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Abstract—Aiming at the problems that exist in steel surface
defect detection, such as complex features are susceptible to
interference from the background environment and it is difficult
to take into account the details and global information, this
paper proposes an algorithm for small target detection based
on the improved YOLOvV12 model. The algorithm replaces the
traditional up-sampling method in the head of the model as
CARAFE module to reduce the information loss in the feature
up-sampling process and enhance the detail recovery ability of
small defects. Swin Transformer is introduced to reconstruct
the global features and capture the global context informa-
tion through the self-attention mechanism, which demonstrates
stronger multi-scale feature fusion capability when dealing with
defects with small size or blurred details. In addition, the adap-
tive weighting of channel features using SEAttention suppresses
the background noise and texture interference, and enhances
the ability of the inspection head to focus on critical information.
Through the combination of these three key techniques, the
model is able to more accurately identify and localize defects
that are small and easily obscured by the background. The
experimental results validate the effectiveness of the proposed
algorithm on the NEU-DET (Northeastern University Detection)
dataset with a mean average precision (mAP) of 82.5 %, which
is a 3.1 % improvement over the original YOLOv12 model.
The experimental data show that the proposed model has
significantly improved the detection accuracy on the NEU-DET
dataset, and can effectively deal with the problem of small target
recognition in complex environments.

Index Terms—Steel surface defects, Small target detection,
Self attention mechanism, YOLOv12

I. INTRODUCTION

Teel production is susceptible to surface defects such as
S scratches and cracks due to process fluctuations and en-
vironmental factors [1-3]. These defects not only weaken the
physical properties of the material, but also pose significant
safety risks in petrochemical, shipbuilding, nuclear power
and other fields. Steel surface defects are usually character-
ized by small-scale and low-contrast features, which belong
to the category of small target detection, and their fuzzy
characterization and lack of contextual information pose a
double challenge to the algorithms. Effective steel surface
defect detection not only helps to improve product quality
and production efficiency, but also has great significance in
ensuring production safety [4, 5].
Traditional defect detection methods mainly rely on man-
ual sampling, infrared detection, magnetic leakage detection,
and other methods[6]. In complex industrial scenarios, there
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are sampling imbalances that lead to large errors, limited
by the different surfaces of the steel material and lead
to inaccurate classification of defects, for the detection of
small and narrow crack defects is limited and leads to the
defect type is not a complete yank and other problems.
The traditional defect detection method seriously restricts
the detection accuracy. The deep learning method based on
a convolutional neural network shows better detection capa-
bility than traditional methods under conventional conditions
by automatically learning hierarchical feature representation
[7]. However, it still faces the challenge of insufficient
feature discrimination when facing complex working condi-
tions such as high background noise interference, tiny defect
identification and multi-scale target detection. Overall, the
current defect detection technology still faces accuracy and
adaptability problems in complex industrial environments.
In the field of steel surface defect detection, improved
methods based on the YOLO family provide diverse solu-
tions to address the challenges of multi-scale feature fusion,
background noise interference, etc. in complex industrial
scenarios. Zhao et al. [8] recognize defects on steel surfaces
by combining Generative Adversarial Networks (GANs),
Autoencoders (AEs), and LBPs without manual annota-
tion. Based on the YOLOv7 framework, Wang et al. [9]
made a breakthrough in improving the accuracy of steel
surface defect detection by employing a de-weighted bidi-
rectional feature pyramid network (BiFPN) structure. The
method effectively reduces the feature information loss in
the convolution process by optimizing the feature informa-
tion utilization and enhancing the multi-scale feature fusion
capability. Zou et al. [10] apply the YOLO framework to
steel surface defect detection in infrared images and improve
the robustness of the model under complex lighting and noise
conditions by means of regularization, but there is a problem
that the accuracy of feature extraction may be insufficient
under complex background. The DSL-YOLO proposed by
Wang et al. [11] designs a multi-scale learning strategy for
metal surface defects, aiming to capture fine-grained defect
features and improve the detection effect, but it may lead to
an increase in the complexity of the model structure, which
is prone to overfitting problems. Heliyon [12] provides com-
prehensive performance analysis and optimization by sys-
tematically comparing the performances of different YOLO
models in surface defect detection. Directions. However, this
work mainly focuses on model evaluation without proposing
a new detection architecture. Xie et al. [13] proposed a
lightweight heavily parameterized feature pyramid network
(DE-FPN), which enhances defect feature characterization
by incorporating multi-scale convolutional kernel features,
but the feature up-sampling process still involves the risk of
loss of local details. Zhang et al. [14] built a lightweight
feature pyramid network (FPN) by combining the model
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clipping technique with YOLOv7-Tiny and constructed a
lightweight FPN with YOLOv7-Tiny, which can be used to
detect surface defects. Technique to construct a lightweight
and efficient steel defect detection network, which is suitable
for real-time application scenarios, but the pruning may lead
to insufficient model capacity, which affects the ability to
discriminate subtle defects.

A number of researchers mentioned above, from differ-
ent perspectives, have used a variety of different methods
to detect steel surface defects in complex backgrounds
and multi-scale scenarios, where feature extraction is not
precise enough, leading to difficulties in capturing fine-
grained defects. YOLOvI12 [15] has achieved higher real-
time detection accuracy and speed through improved feature
fusion and the introduction of a more efficient attention
mechanism in its architecture, but there may still be problems
of insufficient local detail capture and inadequate multi-
scale feature representation in the steel defect detection of
the small target detection task, there may still be problems
of insufficient local detail capture and inadequate multi-
scale feature representation. In order to improve the model’s
ability of multi-scale feature fusion and local detail capture
for steel surface defects, global information interaction and
channel recalibration are enhanced, so as to improve the
robustness and accuracy of small target detection. Based on
this, this paper improves the YOLOvI2 algorithm, aiming
to improve the detection performance of steel surface de-
fects by enhancing it. Specifically, the CARAFE module
is proposed to replace the traditional up-sampling in the
YOLOvVI12 head network. CARAFE efficiently aggregates
multi-scale contextual information through adaptive feature
up-sampling. It is useful for improving the recovery of
detailed information during convolutional upsampling, which
enhances the ability to capture small defects on the steel
surface. This fine-grained feature reconstruction improves
the discriminative effect of the whole detection network on
defective regions in complex contexts. In the head network,
the Swin Transformer module and SEAttention module are
introduced. The Swin Transformer module is placed after
the backward convolutional layers in the detection head and
utilizes a hierarchical transformer design to capture global
and local information.

The introduction of this module provides richer contextual
semantics for steel surface defect detection and helps to
recognize small and ambiguous defects. SEAttention module
follows the Swin Transformer and dynamically recalibrates
the channel features to improve the representation of critical
information. It automatically emphasizes the feature channels
that are most important for defect detection while suppress-
ing redundant and noisy information. This mechanism im-
proves the feature fusion process and enhances the robustness
and accuracy of the model for steel defects in complex
industrial environments.

II. RELATED WORK

Steel surface defect detection is one of the most important
research directions in computer vision, especially in petro-
chemicals, shipbuilding, nuclear power, and other demanding
fields with a wide range of applications. However, steel
surface defect images are often characterized by various
types of defects, complex morphology, serious background

interference, and small and uneven distribution of the tar-
get area, which brings significant challenges to traditional
detection algorithms. To further improve the detection ac-
curacy, researchers continue to explore new solutions, and
gradually introduce the attention mechanism, multi-scale
feature extraction methods, transfer learning techniques, and
reinforcement learning strategies into the steel surface defects
detection task to more effectively capture the weak features
and adapt to the complex environment, and to improve the
accuracy and robustness of the detection.

In recent years, the YOLO series of models have achieved
high detection accuracy, but they still have some limitations
in dealing with small target detection of steel surface de-
fects. In order to further improve the detection accuracy
and better apply it to more complex cases such as steel
surface defect images, a variety of improvement approaches
have been proposed. For example, RepVGG [16] adopts a
reparameterization strategy to greatly improve the feature
expression ability while lightweighting, which can more
accurately capture the information of small defects, while
ConvNeXt [17] realizes the efficient extraction of detailed
features in complex backgrounds through modern convo-
lutional architecture and hierarchical design. In addition,
RegNet [18] utilizes automated structure search techniques
to build a flexible and efficient network configuration that ef-
fectively addresses the challenges of multi-scale features and
complex interference. In target detection, HRNet [19] adopts
a high-resolution feature retention strategy, which is able to
continuously capture fine-grained information throughout the
network and effectively discriminate fine defects on steel
surfaces. The YOLOX-Nano [20] model adopts a lightweight
architecture and a high-efficiency detector head, which is
able to ensure real-time detection while capturing tiny targets
more accurately, thus improving the accuracy of defect
detection on steel surfaces. Scaled-YOLOv4 [21] and other
model models in the network structure and loss function,
for small targets and complex background defect detection
has been specifically optimized, making the positioning and
identification of tiny defects more accurate.

Based on these improved approaches, an improved steel
surface defect detection algorithm based on YOLOV12 is pro-
posed in this study. The algorithm combines a lightweight up-
sampling operator that effectively improves detection accu-
racy and a fused attention mechanism. The method maintains
a high detection performance while significantly improving
the detection accuracy, providing an effective solution to the
poor detection accuracy of small targets for steel surface
defects.

III. MODEL IMPROVEMENTS
A. YOLOvI2 Improvement Modules

In order to cope with the problems of steel surface defect
detection due to the variety of defect types, complex mor-
phology, serious background interference, small target area,
and uneven distribution, the model has made targeted im-
provements in feature extraction and fusion. Three modules,
CARAFE, SwinTransformer, and SEAttention, have been
introduced successively, each playing an important role in
different stages. The improved YOLOvV12 model framework
is shown in Figure 1.
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Fig. 1: YOLOvVI12 improved architecture diagram

In the YOLOV12 neck structure, the CARAFE module is
placed in the first up-sampling position, replacing the tradi-
tional up-sampling method. During the steel surface defect
detection process, defects often have tiny and localized ir-
regular morphology, CARAFE can better capture and restore
these fine features, enabling the subsequent detector to obtain
clearer and more representative feature information. Swin
Transformer module and SEAttention module are added to
the front end of the model head in turn. Among them, Swin
Transformer utilizes the hierarchical window attention mech-
anism to model the dependency relationship between local
and global, and adaptively captures long-distance and cross-
region feature connections to enhance the model’s ability to
perceive abnormal regions, which improves the recognition
accuracy of complex textures and irregular defect patterns
on the steel surface. The SEAttention module, added after
SwinTransformer, focuses on the channel attention mecha-
nism, which makes it more sensitive to the key texture and
edge information in steel defects. This channel-level feature
enhancement not only helps suppress redundant background
information but also highlights the feature signals in the
defect region. This design is useful for steel surface defect
detection to further accurately capture and identify abnormal
regions, thus significantly improving the detection accuracy.

B. CARAFE

In the traditional up-sampling method, the sampling ker-
nel is determined only based on the spatial location of
the pixel point, and its sensing field is only 1x1, which
ignores the semantic information of the neighboring regions.
The size of defects in steel surface defect detection varies
greatly, especially for some small defects, which leads to
a degradation in the quality of the feature map after up-
sampling, and fails to adequately express the details and
contextual information of the input image. CARAFE, as a
lightweight universal upsampling operator, effectively solves
this problem by introducing an upsampling kernel prediction
module and a feature reorganization module. CARAFE helps
to better capture and recover the fine defects by adaptively
aggregating the surrounding feature information, which im-
proves the ability of multiscale detection. For scenes that
require extraction of high-resolution details, CARAFE can
better transfer the low-level detail information to the higher
level, helping the network to more accurately distinguish tiny
texture and defect features. Figure 2 shows the sampling
flowchart on the CARAFE operator.

The CARAFE algorithm consists of two parts, the kernel
prediction module and the feature reorganization module. It
breaks through the limitations of the traditional up-sampling
method and enables the model to recover defect details
more accurately in the detection task. Let the upsampling
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Fig. 2: Upsampling process of CARAFE operator

multiplicity be and the input shape of the previous layer be
X € RBXCxHxM \here B is the batch size, C is the
number of channels, and H and W are the height and width
of the feature map. The specific operation is as follows:

1) The number of channels of the input feature map is
compressed using 1 x 1 convolution to reduce the com-
putation to improve the up-sampling kernel prediction ef-
ficiency. The kencoder X Kencoder convolution is then used
to predict the up-sampling kernel W,,, for each pixel
point so that it can be adapted to the features of different
regions, allowing the localized a-signatures of steel defects
to be better extracted. The up-sampling kernel of dimension
kip x oH x oW is obtained by unfolding in channel
dimension. The up-sampling kernel prediction process is
shown in equation (1).

Wraw = ConvkencodeT Xkencoder (Convl x1 (X)) (1)

2) The up-sampling kernel is normalized using Softmax
to avoid certain features from being over-enhanced or ig-
nored. The size of the up-sampling kernel for feature reorga-
nization is extracted in the input feature map X as a kyp X kyp
local region, which provides rich contextual information
for the subsequent feature reorganization and improves the
sensitivity of the model to minor defects in steel. The up-
sampling kernel normalization and local feature extraction
process are shown in equation (2) and (3), respectively.
X(i+ u,j+ v) is a pixel point in the input feature map.
R(i,7) is the kyp X kyp local region extracted centered on
(i, ).

W (i, 5)(u,v) = Softmax(Wi,aw (i, 7)) (u,v) )

R(ZJ) = {X(z’—i—u,j—l—v) | u,v € {_Lkup/2J ety \.kup/%(g%

3) By means of weighted summation, the normalized up-
sampling kernel W (i, j)(u,v) is used for feature reorgani-
zation to generate the final high-resolution feature map Y.
This can more accurately restore the detailed features of steel
defects, reduce misdetections and omissions, and improve
the overall detection performance. The computational output
process is shown in equation (4).

Y(i,5)= >,

(u,0) ER(4,5)

W (i, j)(u,v) - X (i +u,j +v) 4

C. Swin Transformer

The detection of steel surface defects in the YOLOv12
primitive network head structure undergoes the following
process of feature enhancement and reconstruction, mul-
tiscale feature fusion, feature convergence and integration
in the head. Finally, the high-level features are integrated
and the convolution and residual join are used in the C3k2
module for deep extraction and final fusion of the multiscale
fused features to form the final feature map required by
the inspection head. However, this structure mainly suffers
from the problems of limited local receptive field, single
information expression, and difficulty in taking both local
and global features into account, which affects the accuracy
of steel surface defect detection. In this study, after the Swin
Transformer module is plugged into the C3k2 module, Swin
Transformer, by introducing the self-attention mechanism,
is able to provide complementary global context modeling,
fine-grained feature enhancement, and improved robustness
in terms of global information and long-distance dependence,
which are difficult to be covered by convolutional modules.
The structure of one of the integrated Swin Transformer
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Fig. 3: Swin Transformer architecture

modules is shown in Figure 3. SwinTransformer employs
self-attention computation within a local window and realizes
cross-window information exchange through sliding window
operation, which can effectively capture global semantic
information and make up for the problem of limited local
receptive field of convolution. In addition, the Windows
Multi-head Self-Attention (W-MSA) module used effectively
reduces the computation amount and improves the efficiency
of image processing compared with the Multi-head Self-
Attention (MSA) module of the traditional ViT. The com-
putation amount of MSA is shown in eqation (5), and
the computation amount reduced by W-MSA is shown in
equation (6).

Q(MSA) = 4hwC? 4 2(hw)?*C (5)
Q(W-MSA) = 4hwC? + 2M?* (hw)*C (6)

Where h, w, C represent the height, width, and number of
channels of the feature map, respectively, and M represents
the window-size, which is usually 7 by default.

Residual connections are used between sublayers in the
module. Assuming that the token composition matrix X &€
RM*xd within a certain window is grouped according to
a predefined window size MxM, self-attention is computed
within each window to capture the detailed relationships
within the local region. Where the computation process of
W-MSA is shown in equation (7).

QK"
Vdy,

Where ), K and V are vectors of queries, keys, and
values, respectively, dj is the number of channels of the

W-MSA(X) = softmax ( + B) 1% (7

input feature map, and B is the relative positional bias of the
processed image. W-MSA transforms localized image blocks
into high-dimensional vectors, which retain the steel surface
texture and detail information and provide fine-grained inputs
for the subsequent attention mechanism. However, W-MSA
computes the self-attention only within each fixed window,
resulting in the token at the window boundary not being
able to fully establish the connection with the token in the
neighboring windows, which in turn leads to the incomplete
expression of the features in the edge region and affects the
detection effect of the subtle defects. In order to solve these
problems, the Shifted Windows Multi-Head Self-Attention
(SW-MSA) sliding window strategy is introduced after W-
MSA.

D. SEAttention

CARAFE improves spatial information recovery by better
preserving and fusing low-level details through advanced up-
sampling methods, while SwinTransformer enhances contex-
tual modeling by capturing global and long-range depen-
dencies using self-attentive mechanisms. While both provide
strong support for small target detection, their respective
strengths lie in spatial detail and regional information fu-
sion and are not directly optimized for the importance of
different channels. It is in this context that the introduction
of the SEAttention module is essential, which dynamically
adjusts the response weights of each channel through global
information aggregation and channel recalibration, allowing
the model to automatically focus on those feature channels
that are critical for detecting small defects on steel surfaces,
further improving detection accuracy. The main operations
of SEAttention include Squeeze, Excitation and Scale: the
Squeeze operation is to initially process the input feature
map through the convolution operator, and then use global
average pooling to compress the feature map into a global
feature vector of 1x1xC. The Excitation operation processes
the global feature vector with two fully-connected layers
and nonlinear activation functions to generate the weights of
each channel. The Scale operation applies the weight vector
obtained from the Excitation operation to the feature map
processed by the Squeeze operation to complete the channel
re-calibration and obtain the final weighted feature map. The
specific operations are as follows:

1)The feature mapsX € RC*H>*Wprocessed by the Swin
Transformer module are pooled globally on average to com-
pute global features for each channel. The Squeeze operation
aggregates global information to capture the contextual infor-
mation of the global steel surface defect image and reduce the
effect of spatial dimensions. The global average pooling is
calculated as shown in equation (8). Where z. is the global
description value of the ¢ channel, X.(i,7) represents the
value of the ¢ channel at position (i,j), and the result z=[z,,
Z2, ... ,Zc] 1s shaped as R..

1 H W
e =g 37 2 D Xelird) ®)
i=1 j=1

2) In steel surface defect detection, different channels may
contain different scale and texture information. Excitation
operation learns the relationship between individual chan-
nels, i.e., computes the attentional weights between channels
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to obtain adaptive weights. First a dimensionality reduction
operation is performed using a fully connected layer with
ReLU activation, shrinking the number of channels to C/r
with the aim of reducing the computational effort. Then the
dimensionality is raised to recover the number of channels
C and the weights are normalized using Sigmoid activation.
The weights obtained by Sigmoid activation can automat-
ically adjust the response strength of each channel, thus
highlighting those fine-grained features related to defects.
The calculation process is shown in equation (9). Where

Cy.o. . . s
Wy € RG)*Cs the degenerate matrix, Wy is the lifting
matrix, ¢ stands for the ReLLU activation function, o stands
for Sigmoid normalization.

s = O’(W2 (5(W1,Z)) (9)

3) The Scale operation is to weight the original feature map
to strengthen the feature response of the defect region. After
the channel weight s is obtained by Excitation operation, it is
reapplied to the original input feature map X to amplify the
important channels and suppress the minor channels, so that
the model can extract the useful information more effectively
and reduce the background interference when detecting the
defects on the steel surface. The operation process is shown
in equation (10). Where s. represents the channel weights
and X, is the c channel of the original feature map, X is
the weighted output feature map with the same shape as the
input feature map.

X, =50 Xe (10)
IV. EXPERIMENTAL DESIGN AND
IMPLEMENTATION

A. Dataset Introduction

In order to verify the superiority of the YOLOv12 algo-
rithm in the task of steel surface defect detection, the NEU-
DET dataset is selected in this study and an improved frame-
work adapted to multi-scale defect detection is constructed.
The NEU-DET dataset is captured from the surface of steel
plates in the actual production and is designed to reflect the
common defects in the steel processing. The dataset contains
a total of 1800 images covering six typical defect categories,
including crazing, inclusion, patches, pitted_surface, rolled-
in_scale, and scratches, with about 300 images in each
category. In order to ensure the stability of the experimental
results, the dataset is divided into training set, validation set,
and test set in the ratio of 8:1:1. There are 1440 images in the
training set, 180 images in the validation set, 180 images in
the test set, and the images are randomly distributed. Since
the dataset is balanced and the samples of each category
are basically the same, the model fully learns each category
during the training process. It avoids category bias, reduces
the problem of leakage and misdetection, improves the gener-
alization ability of the model, and provides a good foundation
for the improvement process of YOLOv12 algorithm.

B. Experimental environment and parameter configuration

The experiments were conducted on Windows 10 with
CUDA 12.1, Pytorch 2.4.0, Python 3.8.10, and NVIDIA
GeForce RTX 3090, which has 24G of video memory,
providing a solid foundation for efficient training of deep

learning models. The core parameters of model training are
epoch, batch size, patience, and learning rate, of which the
epoch size of this experiment is set to 300, and the batch
size is set to 16. For the risk of overfitting during the training
process of the model, the patience value of this experiment
is set to 50 for the start-stop strategy. If the validation loss
is not significantly reduced within 50 consecutive epochs,
then the training of the model will be terminated early. In
order to balance the training speed and the convergence of
the model, the learning rate value size is set to 0.01 in this
experiment.The rest of the parameters use the default values.

C. Model evaluation metrics

The experiments use four key metrics to evaluate the
performance of the improved YOLOv12 model on the
NEU-DET dataset. The four key metrics are Precision, Re-
call, mean Average Precision (mAP), and F1-score.Precision
refers to all precision measures the proportion of all regions
labeled as defective by the model that are actually truly
defective. The formula is as follows:

_TP (11)
TP+ FP

where T'P is the positive detection rate and F'P is the false
detection rate. T'P is the positive detection rate and F'P is
the false detection rate.

Recall evaluates what percentage of all actual defects can
be detected by the model. The formula is as follows:

Precision =

TP
Recall = ———— 12
T TPYFN (12)
where F'N is the number of negative samples detected as

positive.

mAP is a comprehensive evaluation metric that reflects
the overall performance of the model on all detection tasks by
calculating the average of precision and recall under different
thresholds. The calculation formula is as follows:

1 c
mAP = G Z AP, (13)
i=1

where c is the total number of image categories, i is the
number of detections, and AP is the average accuracy of
single category recognition.

F'1 — score is a reconciled mean of precision and recall
that balances the two. The formula is as follows:

2 x Precision x Recall

F1-score = (14)

Precision + Recall

D. Results and Analysis of the Precision-Recall Curve

The difference in detection performance of the YOLOv12
model before and after improvement on the NEU-DET
dataset is clearly contrasted in the curve of the Precision-
Recall (P-R) plot. The average mean precision (mAP@0.5)
for all categories improves from 79.4 % to 82.5 % in terms of
numerical change on the YOLOv12 model before and after
the improvement. additionally there is a significant enhance-
ment in terms of both detection precision and recall. Specif-
ically, the AP value of the “crazing” category is improved
from 46.1 % to 62.6 %, and the AP value of the “rolled-
in_scale” category is improved from 65.0 % to 67.7 %. While
the AP value of the “scratches” category is improved from
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Fig. 4: Results Comparison

93.8 % to 95.8 % on the YOLOvV12 model before and after
the improvement, there are significant improvements in both
detection precision and recall. Although the AP value of the
“patches” category decreased from 93.2 % to 92.6 %, the
AP values of most of the categories improved overall. In
addition, the curve of the P-R diagram is more concentrated
and the shape of the curve is smoother, and the balance
between precision and recall is enhanced. In conclusion,
the performance of the improved YOLOvV12 model for steel
surface defect detection on the NEU-DET dataset has been
effectively improved.

E. Ablation experiments

In order to verify the effectiveness of the improved
modules, ablation experiments are conducted on the public
dataset NEU-DET to illustrate the impact of different im-
proved parts on the performance of the original YOLOv12
algorithm. We test the CARAFE module, the Swin Trans-
former module and the SEAttention module respectively,
and the results are shown in Table 1. By gradually adding
or removing the improved modules, the experimental data
can reflect the impact of different modules on the overall
detection performance of the model.

According to the data in the table, the mAP of the original
YOLOVI2 is 79.4 %. Analyzing the data of different module
combinations, replacing the traditional up-sampling method
of the neck for the CARAFE module improves the ability
of capturing and recovering subtle defects, and the mAP
is improved by 0.6 %; the Swin Transformer module is
introduced in the head to make up for the problem of the
limited convolutional local receptive field and to improve
the ability of capturing the global semantic information,
and the mAP is improved by 1.5 %; and the introduction
of the SEAttention module is followed immediately by the
introduction of the SEAttention module, which focuses on
the feature channels important for detecting steel surface
defects, further improves the detection accuracy of the model
and obtains 0.1 % mAP improvement. The highest mAP

value of 82.5 % is for the improved model retaining the three
improvement modules, which is 3.1 % higher than the mAP
value of the original YOLOv12 model. This data proves that
the combination of the three improvement modules plays a
crucial role in improving the accuracy of the model in the
detection of steel surface defects.

TABLE I: Ablation experiments

CARAFE  Swin Transformer ~ SEAttention =~ mAP%
YOLOv12 - - - 79.4
YOLOv12 Vv - - 80.0
YOLOvV12 - Vv - 81.5
YOLOvVI12 - - Vv 79.5
YOLOv12 Vv Vv 81.9
YOLOv12 Vv V4 - 80.5
YOLOv12 - VA Vv 81.2
YOLOv12 Vv VA Vv 82.5

F. Comparison results of different models

In order to comprehensively evaluate the accuracy en-
hancement effect of the improved target detection model
based on YOLOv12 for the detection of NEU-DET dataset,
we selected several advanced steel surface defect detec-
tion algorithms, including YOLO-LFPD, DCC-CenterNet,
YOLOX, YOLOVSs, etc., and the results are shown in Table
2. In comparison, the other models may have slightly higher
or lower accuracies in each category, but overall it can be
seen that the detection accuracy of the improved model is sig-
nificantly improved in most of the categories, and in addition,
the accuracy of the improved model reaches a satisfactory
82.5 %. In conclusion, the accuracy of our improved model
on the NEU-DET dataset is significantly improved, providing
a good foundation for subsequent research and applications.

V. CONCLUSION

In this paper, we propose an improved algorithm model
YOLOV12 for steel surface defects detection to solve the
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TABLE II: Comparison of different models

Model crazing inclusion patches pitted_surface rolled-in_scale scratches mAP%
YOLOV7 36.8 85.6 80.7 88.1 58.7 90.4 73.4
YOLOVS8s 43.6 82.2 78.1 94.0 66.8 83.3 74.7
YOLOX [22] 46.6 83.1 83.5 88.6 64.8 95.7 71.1
YOLOVvSs 46.1 82.2 87.8 91.1 64.9 91.8 71.3
ES-Net [23] 74.1 60.9 82.5 95.8 94.3 67.2 79.1
DCC-CenterNet [23] 45.7 90.6 82.5 85.1 76.8 95.8 79.4
ST-YOLO [22] 54.6 83.0 84.7 89.2 73.2 97.0 80.3
YOLO-LFPD [24] 63.0 82.4 89.8 86.5 71.9 93.9 81.2
Ours 62.6 82.6 92.6 93.6 66.7 95.8 82.5
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Fig. 5: Results Comparison

problem of low detection accuracy of traditional steel sur-
face defects detection due to the variety of steel surface
defects, complex morphology and background. We combine
CARAFE module, Swin Transformer module and SEAtten-
tion module on the basis of YOLOv12 model. The experi-
mental data proves that the improved model has satisfactorily
improved the detection accuracy in dealing with the chal-
lenges of complex features that are easily interfered by the
background environment and difficult to take into account the
details and global information.In the future, we will further
reduce the number of parameters of the network model,
focus on improving the inference speed of the network, and
explore the characterization ability of the model in the case
of small samples, so as to further improve the robustness
of the model and make it more resistant to interference in
complex application scenarios.
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