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Abstract—Graph labeling constitutes a significant area of
research in graph theory, encompassing a wide variety of
labeling methods and their multifaceted applications. This
work specifically concentrates on the assignment of labels to
a planar graph. It establishes the theoretical framework for
face bimagic and 1-antimagic labelings of type (1, 0, 0) and
(1, 0, 1) for the rooted product of Pn and K2,m, outlining
comprehensive criteria and methodologies. The paper also ex-
plores the behavior of the associated magic constant in various
configurations. Through constructive examples and parameter
variations, we demonstrate how label assignments affect the
constancy or variability of sums across faces of a given graph,
thus offering deeper insights into the labeling characteristics of
planar graphs.

Index Terms—Graph labeling, Planar graph, Face labeling,
Magic labeling, Bimagic labeling, Antimagic labeling

I. INTRODUCTION

Graph labeling is a fascinating area of graph theory, where
labels are assigned to graph elements, such as vertices,
edges, and/or faces, to satisfy specific properties. Magic
labelings create uniform patterns by ensuring that the sums of
labels around designated structures remain consistent. On the
other hand, antimagic labelings focus on uniqueness, where
the sums of labels around specified structures are distinct.
In bimagic labeling, the sums of labels around designated
structures give two magic constants (denoted as M1 and
M2). Labeling types differ based on the graph elements
involved. For instance, a labeling of type (1, 0, 1) for a planar
graph includes labeling of vertices and faces, whereas a type
(1, 0, 0) focuses solely on vertices. A magic labeling of type
(a, b, c) for a planar graph G is called a super magic labeling
of type (a, b, c) if f(V (G)) = {1, 2, . . . , |V (G)|}.

Extensive research on graph labeling is documented
in Gallian’s survey [1], which provides a comprehensive
overview of the field. Notably, in 1983, Lih introduced a
magic-type labeling approach for the vertices, edges, and
faces of planar graphs [2]. Baca later developed consecutive
and magic labelings of type (0, 1, 1) and a consecutive
labeling of type (1, 1, 1) for certain planar graphs with
hexagonal faces [3]. Additionally, Baca and Miller defined
the d-antimagic labeling of type (1, 1, 1) for planar graphs
[4]. Liu et al. explored the super (a, 0) edge-antimagic
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labeling of the rooted product of specific graphs [5]. Ahmed
and Babujee explored face bimagic labeling of type (1, 1, 0)
for different graph structures, such as wheels, cylinders and
the disjoint union of m copies of prism graphs [6]. Graph
labeling encompasses a wide range of applications and plays
a crucial role in the field of cryptography [7], [8].

This study is about the super face bimagic and 1-antimagic
labelings of types, (1, 0, 0) and (1, 0, 1) for the rooted
product of graphs, path Pn and K2,m (Pn ◦ K2,m). K2,m

is a complete bipartite graph where the vertex set is divided
into two disjoint subsets: One has 2 vertices and the other
subset has m vertices. In a complete bipartite graph, every
vertex in one subset is connected to every vertex in the other
subset and there are no edges between vertices within the
same subset. The total number of vertices and edges in K2,m

are 2 +m and 2m, respectively. The rooted product of two
graphs G and H is constructed by taking |V (G)| copies of
H and for every vertex vi of G, identifying vi with the root
node of the ith copy of H . This product is denoted by G◦H .

II. FACE LABELING OF Pn ◦K2,m

Consider the planar graph G ∼= Pn ◦K2,m with vertex set
V (G), edge set E(G), and face set F (G). Let M1 and M2 be
the magic constants and W be the sum of the labels in the
interior face of the graph (face weight). The total number
of vertices, edges and faces in Pn ◦ K2,m are n(m + 2),
2mn+ n− 1, and n(m− 1), respectively.

Theorem 1: The graph Pn ◦K2,m, where m ≥ 3 and n ≥
2, admits a super bimagic labeling of type (1, 0, 0) with the
following magic constants:
i) M1 = 2mn+ 4n+ 2
ii) M2 = 2mn+ 5n+ 2.

Proof: Let G be the rooted product of graphs Pn and
K2,m with vertex set V (G) and |V (G)| = n(m + 2). The
vertices of G are labeled as described below.

The vertices of Pn◦K2,m are labeled in general for m ≥ 3
and n ≥ 2 as shown in Fig. 1 and Fig. 2. The graph in Fig.
1 contains the vertex labels when m is odd and the graph in
Fig. 2 contains the vertex labels when m is even.

A vertex labeling function g : V (G) −→ {1, 2, . . . , n(m+
2)}, which is a bijection, is defined and the vertices vi, vip, u

i
q

and wi, where 1 ≤ i ≤ n are labeled as follows:

vi = i,

vip = pn+ i, 1 ≤ p ≤
⌈m
2

⌉
,

ui
q = (q + 1)n+ 1− i,

⌈
m+ 2

2

⌉
≤ q ≤ m,

wi = (m+ 2)n+ 1− i.

Let all the faces be divided into two categories, F1 and F2.
Each category will contain the alternate faces of Pn ◦K2,m.
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Fig 1. Pn ◦K2,m, where m is odd

Fig 2. Pn ◦K2,m, where m is even

i) M1 = 2mn+ 4n+ 2

The expression is proved by using the induction method three
times. To prove the expression M1 = 2mn+4n+2 for m ≥ 3
and n ≥ 2, first we will use induction on all faces in F1,
induction on n (for a fixed m) and then induction on m. The
proof uses the assumption for k − 1 to prove for k.

Step 1: The proof consists of two cases: when m is even and
when m is odd, to prove the expression holds for all faces
in F1.

Case 1: m is odd.
Consider F1 = {f1, f3, . . . , fm−2}. First, we will prove
M1 = 2mn+4n+2 for all f1, f3, . . . , fm−2 by induction.

Base case: In f1, p and q are 1 and m, respectively.
The first face f1 of K2,m attached to i consists of the labels
vi, vi1, wi and ui

m. The first magic constant is obtained by

summing the vertex labels around the face f1 as follows.

M1 = i+ pn+ i+ (q + 1)n+ 1− i+ (m+ 2)n+ 1− i

Substitute p = 1 and q = m.

M1 = n+ (m+ 1)n+ 1 + (m+ 2)n+ 1

= 2mn+ 4n+ 2.

The base case holds.

Assume the expression holds for fm−4.
Substitute p = m−3

2 and q = m+5
2 in the expression.

M1 =

(
m− 3

2

)
n+

(
m+ 5

2
+ 1

)
n+ 1 + (m+ 2)n+ 1

= 2mn+ 4n+ 2.
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We need to prove the expression holds for fm−2.
Substitute p = m−1

2 and q = m+3
2 in the expression.

M1 =

(
m− 1

2

)
n+

(
m+ 3

2
+ 1

)
n+ 1 + (m+ 2)n+ 1

= 2mn+ 4n+ 2.

Thus, the expression holds for all faces in F1 when m is
odd.

Case 2: m is even.
Consider F1 = {f1, f3, . . . , fm−1}. Now, we will prove
M1 = 2mn+ 4n+ 2 for all f1, f3, . . . , fm−1 by induction.

Base case: In f1, p and q are 1 and m, respectively.
This is similar to the base step in Case 1. The base case
holds.

Assume the expression holds for fm−3.
Substitute p = m−2

2 and q = m+4
2 in the expression.

M1 =

(
m− 2

2

)
n+

(
m+ 4

2
+ 1

)
n+ 1 + (m+ 2)n+ 1

= 2mn+ 4n+ 2.

We need to prove the expression holds for fm−1.
Substitute p = m

2 and q = m+2
2 in the expression.

M1 =
(m
2

)
n+

(
m+ 2

2
+ 1

)
n+ 1 + (m+ 2)n+ 1

= 2mn+ 4n+ 2.

Thus, the expression holds for all faces in F1 when m is
even.

To prove the expression M1 = 2mn+ 4n+ 2 for m ≥ 3
and n ≥ 2, we will use induction on n first (for a fixed m)
and then induction on m. The proof uses the assumption for
k − 1 to prove for k.

Step 2: Induction on n (for fixed m = 3).

Base case: n = 2. Substitute m = 3 and n = 2 into the
expression:
M1 = 2mn+ 4n+ 2 = 22. The base case holds.

Assume the expression holds for n = k − 1. That is,

M1 = 2m(k − 1) + 4(k − 1) + 2.

We need to prove the expression holds for n = k. Use the
expression for n = k − 1 in the inductive hypothesis.

M1 = 2m(k − 1) + 4(k − 1) + 2.

Write k = (k − 1) + 1 in the above expression. For n = k:

M1 = 2m[(k − 1) + 1] + 4[(k − 1) + 1] + 2

= 2m(k − 1) + 2m+ 4(k − 1) + 4 + 2

= 2mk + 4k + 2.

Thus, the expression holds for n = k.
By induction, the expression is proven for all n ≥ 2.

Step 3: Induction on m (for fixed n ≥ 2).

Base case: m = 3. From Step 2, we proved that the
expression holds for m = 3 and all n ≥ 2.

Assume the expression holds for m = k − 1. That is,

M1 = 2(k − 1)n+ 4n+ 2.

We need to prove the expression holds for m = k.
Use the expression for m = k−1 in the inductive hypothesis.

M1 = 2(k − 1)n+ 4n+ 2.

Write k = (k − 1) + 1 in the above expression. For m = k:

M1 = 2[(k − 1) + 1]n+ 4n+ 2

= 2(k − 1)n+ 2n+ 4n+ 2

= 2kn+ 4n+ 2.

Thus, the expression holds for m = k.
By induction on m and n, the expression M1 = 2mn+4n+2
is proven for all m ≥ 3 and n ≥ 2, using the assumption for
k − 1 in both steps.

ii) M2 = 2mn+ 5n+ 2

The steps involved in this proof are similar to the steps
described in the proof for M1. To prove the expression
M2 = 2mn+5n+2 for m ≥ 3 and n ≥ 2, first we will use
induction on all faces in F2, induction on n (for a fixed m)
and then induction on m.

Step 1: The proof consists of two cases: when m is even and
when m is odd, to prove the expression holds for all faces
in F2.

Case 1: m is odd.
Consider F2 = {f2, f4, . . . , fm−1}. First, we will prove
M2 = 2mn+5n+2 for all f2, f4, . . . , fm−1 by induction.

Base case: In f2, p and q are 2 and m, respectively.
f2 of K2,m attached to i consists of the labels vi, vi2, wi and
ui
m. The second magic constant is obtained by summing the

vertex labels around the face f2 as follows.

M2 = i+ pn+ i+ (q + 1)n+ 1− i+ (m+ 2)n+ 1− i

Substitute p = 2 and q = m.

M2 = 2n+ (m+ 1)n+ 1 + (m+ 2)n+ 1

= 2mn+ 5n+ 2.

The base case holds.

Assume the expression holds for fm−3.
Substitute p = m−1

2 and q = m+5
2 in the expression.

M2 =

(
m− 1

2

)
n+

(
m+ 5

2
+ 1

)
n+ 1 + (m+ 2)n+ 1

= 2mn+ 5n+ 2.

We need to prove the expression holds for fm−1.
Substitute p = m+1

2 and q = m+3
2 in the expression.

M2 =

(
m+ 1

2

)
n+

(
m+ 3

2
+ 1

)
n+ 1 + (m+ 2)n+ 1

= 2mn+ 5n+ 2.

Thus, the expression holds for all faces in F2 when m is odd.
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Case 2: m is even.
Consider F2 = {f2, f4, . . . , fm−2}. Now, we will prove
M2 = 2mn+5n+2 for all f2, f4, . . . , fm−2 by induction.

Base case: In f2, p and q are 2 and m, respectively.
This is similar to the base step in Case 1. The base case
holds.

Assume the expression holds for fm−4.
Substitute p = m−2

2 and q = m+6
2 in the expression.

M1 =

(
m− 2

2

)
n+

(
m+ 6

2
+ 1

)
n+ 1 + (m+ 2)n+ 1

= 2mn+ 5n+ 2.

We need to prove the expression holds for fm−2.
Substitute p = m

2 and q = m+4
2 in the expression.

M1 =
(m
2

)
n+

(
m+ 4

2
+ 1

)
n+ 1 + (m+ 2)n+ 1

= 2mn+ 5n+ 2.

Thus, the expression holds for all faces in F2 when m is
even.

To prove the expression M2 = 2mn+ 5n+ 2 for m ≥ 3
and n ≥ 2, we will use induction on n first (for a fixed m)
and then induction on m. The proof uses the assumption for
k − 1 to prove for k.

Step 2: Induction on n (for fixed m = 3).
Base case: n = 2. Substitute m = 3 and n = 2 into the
expression:
M2 = 2mn+ 5n+ 2 = 24. The base case holds.

Assume the expression holds for n = k − 1. That is,

M2 = 2m(k − 1) + 5(k − 1) + 2.

We need to prove the expression holds for n = k.
Use the expression for n = k−1 in the inductive hypothesis.

M2 = 2m(k − 1) + 5(k − 1) + 2.

Write k = (k − 1) + 1 in the above expression. For n = k:

M2 = 2m[(k − 1) + 1] + 5[(k − 1) + 1] + 2

= 2m(k − 1) + 2m+ 5(k − 1) + 5 + 2

= 2mk + 5k + 2.

Thus, the expression holds for n = k.
By induction, the expression is proven for all n ≥ 2.

Step 3: Induction on m (for fixed n ≥ 2).
Base case: m = 3. In Step 2, we proved that the expression
holds for m = 3 and all n ≥ 2.

Assume the expression holds for m = k − 1. That is,

M2 = 2(k − 1)n+ 5n+ 2.

We need to prove the expression holds for m = k. Use the
expression for m = k − 1 in the inductive hypothesis.

M2 = 2(k − 1)n+ 5n+ 2.

Write k = (k − 1) + 1 in the above expression. For m = k:

M2 = 2[(k − 1) + 1]n+ 5n+ 2

= 2(k − 1)n+ 2n+ 5n+ 2

= 2kn+ 5n+ 2.

Thus, the expression holds for m = k.
By induction on m and n, the expression M2 = 2mn+5n+2
is proven for all m ≥ 3 and n ≥ 2, using the assumption for
k − 1 in both steps.

Thus, all the faces of Pn ◦K2,m can have magic constant
either M1 = 2mn+4n+2 or M2 = 2mn+5n+2. Hence,
Pn ◦K2,m admits a super bimagic labeling of type (1, 0, 0).

Corollary 1.1: The difference between the two magic
constants M1 and M2 in Pn ◦K2,m is n.

Corollary 1.2: For the magic constant M1 = 2mn+4n+
2, where m ≥ 3 and n ≥ 2, the difference between the magic
constants when n increases by 1 is 2m+ 4.

Proof: Substituting n = k into the given expression.

M1 = 2mk + 4k + 2

Substituting n = k − 1 into the given expression.

M1 = 2m(k − 1) + 4(k − 1) + 2

△M1 = [2mk+4k+2]−[2m(k−1)+4(k−1)+2] = 2m+4.

Corollary 1.3: For the magic constant M2 = 2mn+5n+
2, where m ≥ 3 and n ≥ 2, the difference between the magic
constants when n increases by 1 is 2m+ 5.

Example: The graph P3 ◦ K2,4 satisfies super bimagic
labeling of type (1, 0, 0). The labels are assigned to the
vertices of the rooted product of P3 and K2,4 as shown in
Fig. 3. The magic constant of each face is computed using the
expression given in Theorem 1. The magic constants obtained
using the expressions for P3 ◦K2,4 are 38 and 41, which are
the same as the values obtained by summing the vertex labels
around each face of the graph.
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Fig 3. A super bimagic labeling of type (1,0,0) of P3 ◦K2,4

Table 1 presents the values of the magic constant M1 =
2mn+4n+2 for the graph Pn ◦K2,m, obtained by varying
n from 2 to 10 and m from 3 to 10.

This is verified by constructing the graphs, assigning ap-
propriate values to the vertices of Pn ◦K2,m, and computing
the magic constants by summing all the vertex labels around
each face for various values of m and n up to 10.

Table 1: The values of magic constant M1 for Pn ◦K2,m

by varying n and m

n\m 3 4 5 6 7 8 9 10
2 22 26 30 34 38 42 46 50
3 32 38 44 50 56 62 68 74
4 42 50 58 66 74 82 90 98
5 52 62 72 82 92 102 112 122
6 62 74 86 98 110 122 134 146
7 72 86 100 114 128 142 156 170
8 82 98 114 130 146 162 178 194
9 92 110 128 146 164 182 200 218
10 102 122 142 162 182 202 222 242

Table 2 presents the values of the magic constant M2 =
2mn+5n+2 for the graph Pn ◦K2,m, obtained by varying

n from 2 to 10 and m from 3 to 10.

Table 2: The values of magic constant M2 for Pn ◦K2,m

by varying n and m

n\m 3 4 5 6 7 8 9 10
2 24 28 32 36 40 44 48 52
3 35 41 47 53 59 65 71 77
4 46 54 62 70 78 86 94 102
5 57 67 77 87 97 107 117 127
6 68 80 92 104 116 128 140 152
7 79 93 107 121 135 149 163 177
8 90 106 122 138 154 170 186 202
9 111 119 137 155 173 191 209 227
10 112 132 152 172 192 212 232 252

Note: The graph Pn ◦K2,2 admits a super magic labeling
of type (1,0,0) with magic constant 8n+ 2.

Example: The graph P5 ◦ K2,2 satisfies super magic
labeling of type (1,0,0) and the magic constant is 42, which
is obtained by summing the vertex labels around each face
of the graph shown in Fig. 4.

Fig 4. A super magic labeling of type (1,0,0) of P5 ◦K2,2
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III. 1-ANTIMAGIC LABELING OF TYPE (1,0,1) OF
Pn ◦K2,m

Theorem 2: For odd m, the graph P2 ◦ K2,m admits a
super 1-antimagic labeling of type (1, 0, 1).

Proof: Let G be the rooted product of graphs P2 and
K2,m with vertex set V (G), where |V (G)| = 2(m+ 2) and
face set F (G), where |F (G)| = 2(m− 1). Fig. 5 shows the
vertex and face labels of P2 ◦K2,m in general.

The vertex labels are similar to the labels in (1, 0, 0) as
described in Theorem 1. So, the magic constants obtained
in Theorem 1 are added to the face label to find the face
weight W of each face in P2 ◦K2,m. The faces are labeled
as described below.
A face labeling function h : F (G) −→ {mn+2n+1,mn+
2n+2, . . . , 2mn+n}, a bijection which is defined as follows:

h(fr) = 2mn+ n+ 1− r.

For n = 2,
h(fr) = 4m+ 3− r.

We know that the sum of the vertex labels around all the
faces in F1 is M1 = 2mn+ 4n+ 2.
The sum of the vertex labels and the face label around all
the faces in F1 with n = 2 is calculated as follows:

W = 2mn+ 4n+ 2 + 2mn+ n+ 1− r

= 8m+ 13− r.

This will give the alternate values since only alternate faces
are considered and all values will be even.
We know that the sum of the vertex labels around all the
faces in F2 is M2 = 2mn+ 5n+ 2.

The sum of the vertex labels and the face labels around
all the faces in F2 with n = 2 is calculated as follows:

W = 2mn+ 5n+ 2 + 2mn+ n+ 1− r

= 8m+ 15− r.

This will also give the alternate values since only alternate
faces are considered and all values will be odd.

Since 8m + 13 − r generates all even numbers and
8m + 15 − r generates all odd numbers and they appear in
an alternating pattern with the difference between successive
terms from these two expressions being 1, they together form
a continuous sequence. This ensures that all integers appear
consecutively, satisfying the conditions for 1-antimagic la-
beling. Thus, P2 ◦K2,m admits a super 1-antimagic labeling
of type (1, 0, 1), when m is odd.

Fig 5. P2 ◦K2,m, where m is odd
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Fig 6. A super 1-antimagic labeling of type (1,0,1) of P2 ◦K2,7

Example: The graph P2 ◦ K2,7 in Fig. 6 satisfies super
1-antimagic labeling of type (1, 0, 1). The weight of all the
faces is computed using the expression given in Theorem 2.
The face weights obtained using the expression range from
58 to 69, which are the same as the face weights obtained
by summing the vertex labels and face labels around each
face of the graph shown in Fig. 6.

IV. CONCLUSION

This study has investigated super bimagic labeling and
super 1-antimagic labeling in Pn ◦K2,m, revealing the inter-
play between vertices, edges, and faces of a planar graph. By
analyzing these labeling techniques, this research highlights
their significance in characterizing the structural properties
of graphs. This research contributes to the growing body of
knowledge in graph theory, enhancing the understanding of
labeling methodologies and providing a foundation for future
studies in this field. The ongoing evolution of graph labeling
theories continues to strengthen theoretical foundations while
fostering advancements in real-world applications. Face la-
beling can serve as a valuable technique in cryptographic

applications, offering a structured approach to secure data
representation and encryption methods.
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