposed a deviation
maximization-based weight model, later extended by
Maghrabie et al. [27] through grey system theory to
account for deviation and correlation effects. Ji et al.
[28] applied a mean square deviation-weighting method to
assign weights to selected criteria. Garg [29] introduced
a new entropy index measure for weight extraction and
information aggregation. Mishra et al. [30] developed a novel
score function and divergence measure to determine expert
and attribute weights. Wang [31] proposed a normalized
score function within the SVNS framework to derive
attribute weights. Additionally, weight models have been
widely applied to integrate and optimize traditional MADM
methods. For instance, Tian et al. [32] combined SVNS
with flexible multi-criteria methods to handle cases with
unknown criterion weights. Kara et al. [33] proposed an
SVNS-CRITIC-TOPSIS model for software selection, using
linguistic SVNS to capture expert expressions. Zhang et al.
[34] enhanced cumulative prospect theory by integrating it
with binary linguistic sets and applied the entropy weight
method to the Evaluation based on Distance from Average
Solution (EDAS) method. Thong et al. [35] developed an
optimization framework to determine attribute weights and
introduced an innovative TOPSIS method. Finally, Xu et al.
[36] established nonlinear constraint optimization rules based
on the Best-Worst method to determine the weights and select
options for different criteria.

Aggregation operators in MADM are intrinsically tied to
weight parameters, which dictate information aggregation.
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The interdependence between weights and operators has
led to extensive research in operator development. Ye [24]
pioneered the single-valued neutrosophic weighted averaging
(SVNWA) and geometric (SVNWG) operators, embedding
weight vectors directly into their formulations. Subsequent
advancements include triangular weighted average and
geometric operators [37]. More recent innovations focus
on dynamic weight integration within operator frameworks.
For example, Li et al. [38] developed Dombi operations
with a parameter, enabling dynamic weight assignment to
input values. Farid et al. [39] proposed a multi-attribute
group decision-making (MAGDM) algorithm based on the
single-valued Einstein priority operator, which encodes
weight dependencies through nested parametric structures.
Similarly, Goyal [40] combined this operator with a weighted
standard deviation model, while Singh et al. [41] established
a generalized divergence measure rooted in common
aggregation principles. Although each operator family
embodies distinct weight integration philosophies, they all
incorporate weight parameters into their computational logic.
These advancements highlight a paradigm shift toward
operator-weight synergy, enabling systematic trade-offs
between conflicting criteria. Collectively, these innovations
enhance the precision and adaptability of MADM systems.

This paper reviews recent advancements in SVNS
environments, focusing on weight determination and
aggregation algorithms. A key limitation of existing
SVNS weighting methods lies in their compression
of multidimensional preferences into a fixed vector
W = (w1, w2, . . . , wn), overlooking the dynamic
prioritization of attributes by decision-makers (DMs) across
alternatives. For example, entropy-based methods [34] and
optimization-oriented approaches [35], [36] quantify decision
uncertainty but assume fixed attribute weights (e.g., wj = 0.3
for all alternatives). Similarly, divergence-driven techniques
[41] assign weights by measuring inter-attribute differences,
yet they lack adaptability in complex scenarios. In practice,
attribute weights should vary across alternatives, reflecting
evolving decision contexts and DMs’ changing preferences.
Moreover, when these weights are applied to aggregation
operators, they face inherent constraints as they rely heavily
on precise parameterization. This limitation restricts their
applicability in real-world situations where weights may
be ambiguous, only partially known, or subject to change.
Additionally, existing operators [37]–[39] further complicate
these difficulties due to their computational complexity
and instability under weight uncertainty. These challenges
underscore the need for more flexible weight determination
strategies and efficient information aggregation techniques in
SVNS-based decision-making. This study addresses existing
gaps by proposing a novel method for weight determination
and information aggregation in SVNS-based MAGDM.

The key contributions are as follows:
• A method for constructing a two-dimensional weight

matrix based on SVNS entropy is introduced. This
method captures the dynamic preferences of DMs for
attributes across various alternatives, overcoming the
limitations of fixed-weight vectors.

• A simplified truncated mean SVNS aggregation
approach is presented. This approach is practical
and does not require precise weight determination,

thus expanding the range of applicable aggregation
algorithms.

• The proposed method is integrated into the TOPSIS
framework of SVNS, and its effectiveness is
demonstrated through a case study.

The organization of this paper is as follows. Section
2 reviews simplified neutrosophic sets (SNS) and SVNS.
Section 3 revisits the traditional TOPSIS method. Section 4
details the methodological innovations. Section 5 constructs
an SVNS-based MAGDM framework and demonstrates its
applicability through a numerical case study. Section 6
offers a comparative analysis, and Section 7 concludes with
contributions and future research directions. Fig. 1 provides
a visual representation of the research framework to enhance
clarity.
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Fig. 1. Research framework

II. PRELIMINARIES

This section defines SNS and SVNS, explains their
operational mechanisms, and introduces comparative analysis
methods, laying the groundwork for subsequent discussions.

A. SNS

Definition 1 [24]. Let X be a set of points (objects), with
each element denoted by x. A simplified neutrosophic set A
is defined as:

A = {⟨x, TA(x), IA(x), FA(x)⟩ | x ∈ X} (1)

The set A consists of three membership functions: TA(x),
IA(x) and FA(x), which represent the degrees of truth,
uncertainty, and falsity, respectively. These functions are
defined on singleton subintervals within [0, 1], and the sum of
their supremums satisfies the condition: 0 ≤ sup(TA(x)) +
sup(IA(x)) + sup(FA(x)) ≤ 3. When A contains a single
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element, it is referred to as a simplified neutrosophic number
(SNN), denoted by A = ⟨TA, IA, FA⟩.

Definition 2 [42]. Let A = ⟨TA, IA, FA⟩ and B =
⟨TB , IB , FB⟩ represent two SNNs, with λ > 0. The
operations on SNNs are given by the equations below:

1) A⊗B = ⟨TATB , IA+IB−IAIB , FA+FB−FAFB⟩.
2) A⊕B = ⟨TA + TB − TATB , IAIB , FAFB⟩.
3) Aλ = ⟨(TA)

λ, 1− (1− IA)
λ, 1− (1− FA)

λ⟩.
4) λA = ⟨1− (1− TA)

λ, (IA)
λ, (FA)

λ⟩.
Definition 3 [42]. Let Aj = ⟨TAj

, IAj
, FAj

⟩, (j =
1, . . . , n) represent a set of SNNs. The SNNWA and
SNNWG operators are defined as follows:

SNNWAw(A1, A2, . . . , An) =
n∑

j=1

ωjAj

= ⟨1−
n∏

j=1

(1− TAj
)ωj ,

n∏
j=1

(IAj
)ωj ,

n∏
j=1

(FAj
)ωj ⟩ (2)

SNNWGw(A1, A2, . . . , An) =
n∑

j=1

ωjAj

= ⟨
n∏

j=1

(TAj
)ωj , 1−

n∏
j=1

(1− IAj
)ωj , 1−

n∏
j=1

(1−FAj
)ωj ⟩

(3)

Where ω = (ω1, ω2, . . . , ωn) is the weight vector of Aj ,
satisfying ωj ≥ 0 and

∑n
j=1 ωj = 1.

Definition 4 [42]. Let A = ⟨TA, IA, FA⟩ be an SNN. The
score function s(A), accuracy function a(A), and certainty
function c(A) of the SNN are defined as follows:

s(A) =
1

3
(2 + TA − IA − FA) (4)

a(A) = TA − FA (5)

c(A) = TA (6)

The score function assesses the relative merit of an element
by considering the combined effects of truth, falsity, and
indeterminacy. For a given SNN A, a higher score TA

corresponds to a greater SNN, whereas lower values of IA
and FA also indicate a greater SNN. The accuracy function
suggests that a more affirmative statement reflects a greater
contrast between truth and falsity. Similarly, the certainty
function indicates that the certainty of an SNN is positively
correlated with TA.

Definition 5 [42]. Let A and B be two SNNs. The
comparison rules for these SNNs are as follows:

1) If s(A) > s(B), then A is considered superior to B,
represented as A > B.

2) If s(A) = s(B) and a(A) > a(B), then A is also
superior to B, expressed as A > B.

3) If s(A) = s(B), a(A) = a(B), and c(A) > c(B), then
A is superior to B, represented as A > B.

4) If s(A) = s(B), a(A) = a(B), and c(A) = c(B), then
A is indifferent to B, indicated by A ∼ B.

B. SVNS

Definition 6 [7]. Let X = {x1, . . . , xn} be a space of
points (objects), where each xi ∈ X represents an individual
point. The SVNS A is then expressed as:

A =
n∑

i=1

⟨TA(xi), IA(xi), FA(xi)⟩
xi

, xi ∈ X (7)

For an SVNS A, TA(x), IA(x), FA(x) ∈ [0, 1], and
the triplet {⟨TA(x), IA(x), FA(x)⟩} is called single-valued
neutrosophic number (SVNN). To simplify, we can denote
the SVNS concisely as A = ⟨TA, IA, FA⟩. From this, it is
clear that the operations and comparison methods developed
for SNNs are directly applicable to SVNNs.

Definition 7 [7]. For all x in X , the concepts of
containment, complement, union, and intersection for SVNSs
A and B are defined as follows:

1) A ⊆ B, if TA(x) ≤ TB(x), IA(x) ≤ IB(x), FA(x) ≤
FB(x).

2) A = B, if A ⊆ B and B ⊆ A.
3) AC = {⟨TA(x), 1− IA(x), FA(x)⟩}.
4) A ∪B = {max(TA(x), TB(x)),max(IA(x), IB(x)),

min(FA(x), FB(x))}.
5) A ∩B = {min(TA(x), TB(x)),min(IA(x), IB(x)),

max(FA(x), FB(x))}.
Definition 8 [43]. Entropy measure E1 of SVNS A is

computed as follows:

E1(A) = 1− 1

n

∑
xi∈X

(TA(xi) + FA(xi)) ·

|IA(xi)− IAc(xi)| (8)

Definition 9 [43]. The Euclidean distance D1 and
normalized Euclidean distance D2 between SVNSs A and
B are formulated as follows:

D1(A,B) =

n∑
i=1

(
(TA(xi)− TB(xi))

2+

(IA(xi)− IB(xi))
2+

(FA(xi)− FB(xi))
2
)1/2

(9)

D2(A,B) =
1

3n

n∑
i=1

(
(TA(xi)− TB(xi))

2+

(IA(xi)− IB(xi))
2+

(FA(xi)− FB(xi))
2
)1/2

(10)

III. TOPSIS METHOD

The TOPSIS method [44] evaluates and ranks alternatives
by calculating their relative distances from the Positive
Ideal Solution (PIS) and the Negative Ideal Solution (NIS).
The primary steps involved are: constructing a standardized
decision matrix, determining attribute weights, computing
the distances between each alternative and the PIS and
NIS, and finally, generating a global ranking based on
the relative closeness index. The necessary steps of the
traditional TOPSIS method are outlined below:

Step 1: Construct the standardized decision matrix.

Rij =
rij√∑n
i=1 r

2
ij

, i = 1, . . . ,m; j = 1, . . . , n (11)
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Where rij denotes the raw value of the jth attribute
corresponding to the ith alternative.

Step 2: Construct the weighted standardized decision
matrix.

Zij = wjrij (12)

Where wj represents the weight of the jth attribute.
Step 3: Determine the PIS, A+ and NIS, A−.

A+ = (z+1 , . . . , z
+
n ) (13)

A+ = (z−1 , . . . , z−n ) (14)

Where z+j = {max
i

zij} | j ∈ J}, z−j = {min
i

zij | j ∈
J}, i = 1, . . . ,m.

Step 4: Compute the distance D+
i and D−

i .

D+
i =

√√√√ n∑
j=1

(zij − z+j )
2 (15)

D−
i =

√√√√ n∑
j=1

(zij − z−j )2 (16)

Where D+
i denotes the shortest distance to the PIS, and D−

i

represents the greatest distance to the NIS.
Step 5: Calculate the relative closeness Si.

Si =
D−

i

D+
i +D−

i

, Si ∈ [0, 1] (17)

The Si quantifies the degree of superiority of each alternative.
A higher relative closeness value indicates a more favorable
evaluation, while a lower value suggests a less favorable
one. Consequently, the alternative with the highest relative
closeness is considered optimal, while the one with the
lowest relative closeness is deemed the least favorable.

IV. DUAL INNOVATIONS: ENTROPY-BASED WEIGHT
DETERMINATION AND TRUNCATED MEAN AGGREGATION

A. Problem Overview

Assume that A = {A1, . . . , Am} and B = {B1, . . . , Bn}
represent m alternatives and n attributes, respectively. Let
X be an SVNS, where aij = (Tij , Iij , Fij) denotes the
SVNN corresponding to the evaluation of the jth attribute
of the ith alternative. Suppose that there are k DMs,
denoted by C = {C1, . . . , Ck}, with a weight vector
λ = (λ1, . . . , λk), where λt ≥ 0 and

∑k
t=1 λt = 1.

The SVN decision matrix is denoted by R = (aij)m×n,
where atij = (Tat

ij
, Iat

ij
, Fat

ij
) encapsulates the evaluation

details from the tth decision-maker (DM). In this context,
Tat

ij
represents the truth-membership function for attribute

Bj of alternative Ai, as assessed by the tth DM. Similarly,
Iat

ij
denotes the indeterminacy-membership function, and

Fat
ij

indicates the falsity-membership function for that same
attribute. The original evaluation information provided by tth

DM is presented in Table I.

TABLE I
DECISION INFORMATION OF tTH DECISION-MAKER

X B1 B2 · · · Bn

A1 (T11, I11, F11) (T12, I12, F12) · · · (T1n, I1n, F1n)

A2 (T21, I21, F21) (T22, I22, F22) · · · (T2n, I2n, F2n)

...
...

...
. . .

...

Am (Tm1, Im1, Fm1) (Tm2, Im2, Fm2) · · · (Tmn, Imn, Fmn)

B. Weight Determination Method Based on Entropy

The traditional entropy weight method calculates the
information entropy of identical attributes across all schemes,
resulting in a fixed weight vector. Consequently, it assumes
the same level of importance for identical attributes
in different schemes, failing to account for the DM’s
preferences regarding the relationships between schemes and
attributes. To address this limitation, this paper introduces a
novel two-dimensional weight determination method based
on the original entropy weight method.

Information pertaining to each attribute is evaluated within
a consistent analytical framework. According to Equation (8),
the entropy of alternative Ai (i = 1, . . . ,m) is calculated as
follows:

Eij(Ai) = 1− 1

k

k∑
t=1

(
(Tat

ij
+ Fat

ij
) ·
∣∣∣Iat

ij
− I(at

ij)
c

∣∣∣) (18)

The weight of attribute j for alternative i is given by:

wij =
1− Eij(Ai)∑n

j=1(1− Eij(Ai)
, (j = 1, . . . , n) (19)

The above calculation steps are summarized in Table II.

TABLE II
PROCEDURE FOR ATTRIBUTE WEIGHT DETERMINATION

Calculation procedure B1 B2 · · · Bn

Step 1 Ai a1i1 a1i2 · · · a1in

a2i1 a2i2 · · · a2in
...

...
. . .

...

aki1 aki2 · · · akin

Step 2 Ai Ei1 Ei2 · · · Ein

Step 3 Ai wi1 wi2 · · · win

Example Assume there are two alternatives, A =
{A1, A2} and three attributes, B = {B1, B2, B3}, with the
following evaluation information provided by three DMs:

R1 =

[
(0.8, 0.1, 0.3) (0.6, 0.2, 0.4) (0.7, 0.3, 0.2)
(0.9, 0.1, 0.1) (0.5, 0.4, 0.5) (0.6, 0.5, 0.4)

]

R2 =

[
(0.7, 0.2, 0.4) (0.8, 0.1, 0.2) (0.5, 0.3, 0.5)
(0.4, 0.5, 0.6) (0.6, 0.4, 0.3) (0.9, 0.2, 0.1)

]

R3 =

[
(0.6, 0.3, 0.2) (0.8, 0.2, 0.1) (0.7, 0.2, 0.3)
(0.3, 0.6, 0.4) (0.5, 0.5, 0.4) (0.7, 0.1, 0.2)

]
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The values of the entropy matrix E are computed
according to Equation (18).

E =

[
0.38 0.353 0.547
0.687 0.873 0.56

]
Using Equation (19), the weights are as follows:

w(A1) = (0.36, 0.376, 0.264), w(A2) = (0.356, 0.144, 0.5).
In alternative A1, the attribute weight ranking is B2 (37.6%)
> B1 > B3; whereas in alternative A2, the ranking
is B3 > B1 > B2 (14.4%). These results demonstrate
significant variability in attribute weights across alternatives.
Furthermore, the preferences of DMs for attributes are
dynamically adjusted based on the characteristics of the
alternatives, illustrating a more realistic decision-making
process.

C. Truncated Mean Approach in the SVNS Environment

We introduce a truncated mean approach to the
SVNS environment, addressing the limitations of weight
dependency and extreme-value sensitivity in traditional
methods.

The detailed algorithmic procedure is outlined below.
Input: The SVNN set for alternative Ai, represented as

{(Tij , Iij , Fij)}nj=1.
Output: Aggregated SVNS information for alternative Ai.

1) Step 1: Sort the SVNNs based on s(Aij) in ascending
order according to Equation (4).

2) Step 2: Remove the k largest and smallest extreme
values (default k = 1, for n ≥ 5, k = ⌊0.2n⌋), where
⌊0.2n⌋ denotes the floor function, which rounds down
to the nearest integer.

3) Step 3: Compute the arithmetic mean of the remaining
SVNNs according to Equation (20).

Ãi =
1

n− 2k

n−2k∑
j=1

Tij ,
n−2k∑
j=1

Iij ,
n−2k∑
j=1

Fij

 (20)

Example Let X = {a, b, c, d} be the universe of SVNS,
and Y = {a1, b1, c1, d1} denotes the corresponding score
function. The set X is given as follows:

X =


(0.9, 0.1, 0.1),
(0.8, 0.2, 0.1),
(0.7, 0.2, 0.2),
(0.65, 0.35, 0.3)


The scores can be calculated using Equation (4):

Y = {0.9, 0.83, 0.76, 0.67}

Following score sorting Yi (i = 1, . . . , 4), the second and
third ranked values correspond to b = (0.8, 0.2, 0.1) and c =
(0.7, 0.2, 0.2) respectively. Therefore, the aggregate SVNNs
will be:

Ãi = (0.75, 0.2, 0.15)

The truncated mean approach filters out extreme
evaluations (e.g., by discarding the highest and lowest
k SVNS ratings) before aggregation, thereby reducing
sensitivity to outlier inputs.

V. THE PROPOSED APPROACH FOR SOLVING MAGDM
PROBLEMS USING TOPSIS

In this section, we integrate the innovative weight
determination method and the truncated mean approach into
the TOPSIS framework to formulate a MAGDM model.

Step 1: Assess the weight of decision-makers.
Let there be k DMs, where ct = (Tt, It, Ft) represents the

tth DM’s SVNN information. The importance is determined
using Equation (21).

λt =
Tt + It

(
Tt

Tt+Ft

)
∑k

t=1

(
Tt + It

(
Tt

Tt+Ft

)) (21)

Where λt ≥ 0 and
∑k

t=1 λt = 1. This equation captures the
interrelationships among the three membership functions for
each DM.

Step 2: Construct a two-dimensional weight matrix for
attributes of alternatives. Each attribute may have varying
levels of importance across different alternatives. The weight
matrix W can be calculated using Equations (18) and (19).

Step 3: Aggregate SVNNs of each decision-maker.
The decision matrix Rt is aggregated using the operator

defined in Equation (2). Let Rt = atij = (Tat
ij
, Iat

ij
, Fat

ij
)

represent the evaluation matrix of the tth DM. The aggregated
matrix R is given by:

R =

k∑
t=1

λtR
t (22)

Where R = rij = (Tij , Iij , Fij) is computed as follows:

rij =

(
1−

k∏
t=1

(
1− T t

ij

)λt
,

k∏
t=1

(
Itij
)λt

,
k∏

t=1

F t
ij

λt

)
Step 4: Formulate the aggregated weighted SVN decision

matrix.
Let U = Uij , with the weight matrix W applied

in conjunction with the decision matrix R. Thus, U is
represented as:

U = R⊙W (23)

This process involves element-wise multiplication of the
matrices obtained in Steps 2 and 3, as defined by the
following equation:

Uij = wij · rij = (T ′
ij , I

′
ij , F

′
ij) (24)

Step 5: Determine A+ and A−.
The ideal solutions A+ and A− are determined by

applying Equations (13) and (14) to the ordered set obtained
from Equations (4), (5) and (6), with z+j and z−j expressed
as SVNNs.

Step 6: Aggregate the PIS and NIS separately.
We define A′+ = (T+, I+, F+) and A′− = (T−, I−, F−)

to represent the PIS and NIS, respectively. The formulas for
calculating are as follows:

For the NIS A′−,

T− = min(T ′
ij), I

− = max(I ′ij), F
− = max(F ′

ij) (25)

where T ′
ij , I

′
ij , F

′
ij ∈ A−.

For the PIS A′+,

T+ = max(T ′
ij), I

+ = min(I ′ij), F
+ = min(F ′

ij) (26)
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where T ′
ij , I

′
ij , F

′
ij ∈ A+.

Step 7: Aggregate weighted SVNS information for each
alternative.

The aggregation information of alternative Ai can be
calculated using Equation (20).

Step 8: Calculate the distance for each alternative.
The distance D+ between the alternative Ai and the PIS

A′+, as well as the distance D− between Ai and the NIS
A′−, can be calculated using Equation (9).

D+
i =

n∑
j=1

d
(
Ãi, A

′+
)
,

D−
i =

n∑
j=1

d
(
Ãi, A

′−
)
,

i = 1, . . . ,m (27)

Step 9: Calculate the relative closeness coefficient
The relative closeness coefficient Si is determined using

Equation (17). A detailed example will be provided to
demonstrate the effectiveness and practical application of this
method.

A. Illustrative Example

Assume that a company plans to invest in establishing
a factory at a new location. Following preliminary
investigations, the company has identified five viable
plans. To facilitate the decision-making process, the
company has convened a panel of three experts. These
experts will evaluate the alternatives based on four
key attributes: product quality, service level, customer
satisfaction, and risk resistance capability. The sets of
alternatives, attributes, and experts are denoted as A =
{A1, A2, A3, A4, A5}, B = {B1, B2, B3, B4}, C =
{C1, C2, C3}, respectively. The weight assigned to each
expert is denoted by λt, where

∑3
t=1 λt = 1. The

set of evaluation information for the experts is C =
{(0.5, 0.4, 0.5), (0.8, 0.4, 0.5), (0.9, 0.9, 0.1)}. Let Rt =
atij = (Tat

ij
, Iat

ij
, Fat

ij
) represent the evaluation result of the

tth DM. The outcomes are presented in matrices R1 to R3.
Step 1: According to Equation (21), the weight vector is

given by λ = (0.203, 0.303, 0.495).
Step 2: The entropy matrix E is computed using

Equation (18), as follows:

E =


0.4 0.353 0.107 0.313
0.48 0.54 0.66 0.54
0.353 0.353 0.233 0.313
0.82 0.393 0.107 0.167
0.14 0.34 0.207 0.52


Thus, the weight matrix W , derived from the matrix above,

is represented as follows according to Equation (19):

W =


0.341 0.301 0.091 0.267
0.216 0.243 0.297 0.243
0.282 0.282 0.186 0.250
0.552 0.265 0.072 0.112
0.116 0.282 0.171 0.431


For example, w1 = (0.341, 0.301, 0.091, 0.267) represents
the weight of each attribute for A1.

Step 3: The decision matrix R is computed using
Equation (22).

Step 4: The final comprehensive matrix U , derived from
Equation (23), is obtained.

Step 5: Equations (4), (5) and (6) are employed to sort
the elements of matrix U and derive the score matrix S.

S =


0.621 0.667 0.655 0.630
0.696 0.692 0.678 0.709
0.638 0.619 0.673 0.675
0.732 0.658 0.662 0.656
0.655 0.619 0.661 0.580

 .

Subsequently, A+ and A− for the criteria C1, C2, C3, and
C4 can be calculated.

A+
1 = (0.435, 0.063, 0.175), A−

1 = (0.163, 0.261, 0.039)

A+
2 = (0.166, 0.037, 0.053), A−

2 = (0.135, 0.188, 0.09)

A+
3 = (0.203, 0.046, 0.124), A−

3 = (0.025, 0.051, 0.01)

A+
4 = (0.192, 0.037, 0.028), A−

4 = (0.206, 0.33, 0.137)

Step 6: The PIS and NIS are given by Equations (25) and
(26) as follows:

A+ = (0.435, 0.037, 0.028)

A− = (0.025, 0.33, 0.137)

Step 7: Based on matrix U , Ãi is calculated using
Equation (20), and the results are presented as follows

Ã1 = (0.076, 0.115, 0.034)

Ã2 = (0.157, 0.035, 0.039)

Ã3 = (0.126, 0.118, 0.041)

Ã4 = (0.09, 0.048, 0.064)

Ã5 = (0.087, 0.135, 0.041)

Step 8: The distance calculated using Equation (27) are
as follows:

D+ = {0.367, 0.279, 0.320, 0.347, 0.362}
D− = {0.244, 0.338, 0.254, 0.299, 0.226}

Step 9: The proximity coefficient Si and rank order are
displayed in Table III. The five alternatives were ranked as
A2 > A4 > A3 > A1 > A5. Therefore, A2 was selected as
the most suitable company to invest in.

TABLE III
RELATIVE CLOSENESS COEFFICIENT OF Ai

Alternatives A1 A2 A3 A4 A5

Si 0.399 0.548 0.442 0.463 0.384

Rank 4 1 3 2 5

VI. COMPARATIVE ANALYSIS

To showcase the effectiveness of the proposed method, we
compare it with several existing methods from the literature
using the same case. The results are summarized in Table IV
and visualized in Fig. 2. Fig. 3 offers an analysis of the
attribute weight calculations, while Fig. 4 displays the weight
information obtained through the proposed new method.

Ye [18] introduced a similarity-based weighting model,
where DM weights are derived from the similarity between
the SVN decision matrix and the average matrix, and attribute
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R1 =


(0.6, 0.9, 0.2) (0.7, 0.4, 0.4) (0.4, 0.7, 0.2) (0.6, 0.8, 0.3)
(0.8, 0.3, 0.2) (0.8, 0.3, 0.3) (0.8, 0.3, 0.5) (0.9, 0.3, 0.2)
(0.7, 0.8, 0.3) (0.6, 0.8, 0.4) (0.6, 0.4, 0.2) (0.7, 0.4, 0.3)
(0.9, 0.2, 0.4) (0.7, 0.4, 0.5) (0.5, 0.5, 0.3) (0.6, 0.7, 0.3)
(0.7, 0.6, 0.5) (0.5, 0.9, 0.2) (0.8, 0.7, 0.3) (0.6, 0.9, 0.4)



R2 =


(0.5, 0.8, 0.1) (0.6, 0.3, 0.3) (0.3, 0.6, 0.1) (0.5, 0.7, 0.2)
(0.7, 0.2, 0.1) (0.7, 0.2, 0.2) (0.7, 0.2, 0.4) (0.8, 0.2, 0.1)
(0.6, 0.7, 0.2) (0.5, 0.7, 0.3) (0.5, 0.3, 0.1) (0.6, 0.3, 0.2)
(0.8, 0.1, 0.3) (0.6, 0.3, 0.4) (0.4, 0.4, 0.2) (0.5, 0.6, 0.2)
(0.6, 0.5, 0.4) (0.4, 0.8, 0.1) (0.7, 0.6, 0.2) (0.5, 0.8, 0.3)



R3 =


(0.4, 0.7, 0.1) (0.5, 0.2, 0.3) (0.2, 0.5, 0.1) (0.4, 0.6, 0.2)
(0.6, 0.1, 0.1) (0.6, 0.1, 0.2) (0.6, 0.1, 0.4) (0.7, 0.1, 0.1)
(0.5, 0.6, 0.2) (0.4, 0.6, 0.3) (0.4, 0.2, 0.1) (0.5, 0.2, 0.2)
(0.7, 0.1, 0.3) (0.5, 0.2, 0.4) (0.3, 0.3, 0.2) (0.4, 0.5, 0.2)
(0.5, 0.4, 0.4) (0.3, 0.7, 0.1) (0.6, 0.5, 0.2) (0.4, 0.7, 0.3)



R =


(0.477, 0.767, 0.115) (0.579, 0.26, 0.318) (0.275, 0.565, 0.115) (0.477, 0.666, 0.217)
(0.682, 0.154, 0.115) (0.682, 0.154, 0.217) (0.682, 0.154, 0.418) (0.788, 0.154, 0.115)
(0.579, 0.666, 0.217) (0.477, 0.666, 0.318) (0.477, 0.26, 0.115) (0.579, 0.26, 0.217)
(0.788, 0.115, 0.318) (0.579, 0.26, 0.418) (0.376, 0.363, 0.217) (0.477, 0.565, 0.217)
(0.579, 0.464, 0.418) (0.376, 0.767, 0.115) (0.682, 0.565, 0.217) (0.477, 0.767, 0.318)

 .

U =


(0.163, 0.261, 0.039) (0.174, 0.078, 0.096) (0.025, 0.051, 0.01) (0.127, 0.178, 0.058)
(0.147, 0.033, 0.025) (0.166, 0.037, 0.053) (0.203, 0.046, 0.124) (0.192, 0.037, 0.028)
(0.163, 0.188, 0.061) (0.135, 0.188, 0.09) (0.089, 0.048, 0.021) (0.145, 0.065, 0.054)
(0.435, 0.063, 0.175) (0.153, 0.069, 0.111) (0.027, 0.026, 0.016) (0.054, 0.063, 0.024)
(0.067, 0.054, 0.049) (0.106, 0.216, 0.032) (0.117, 0.097, 0.037) (0.206, 0.33, 0.137)

 .

TABLE IV
COMPARISON BETWEEN DIFFERENT METHODS

Methods Ranking The best alternative The worst alternative

Ye [18] A2 > A4 > A3 > A1 > A5 A2 A5

Pramanik et al. [23] A4 > A2 > A3 > A1 > A5 A4 A5

Liu and Yang [9] A2 > A4 > A3 > A5 > A1 A2 A1

Biswas et al. [45] A2 > A1 > A5 > A3 > A4 A2 A4

The proposed model A2 > A4 > A3 > A1 > A5 A2 A5

importance is determined by comparing the matrix with
its complement. Pramanik et al. [23] optimized attribute
and DM weights by minimizing cross-entropy, yet their
approach remains constrained by reliance on traditional
aggregation operators. Liu and Yang [14] integrated the
CRITIC method with EDAS to address attribute variability
and correlation, but their framework requires predefined DM
weights. Biswas et al. [45] advanced grey relational analysis
by incorporating information entropy, utilizing weighted grey
relational coefficients to assess attribute weight significance.

These models were selected for comparison due
to their capability to handle MAGDM problems with
unknown attribute weights. While they offer advantages
in weight management or statistical integration, they
share critical limitations: (1) Methods [14] and [45]
cannot resolve unknown DM weights, restricting their

applicability to MAGDM; (2) Methods [18] and [23], despite
managing unknown weights, impose rigid single-vector
weight structures that fail to capture DMs’ dynamic
preferences across alternatives; (3) All these methods
depend on computationally intensive aggregation operators.
The proposed method addresses these shortcomings by
eliminating the structural rigidity of traditional weight
vectors and the dependency on aggregation operators,
achieving clearer alternative differentiation while aligning
with established decision logic.

As shown in Fig. 2, alternative A2 is consistently ranked
as optimal across most methods, except in Pramanik’s model
[23], where asymmetric weight determination introduces
deviations. The comprehensive scores from our method fall
within the range of those from the comparison models,
avoiding the extreme cases observed in [23] and [14]. This

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3129-3138

 
______________________________________________________________________________________ 



A1 A2 A3 A4 A5
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
cl

os
en

es
s v

al
ue

 (S
i)

Similarity-based weighting model
Cross-entropy measure
CRITIC method
Information entropy and weighted grey relational coefficients
The proposed method

Fig. 2. Result comparisons between the five methods. A1–A5 represent five alternative options. Each colored line indicates the overall score of a specific
alternative as determined by one of the methods.
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Fig. 3. Distribution of the attribute weight vector. B1–B4 represent product quality, service level, customer satisfaction, and risk resistance capability,
respectively. Each subfigure illustrates the weights assigned by a different method.
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Fig. 4. Result of the weight matrix. Each radar line represents an alternative (A1–A5), showing its performance across the four attributes. Greater
radial distance along an axis indicates stronger performance or higher importance of the corresponding attribute, while shorter distances imply weaker
performance or lower relevance.
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balanced distribution demonstrates the robustness of our
approach in mitigating outlier behavior. Further analysis
in Fig. 3 reveals a divergence in attributes B2 and B3
between other comparison methods and Liu and Yang’s
CRITIC-EDAS [14]. This divergence arises from their
reliance on Pearson correlation coefficients, which assign
negative weights to certain attributes, thereby diminishing
their informational significance. Fig. 4 illustrates significant
variations in criterion weights (B1–B4) across alternatives
(A1–A5), reflecting the context-dependent nature of attribute
prioritization. For example, alternative A1 assigns higher
weights to B1 and B2 but lower importance to B3, whereas
A4 exhibits a strong preference for B1. Our two-dimensional
weight matrix effectively captures dynamic preference
structures by explicitly modeling the importance of criteria
specific to each alternative. This approach provides a more
realistic and interpretable representation of decision-making
behavior than conventional static weighting methods.

VII. CONCLUSION

This study proposes a dual-innovation framework for
SVNS-based MAGDM, addressing two key challenges: the
inflexibility of traditional vector-based weight representations
in capturing dynamic attribute preferences of DMs across
alternatives, and the over-reliance on weight dependency
in existing operators. We propose (1) an entropy-driven
two-dimensional weight matrix (wij ∈ Rm×n) to
quantify the interdependent preferences between attributes
and alternatives, and (2) a truncated mean aggregation
mechanism that eliminates mandatory weight inputs through
adaptive truncation of extreme values. Our method offers
a more flexible and robust solution. The empirical
weight variations observed in our experiments, in which
the same attribute was assigned 37.6% for alternative
A1 versus 14.4% for A2, demonstrate that our weight
matrix outperforms traditional vector-based methods (e.g.,
entropy-based [45]) in distinguishing attribute preferences
across alternatives. The framework, integrated with TOPSIS,
proves especially effective in weight-ambiguous scenarios,
where attribute weights are completely unknown or partially
specified. Future extensions to interval neutrosophic set
(INS) environments and behavioral economics-integrated
models could further bridge theoretical advancements with
real-world applications in supply chain optimization and
medical decision support, ultimately laying the foundation
for robust decision support in highly uncertain environments.
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