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Abstract—This study investigates the dynamics of a two-
species competition model incorporating wind-dependent
refuge. Unlike traditional models where refuge are treated as
fixed parameters, we propose a wind-speed-dependent refuge
parameter u(w) = umaxe

−kw, which decays exponentially with
increasing wind velocity, better reflecting natural ecological
dynamics. Through equilibrium analysis and stability evalu-
ation, we demonstrate that heightened wind speeds reduce
refuge effectiveness, critically influencing species coexistence.
Theoretical results reveal that when r1K1 > α12(1− u(w))K2

and r2K2 > α21(1 − u(w))K1, the system admits a unique
stable positive equilibrium enabling species coexistence; other-
wise, extinction of one species becomes probable. Numerical
simulations corroborate that increased wind intensity alters
competitive outcomes by impairing refuge functionality. The
work provides theoretical support for wind-disturbed ecosys-
tem conservation (e.g., establishing windbreaks) and elucidates
complex interactions between environmental factors and species
competition, extending classical Lotka-Volterra framework to
wind-affected scenarios.

Index Terms—Competition model, refuge, wind speed, stabil-
ity analysis, numerical simulation

I. INTRODUCTION

The dynamics of species competition have long been a
central focus in ecological research, as they play a cru-
cial role in shaping community structure, biodiversity, and
ecosystem stability. The Lotka-Volterra competition model,
a cornerstone of theoretical ecology, provides a founda-
tional framework for understanding how two species interact
through competition for shared resources [1], [2]. However,
natural systems are often influenced by a multitude of
environmental factors that can modulate these interactions.
Among these factors, the availability of refuges—spatial or
temporal refuge that reduce the intensity of competition or
predation—has been increasingly recognized as a critical
determinant of species coexistence and population dynamics
[3], [4].

Refuges can significantly alter competitive outcomes by
providing a subset of individuals with protection from in-
terspecific competition. For example, in plant communities,
dense vegetation can serve as a refuge for understory species,
shielding them from competition with dominant canopy
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species [5]. Similarly, in animal communities, physical struc-
tures such as rock crevices or burrows can offer protection
from predators or competitors [6]. Despite their ecological
importance, the role of refuges in competition models has
often been oversimplified, with most studies assuming static
refuge availability [7]. In reality, refuge availability is dy-
namic and can be influenced by environmental factors such
as wind, rainfall, and temperature [8], [9].

Wind, in particular, is a pervasive environmental force that
can dramatically alter habitat structure and refuge availabil-
ity. Strong winds can damage vegetation, uproot trees, or
reshape physical landscapes, thereby reducing the availability
of refuges [10]. Conversely, wind-driven disturbances can
also create new refuges, such as fallen logs or debris piles,
which may provide temporary refuge for certain species [11].
The dynamic interplay between wind and refuge availability
introduces a layer of complexity to species interactions that
has yet to be fully explored in theoretical models [12].

In this study, we extend the classical Lotka-Volterra com-
petition model to incorporate the effects of wind-driven
changes in refuge availability. Specifically, we consider a
system where one species has access to refuges, while the
other does not. The proportion of individuals in the refuge-
using species that occupy refuges is modeled as a function
of wind speed, reflecting the dynamic nature of refuge
availability. This approach allows us to investigate how wind-
mediated changes in refuge availability influence competitive
outcomes, species coexistence, and population dynamics.

Our model contributes to the growing body of literature on
the role of environmental variability in ecological interactions
[13], [14]. By integrating wind effects into a competition
framework, we provide a more realistic representation of
natural systems, where environmental factors and species
interactions are inextricably linked. Furthermore, our findings
have implications for conservation and management, partic-
ularly in habitats prone to wind disturbances, such as coastal
ecosystems, forests, and grasslands [15]. Understanding how
wind influences refuge availability and species competition
can inform strategies for preserving biodiversity and mitigat-
ing the impacts of environmental change. For more works
on competition model, one could refer to [16]-[42] and the
references cited therein.

In the following sections, we present the mathematical
formulation of our model, analyze its dynamics, and discuss
the ecological implications of our findings. We begin by
reviewing the classical Lotka-Volterra competition model and
its limitations, then introduce our modifications to incorpo-
rate wind-dependent refuge availability. We conclude with
a discussion of potential extensions and applications of our
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model in ecological research and management.

II. MODEL FORMULATION

To develop a mathematical model that incorporates the ef-
fects of wind on refuge availability and species competition,
we make the following assumptions:

1) Two-species system: We consider a system of two
competing species, denoted as Population 1 (N1) and
Population 2 (N2). Population 1 has access to refuges,
while Population 2 does not. This assumption reflects
scenarios where one species can utilize physical struc-
tures (e.g., burrows, dense vegetation) for protection,
while the other cannot [6].

2) Refuge use: A proportion u of Population 1 occupies
refuges, where they are protected from competition
with Population 2. The remaining proportion 1 − u
of Population 1 competes directly with Population 2.
This assumption captures the idea that refuges provide
partial protection from competition, as observed in
many plant and animal communities [5].

3) Wind-dependent refuge availability: The proportion
u of Population 1 using refuges is influenced by wind
speed w. Specifically, we assume that higher wind
speeds reduce refuge availability, leading to a decrease
in u. This relationship is modeled as:

u(w) = umax · e−kw,

where umax is the maximum refuge proportion (when
w = 0), and k is a positive constant representing the
sensitivity of refuge availability to wind speed. This
exponential decay function is chosen to reflect the rapid
decline in refuge availability under strong winds, as
observed in ecosystems prone to wind disturbances
[10].

4) Population growth: Both populations grow logisti-
cally in the absence of competition, with intrinsic
growth rates r1 and r2, and carrying capacities K1 and
K2, respectively. This assumption is consistent with
the classical Lotka-Volterra framework and reflects the
self-limiting nature of population growth in resource-
limited environments [1].

5) competition: Competition occurs only between the
non-refuge portion of Population 1 ((1−u(w))N1) and
Population 2. The competition coefficients α12 and α21

describe the per capita effect of Population 2 on Pop-
ulation 1 and vice versa, respectively. This assumption
reflects the idea that only individuals outside refuges
are exposed to direct competition [4].

B. Model equations

Based on the above assumptions, we derive the following
system of differential equations to describe the dynamics of
the two populations:

dN1

dt = r1N1

(
1− N1

K1

)
− α12(1−u(w))

K1
N1N2,

dN2

dt = r2N2

(
1− N2

K2

)
− α21(1−u(w))

K2
N2N1.

(1)

Here:

• N1 and N2 represent the population densities of Species
1 and Species 2, respectively.

• r1 and r2 are the intrinsic growth rates of Species 1 and
Species 2, reflecting their ability to reproduce and grow
under ideal conditions.

• K1 and K2 are the carrying capacities of Species 1
and Species 2, representing the maximum population
sizes that the environment can sustain in the absence of
competition.

• α12 is the competition coefficient describing the per
capita effect of Species 2 on Species 1.

• α21 is the competition coefficient describing the per
capita effect of Species 1 on Species 2.

• u(w) = umax · e−kw is the wind-dependent refuge
proportion, where:

– umax is the maximum proportion of Population 1
that can occupy refuges when wind speed w = 0.

– k is a positive constant that determines how rapidly
refuge availability decreases with increasing wind
speed.

The conceptual framework of our modeling methodology
is illustrated in Figure 1.

To demonstrate the impact of wind speed on shelters
and consequently on competition coefficients, we present the
following numerical example:

Let umax = 0.8, k = 0.1, α12 = 0.3, and α21 = 0.5.
Figure 2 shows the plots of u(w), αeff

12 = α12(1− u(w)),
and αeff

21 = α21(1− u(w)) as functions of wind speed ω.
From the figure, we can observe that as wind speed ω

increases, u(ω) gradually approaches 0, and the competition
coefficients of both populations continuously increase. This
indicates intensifying competition between the two popula-
tions, which eventually stabilizes.

C. Ecological interpretation of parameters

Each parameter in the model has a specific ecological
interpretation, as summarized below:

• Intrinsic growth rates (r1 and r2): These parame-
ters represent the maximum per capita growth rates
of Species 1 and Species 2 under ideal conditions
(no competition, unlimited resources). Higher values
indicate faster population growth, as observed in species
with high reproductive potential [13].

• Carrying capacities (K1 and K2): These parameters
represent the maximum population sizes that the en-
vironment can sustain for each species in the absence
of competition. They are influenced by resource avail-
ability and environmental conditions, such as nutrient
levels in plant communities or habitat size in animal
populations [7].

• Competition coefficients (α12 and α21): These param-
eters quantify the competitive effects between the two
species:

– α12 measures the impact of Species 2 on Species 1.
A higher value indicates stronger competition from
Species 2, as seen in systems where one species
dominates resources.

• Competition coefficients (α12 and α21)::
– α21 measures the impact of Species 1 on Species

2. A higher value indicates stronger competition
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from Species 1, as observed in systems where one
species is more aggressive or efficient in resource
use [4].

• Refuge proportion (u(w)): This function describes the
proportion of Population 1 that occupies refuges and
is protected from competition with Population 2. It
depends on wind speed w:

– umax is the maximum refuge proportion when
wind speed is zero, representing the ideal refuge
availability in calm conditions.

– k determines how quickly refuge availability de-
creases as wind speed increases. A higher k in-
dicates greater sensitivity of refuge availability to
wind, as observed in ecosystems where wind dis-
turbances are frequent and severe [10].

• Wind speed (w): This variable represents the external
environmental factor (wind) that dynamically affects
refuge availability. It can be modeled as a constant, a
time-varying function, or a stochastic process, depend-
ing on the ecological context [12].

D. Discussion of model assumptions

The assumptions underlying our model are designed to
capture the dynamic interplay between wind and refuge
availability in a two-species competitive system. However,
it is important to acknowledge the potential limitations of
these assumptions:

• Refuge use: We assume that only a proportion of Pop-
ulation 1 uses refuges, while Population 2 does not. In
reality, both species may have access to refuges, albeit to
different extents. Future extensions of the model could
explore scenarios where both species utilize refuges,
with varying degrees of protection.

• Wind-dependent refuge availability: The exponential
decay function u(w) = umax · e−kw is a simplification
of the complex relationship between wind and refuge
availability. In some ecosystems, wind may have non-
linear effects on refuge availability, or it may create
new refuges (e.g., fallen logs) that temporarily increase
refuge availability [11]. Future studies could incorporate
more complex functional forms to better capture these
dynamics.

• Competition: We assume that competition occurs only
between the non-refuge portion of Population 1 and
Population 2. In reality, individuals within refuges may
still experience indirect competition (e.g., for shared
resources). Future models could incorporate indirect
competitive effects to provide a more comprehensive
understanding of species interactions.

Despite these limitations, our model provides a valuable
framework for exploring the effects of wind-driven changes
in refuge availability on species competition and coexistence.
By integrating environmental variability into a classical com-
petition framework, we offer a more realistic representation
of natural systems, where species interactions are shaped by
both biotic and abiotic factors.

III. EXISTENCE OF EQUILIBRIUM POINTS

The equilibrium points are the steady-state solutions of the
system, satisfying dN1

dt = 0 and dN2

dt = 0.

Theorem 3.1 System (1) admits three boundary equilib-
rium points E0(0, 0), E1(K1, 0), E2(0,K2), also, if one of
the following conditions are satisfied:
(1)

r1K1 > α12(1− u(w))K2,
r2K2 > α21(1− u(w))K1;

(2)

(2)
r1K1 < α12(1− u(w))K2,
r2K2 < α21(1− u(w))K1;

(3)

then system admits a unique positive equilibrium
E∗(N∗

1 , N
∗
2 ), where

N∗
1 =

r2r1K1 − r2α12(1− u(w))K2

r2r1 − α21α12(1− u(w))2
.

N∗
2 =

r1r2K2 − r1α21(1− u(w))K1

r2r1 − α21α12(1− u(w))2
.

(4)

Proof. We solve the following system of equations:


r1N1

(
1− N1

K1

)
− α12(1− u(w))

K1
N1N2 = 0,

r2N2

(
1− N2

K2

)
− α21(1− u(w))

K2
N1N1 = 0.

It is easy to obtain three boundary equilibrium points
E0(0, 0), E1(K1, 0), E2(0,K2). For the positive equilibrium
(N∗

1 , N
∗
2 ), where N∗

1 and N∗
2 satisfy the following equations:

r1

(
1− N∗

1

K1

)
− α12(1− u(w))

K1
N∗

2 = 0,

r2

(
1− N∗

2

K2

)
− α21(1− u(w))

K2
N∗

1 = 0.

(5)

Solving this equation, one could finally obtain (2).
This ends the proof of Theorem 3.1.

IV. LOCAL STABILITY ANALYSIS OF EQUILIBRIUM
POINTS

In this section, we analyze the local stability of equilibrium
points of the model.

Theorem 4.1. E0(0, 0) is unstable;
Assume that

r2 <
α21(1− u(w))K1

K2
, (6)

then E1 is locally stable (a sink), and if

r2 >
α21(1− u(w))K1

K2
, (7)

then E1 is a saddle point (unstable);
Assume that

r1 <
α12(1− u(w))K2

K1
, (8)

then E2 is locally stable (a sink), and if

r1 >
α12(1− u(w))K2

K1
, (9)

then E2 is a saddle point (unstable);
Assume that (2) holds, then E∗(N∗

1 , N
∗
2 ) is locally stable,

and if (3) holds, then E∗(N∗
1 , N

∗
2 ) is unstable.
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Proof. To analyze the local stability of the equilibrium points,
we compute the Jacobian matrix J :

J =

(
∂f1
∂N1

∂f1
∂N2

∂f2
∂N1

∂f2
∂N2

)
,

where f1 and f2 are the right-hand sides of the differential
equations for dN1

dt and dN2

dt in (1), respectively. The elements
of the Jacobian matrix are:

∂f1
∂N1

= r1

(
1− 2N1

K1

)
− α12(1−u(w))

K1
N2,

∂f1
∂N2

= −α12(1−u(w))
K1

N1,

∂f2
∂N1

= −α21(1−u(w))
K2

N2,

∂f2
∂N2

= r2

(
1− 2N2

K2

)
− α21(1−u(w))

K2
N1.

(10)

We compute the Jacobian matrix at each equilibrium point
and analyze its eigenvalues. At E0(0, 0), the Jacobian matrix
is:

J(E0) =

(
r1 0
0 r2

)
.

The eigenvalues are λ1 = r1 and λ2 = r2. Since both r1
and r2 are positive, E0 is an unstable equilibrium point (a
source).

At E1(K1, 0), the Jacobian matrix is:

J(E1) =

(−r1 −α12(1− u(w))

0 r2 − α21(1−u(w))K1

K2

)
.

The eigenvalues are λ1 = −r1 and λ2 = r2 −
α21(1−u(w))K1

K2
.

• If r2 < α21(1−u(w))K1

K2
, then λ2 < 0, and E1 is locally

stable (a sink).
• If r2 > α21(1−u(w))K1

K2
, then λ2 > 0, and E1 is a saddle

point (unstable).
At E2(0,K2), the Jacobian matrix is:

J(E2) =

(
r1 − α12(1−u(w))K2

K1
0

−α21(1− u(w)) −r2

)
.

The eigenvalues are λ1 = r1 − α12(1−u(w))K2

K1
and λ2 =

−r2.
• If r1 < α12(1−u(w))K2

K1
, then λ1 < 0, and E2 is locally

stable (a sink).
• If r1 > α12(1−u(w))K2

K1
, then λ1 > 0, and E2 is a saddle

point (unstable).
At the positive equilibrium point E∗(N∗

1 , N
∗
2 ), the Jaco-

bian matrix is: The Jacobian matrix at the positive equilib-
rium point E∗(N∗

1 , N
∗
2 ) is given by:

J(E∗) =

(
A11 A12

A21 A22

)
,

where:

A11 = r1

(
1− 2N∗

1

K1

)
− α12(1−u(w))

K1
N∗

2 ,

A12 = −α12(1−u(w))
K1

N∗
1 ,

A21 = −α21(1−u(w))
K2

N∗
2 ,

A22 = r2

(
1− 2N∗

2

K2

)
− α21(1−u(w))

K2
N∗

1 .

(11)

Noting that N∗
1 , N

∗
2 satisfy the equation (3), we can

simplify A11 and A22:

A11 = r1

(
1− 2N∗

1

K1

)
− r1

(
1− N∗

1

K1

)
= −r1N

∗
1

K1
.

A22 = r2

(
1− 2N∗

2

K2

)
− r2

(
1− N∗

2

K2

)
= −r2N

∗
2

K2
.

Thus, the Jacobian matrix at E∗ simplifies to:

J(E∗) =

(
− r1N

∗
1

K1
−α12(1−u(w))

K1
N∗

1

−α21(1−u(w))
K2

N∗
2 − r2N

∗
2

K2

)
.

To analyze the local stability of E∗, we compute the trace
(Tr) and determinant (Det) of the Jacobian matrix:

Tr(J(E∗)) = A11 +A22

= − r1N
∗
1

K1
− r2N

∗
2

K2
,

Det(J(E∗)) = A11A22 −A12A21

=
N∗

1 N
∗
2

K1K2

(
r1r2 − α12α21(1− u(w))2

)
.

(12)
According to the Routh-Hurwitz stability criterion, the

positive equilibrium point E∗ is locally stable if and only
if:

Tr(J(E∗)) < 0, Det(J(E∗)) > 0.
Since N∗

1 > 0, N∗
2 > 0, r1 > 0, r2 > 0, K1 > 0, and

K2 > 0, the trace is always negative:

Tr(J(E∗)) = −r1N
∗
1

K1
− r2N

∗
2

K2
< 0.

Thus, the trace condition is always satisfied.
The determinant is positive if:

r1r2 > α12α21(1− u(w))2. (13)

Noting that if (2) holds, then one could easily verify that
(13) holds, hence, (2) is enough to ensure the local stability
of the positive equilibrium. However, if (3) holds, then

r1r2 < α12α21(1− u(w))2. (14)

Consequently, the positive equilibrium point E∗(N∗
1 , N

∗
2 ) is

unstable.
This ends the proof of Theorem 4.1.

Remark 4.1. Condition (13) shows that the stability
of the positive equilibrium depends on the product of the
intrinsic growth rates r1 and r2, the competition coefficients
α12 and α21, and the wind-dependent refuge proportion
u(w).
(1) Effect of wind speed: As wind speed w increases, the
refuge proportion u(w) = umaxe

−kw decreases, leading
to an increase in (1 − u(w))2. This makes the stability
condition r1r2 > α12α21(1 − u(w))2 harder to satisfy,
reducing the stability of the positive equilibrium;
(2) Intrinsic growth rates: Higher intrinsic growth rates r1
and r2 promote stability by making the stability condition
easier to satisfy;
(3) Competition intensity: Lower competition coefficients
α12 and α21 also promote stability by reducing the
competitive pressure between the two species.
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V. GLOBAL STABILITY ANALYSIS OF EQUILIBRIUM
POINTS

In this section, we investigate the global stability of the
equilibrium points. Global stability implies that the solutions
of the system converge to a specific equilibrium point regard-
less of the initial conditions. We analyze the global stability
using the Dulac criterion.

Theorem 5.1. System (1) is uniformly bounded, and the
system does not have limit cycles.
Proof.

Firstly we proof that every solution of system (1) that starts
in R2

+ is uniformly bounded. From system (1) one has

dNi

dt
≤ riNi

(
1− Ni

Ki

)
(15)

By using the differential inequality, we obtain

lim sup
t→+∞

Ni(t) ≤ Ki. (16)

From (16), there exists a ε > 0 such that for all t > T

Ni(t) < Ki + ε. (17)

Let B = {(x, y)| ∈ R2
+ : Ni < Ki + ε, i = 1, 2.}.

Then every solution of system (1) starts in R2
+ is uniformly

bounded on B.
The Dulac criterion states that if there exists a contin-

uously differentiable function B(x, y) in a region D such
that:

∂(BP )

∂x
+

∂(BQ)

∂y
< 0,

where

P (N1, N2) = r1N1

(
1− N1

K1

)
− α12(1− u(w))

K1
N1N2,

Q(N1, N2) = r2N2

(
1− N2

K2

)
− α21(1− u(w))

K2
N2N1.

then the system has no periodic solutions in D, and all
trajectories converge to an equilibrium point. We choose the
Dulac function as B(N1, N2) =

1
N1N2

. Then

∂(BP )
∂N1

+ ∂(BQ)
∂N2

= ∂
∂N1

(
r1
N2

(
1− N1

K1

)
− α12(1−u(w))

K1

)
+ ∂

∂N2

(
r2
N1

(
1− N2

K2

)
− α21(1−u(w))

K2

)
= − r1

K1N2
− r2

K2N1
< 0.

(18)

According to Dulac’s Criterion, since we have found a
function B(N1, N2) =

1
N1N2

such that in the first quadrant
of the system:

∂(BP )

∂N1
+

∂(BQ)

∂N2
< 0,

the system does not have limit cycles in the first quadrant.
The proof of Theorem 5.1 is ended.

Remark 5.1. Ecological Implications of Theorem 5.1: This
result indicates that the system’s dynamic behavior will
not exhibit periodic oscillations (i.e., limit cycles) but will

instead tend toward an equilibrium point.

Theorem 5.2. Assume that

r2 <
α21(1− u(w))K1

K2
, (19)

and
r1 >

α12(1− u(w))K2

K1
, (20)

holds, then E1 is globally stable.

Proof. Nothing that in this case, from Theorem 3.1 and
4.1 we know that system admits only three equilibrium,
E0(0, 0), E2(0,K2), those two equilibria are unstable.
E1(K1, 0), which is locally stable, since the system admits
no limit cycles, all the solutions will approach to E1(K1, 0)
as t → +∞. Hence, E1 is globally stable. The proof of
Theorem 5.2 is finished.

Remark 5.2. Ecological interpretations of Theorem 5.2.

1. Wind-dependent refuge collapse
• Exponential decay of protection: Refuge efficacy fol-

lows
du

dw
= −kumaxe

−kw < 0

implying intensified interspecific competition under
high wind speeds.

• Critical thresholds: Species 2 goes extinct when its
growth rate r2 cannot compensate for:

α21︸︷︷︸
Competition

· (1− u(w))︸ ︷︷ ︸
Exposure

· K1

K2︸︷︷︸
Capacity ratio

2. Asymmetric competition dynamics
• Species 1 dominates through:

r1
r2

>
α12K2

α21K1
· (1− u(w))2

establishing an irreversible competitive hierarchy.
• Paradoxically, higher K2 may accelerate species 2’s

exclusion by enhancing resource exploitation by species
1.

2. Management implications and conservation strate-
gies

• Endangered species protection: If Species 2 is en-
dangered, implement measures (e.g., windbreaks, veg-
etation restoration) to reduce wind speed w, thereby
increasing refuge availability u(w) and alleviating com-
petitive exclusion.

• Invasive species control: If Species 1 is invasive,
disrupt its growth rate r1 (e.g., via natural predator
introduction) or enhance its competitive coefficient α12

(e.g., through competitive intercropping), thereby vio-
lating the theorem’s conditions to promote coexistence.

• Habitat design: In ecological restoration, optimize the
K1/K2 ratio (e.g., via zoned resource management) to
prevent monopolization of habitats by a single species.

Theorem 5.2 establishes that wind regimes (w) modulate
competitive exclusion through refuge dynamics (u(w)). The
critical thresholds in Eqs. (19)-(20) provide quantitative
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criteria for predicting regime shifts in disturbed ecosystems.

Theorem 5.3. Assume that

r2 >
α21(1− u(w))K1

K2
, (21)

and

r1 <
α12(1− u(w))K2

K1
, (22)

then E2 is globally stable.

The proof of Theorem 5.3 is similar to that of Theorem
5.2, and we omit the detail here.

Remark 5.3. Ecological interpretations of Theorem 5.3.

1. Critical Transition Conditions
• Superior regeneration capacity:

r2 > α21︸︷︷︸
Competition

· (1− u(w))︸ ︷︷ ︸
Exposure

· K1

K2︸︷︷︸
Capacity asymmetry

Species 2 overcomes competitive suppression through:
– High intrinsic growth rate (r2).
– Efficient resource exploitation (α21).

• Competitive vulnerability:

r1 < α12(1− u(w))
K2

K1

Species 1 fails to counterbalance:
– Amplified competition from exposed populations

(1− u(w)).
– Resource pre-emption by species 2 (K2/K1).

2. Exponential decay of refuge efficacy The wind-
dependent refuge availability follows:

u(w) = umaxe
−kww (23)

where:

• umax: Maximum possible refuge proportion (wind-free
scenario);

• kw: Wind attenuation coefficient (habitat-specific);
• w: Wind speed (m/s).

This exponential relationship causes:

• Accelerated exposure of competitors: The exposed
population proportion 1 − u(w) increases nonlinearly
with wind speed:

d

dw
[1− u(w)] = kwumaxe

−kww > 0. (24)

• Geometric amplification of competition: Effective
competition coefficients become:

αeff
12 = α12(1− u(w)) (25)

αeff
21 = α21(1− u(w)) (26)

leading to quadratic intensification of interspecific com-
petition.

A. Critical Wind Speed Threshold

There exists a critical threshold wc satisfying:

w > wc ⇒ u(w) < 1− r1K1

α12K2
(27)

This threshold behavior explains that with the increasing
of wind effect, the refuge is ruined, and finally leads to the
extinction of the first species.

Theorem 5.3 establishes wind speed (w) as a regime shift
trigger through:

• Refuge efficacy collapse (u(w))
• Competitive coefficient amplification (αij(1− u(w)))
• Critical threshold behavior (wc)

These mechanisms enable predictive management of wind-
sensitive ecosystems.

Theorem 5.4. Assume that
r1K1 > α12(1− u(w))K2,

r2K2 > α21(1− u(w))K1,
(28)

then E∗(N∗
1 , N

∗
2 ) is globally stable.

Proof. Note that in this case, system (1) admits four
equilibria, E0(0, 0), E1(K1, 0), E2(0,K2) and E∗(N∗

1 , N
∗
2 ).

From Theorem 4.1 we know that E0, E1, E2 are all unstable,
and only E∗ is locally stable, since the system admits no
limit cycles, all the solutions will approach to E∗(N∗

1 , N
∗
2 )

as t → +∞. Hence, E1 is globally stable. The proof of
Theorem 5.4 is finished.

Remark 5.4. Ecological interpretations of Theorem 5.4.

1. Resource-conditioned coexistence
• Effective resource utilization: The product riKi inte-

grates:

ri︸︷︷︸
Growth potential

× Ki︸︷︷︸
Carrying capacity

= Total resource exploitation capacity.

• Competition pressure threshold: The RHS terms rep-
resent:

αij︸︷︷︸
Competition

× (1− u(w))︸ ︷︷ ︸
Exposure

× Kj︸︷︷︸
Opponent’s resources

2. Monitoring framework
• Calculate wind vulnerability index:

Vi =
αjiKj

riKi
× (1− u(w)).

Coexistence requires V1 < 1 and V2 < 1.
• Establish early-warning thresholds:

walert = −1

k
ln

(
1

umax

(
1− riKi

αijKj

))
.

Theorem 5.4 reveals that wind disturbances (w) modulate
species coexistence through:

• Nonlinear refuge decay (du/dw = −ku);
• Competition intensity amplification (αeff

ij = αij(1 −
u(w)));
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• Resource-dependent stability criteria (28).
This provides a quantitative framework for climate-resilient
ecosystem management.

VI. NUMERIC SIMULATIONS

In this section, numerical simulations are carried out to
verify the feasibility of the results we have obtained.
Example 6.1.

Set the following parameters:

r1 = 1.0;K1 = 100;α12 = 0.3;

r2 = 0.5;K2 = 40;α21 = 0.5;
(29)

(1) Assume that the system has no refuge, i.e., umax = 0,
in this case, since

α12 = 0.3 <
K1

K2
=

5

3
, α21 = 0.5 >

K2

K1
=

2

5
,

it follows from [1], E1(K1, 0) = E1(100, 0) is globally
stable. Fig.3 and 4 supports this assertion.

(2) Assume that the system has refuge, i.e., umax = 0.8,
and no influence of wind effect, i.e., w = 0, in this case,
since

α12(1−u) = 0.06 <
K1

K2
=

5

3
, α21(1−u) = 0.01 <

K2

K1
=

2

5
,

it follows from [1], E∗(x∗, y∗) =
E∗(97.57085020, 40.48582996) is globally stable. Fig.5
and 6 supports this assertion. From Fig.1-4, one could see
that due to the fact that most of the N1 population remain
in refuge, the competitive pressure on the N2 population is
significantly reduced, allowing the N2 population to survive
in the long term.

(3) Assume that the system has refuge, i.e., umax = 0.8,
and take wind effect k = 0.1, w = 10, in this case, since
u = umax exp{−kω} = 0.2943,

r2 = 0.5 < 0.588 = α21(1− u)K1

K2
,

α12(1− u)K2

K1
= 0.127 < 1 = r1,

(30)

it follows from Theorem 5.2, E1(K1, 0) = E1(100, 0) is
globally stable. Fig.7 and 8 supports this assertion. We
observe that although there is a relatively large refuge
under windless conditions, its effectiveness is continuously
weakened due to the influence of wind speed. As a result,
a strong competitive relationship persists between the first
population and the second population, ultimately leading to
the extinction of the latter.

(4) Assume that the system has refuge, i.e., umax = 0.8,
and take k = 0.1, in this case, from above (3) numeric
simulation, we know that the second species will be driven
to extinction if w = 10. Hence, it is interesting to plot the
bifurcation diagram of the density N∗

1 , N
∗
2 about w. Fig. 7

shows that the critical value of w is wc = 2.876820725, for
w > wc, then the second species will be driven to extinction,
while the first species will approach to its’ capacity.

VII. CONCLUSION AND DISCUSSION

In this study, we developed and analyzed a two-species
Lotka-Volterra competition model that incorporates wind-
dependent refuge availability, a novel approach that extends

the classical framework to account for dynamic environ-
mental influences. Our model introduces an exponentially
decaying refuge function u(w) = umaxe

−kw, which captures
the reduction in refuge effectiveness as wind speed increases.
Through rigorous mathematical analysis, we identified the
conditions under which species coexistence or competitive
exclusion occurs, demonstrating that wind speed plays a
pivotal role in shaping these outcomes.

Theoretical results revealed that the system admits a
unique stable positive equilibrium E∗(N∗

1 , N
∗
2 ) when the

intrinsic growth rates and carrying capacities of both species
outweigh the competitive pressures exacerbated by wind-
induced refuge loss. Specifically, coexistence is possible
when:

r1K1 > α12(1− u(w))K2,

r2K2 > α21(1− u(w))K1.
(31)

Conversely, if these inequalities are reversed, the system
tends toward the extinction of one species, highlighting the
fragility of coexistence under high wind conditions. Numer-
ical simulations further validated these findings, illustrating
how increased wind speeds disrupt refuge availability and
alter competitive hierarchies.

Ecological implications

1) Wind as a regulator of refuge efficacy: Our model
underscores the nonlinear relationship between wind
speed and refuge availability. As wind intensifies,
the exponential decay of u(w) rapidly diminishes the
protective capacity of refuges, leading to heightened
interspecific competition. This mechanism provides a
theoretical basis for understanding how wind distur-
bances, such as storms or seasonal winds, can desta-
bilize ecosystems by eroding niche differentiation.

2) Conservation strategies: The results suggest practi-
cal measures for biodiversity conservation in wind-
prone habitats. For instance, establishing windbreaks
or restoring vegetation can mitigate wind effects, pre-
serving refuge availability and promoting coexistence.
Conversely, in invasive species management, targeted
disruption of refuge conditions (e.g., through con-
trolled wind exposure) could weaken invasive species’
competitive advantages.

3) Species-specific vulnerabilities: The model highlights
the asymmetric impacts of wind on species with dif-
fering refuge dependencies. Species reliant on refuges
(e.g., understory plants or burrowing animals) are
more susceptible to wind-induced competitive exclu-
sion, while non-refuge users may dominate under high
wind conditions. This asymmetry necessitates tailored
conservation strategies.

Limitations and future directions

While our model advances the integration of environmen-
tal variability into competition theory, several limitations
warrant attention:

• Refuge dynamics: The exponential decay function
u(w) simplifies the complex interplay between wind and
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refuge availability. Future studies could explore non-
monotonic or threshold-based relationships, reflecting
scenarios where wind initially creates refuges (e.g.,
fallen debris) before destroying them.

• Multi-species interactions: Extending the model to in-
clude multiple species with varying refuge dependencies
could reveal cascading effects of wind disturbances on
community structure.

• Stochastic wind effects: Incorporating stochastic or
time-varying wind speeds would better mimic natural
conditions, allowing for analysis of resilience to unpre-
dictable disturbances.

Broader significance

This work bridges theoretical ecology and environmental
science by quantifying how abiotic factors like wind modu-
late biotic interactions. It also aligns with global concerns
about climate change, where increasing wind intensities
may exacerbate species declines in vulnerable ecosystems.
By elucidating the mechanisms linking wind, refuges, and
competition, the model offers a framework for predicting and
mitigating the ecological impacts of environmental change.

In summary, our study demonstrates that wind-dependent
refuge dynamics are a critical yet understudied factor in
species competition. The findings advocate for integrating
environmental variability into ecological models to better
predict and manage biodiversity in a changing world. Fu-
ture research should expand on these insights, exploring
additional abiotic-biotic interactions and their conservation
implications.
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Classical Model

Static Refuge
u = const.

Innovation

Wind-Dependent Refuge

u(w) = umaxe
−kw

Wind Speed Modulates
Competition Intensity

Breakthrough

Fig. 1. Conceptual framework of the wind-dependent refuge model. The yellow box highlights the key innovation where refuge availability u(w) becomes
a function of wind speed w.

Fig. 2. Impact of Wind Speed on Refuge and Competition Coefficients.
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Fig. 3. 3D Population dynamics trajectories of the case umax = 0.

Fig. 4. Phase diagram of the case umax = 0:The trajectories under different initial conditions all converge to E1(100, 0).
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Fig. 5. 3D Population dynamics trajectories of the case umax = 0.8, w = 0.

Fig. 6. Phase diagram of the case umax = 0.8, w = 0:The trajectories under different initial conditions all converge to E1(100, 0).
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Fig. 7. 3D Population dynamics trajectories of the case umax = 0.8, k = 0.1, w = 3.

Fig. 8. Phase diagram of the case umax = 0.8, k = 0.1, w = 0.3:The trajectories under different initial conditions all converge to E1(100, 0).
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Fig. 9. Bifuction diagram of N∗
1 , N

∗
2 about w.
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