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Abstract—Current infrared image super-resolution algo-
rithms based on generative adversarial network (GAN) gen-
erally suffer from two significant limitations: the distortion of
high-frequency details and the inconsistency between subjective
visual perception and objective evaluation metrics. To address
these challenges, this paper proposes a novel infrared image
super-resolution reconstruction algorithm incorporating detail
fidelity constraints and perceptual optimization strategies into
a unified framework, i.e., DPGAN. This algorithm constructs a
hybrid multi-feature fusion generator, which is jointly propelled
by channel-spatial attention mechanisms and is designed to
enhance the generator’s ability to extract high-frequency detail
features from infrared images. In addition, a discriminator
network employing the exponential linear unit (ELU) activation
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function is developed to strengthen its nonlinear representa-
tional capacity and improve its discrimination of texture realism
in the generated images. A collaborative optimization strat-
egy is further introduced, incorporating perceptual loss, total
variation regularization, and structural similarity constraints
to build a loss function to align subjective perception with
objective evaluation. Comparative experiments conducted on
the CVC09 and CVC14 datasets demonstrate that compared to
existing methods such as enhanced super-resolution generative
adversarial network (ESRGAN) and swin transformer for
image restoration (SWINIR), the proposed DPGAN achieves
a 2.95 dB improvement in peak signal-to-noise ratio (PSNR)
and an average increase of (.10 in structural similarity index
(SSIM). Moreover, the mean opinion score (MOS) reaches 4.32
out of 5, significantly surpassing the baseline methods. Such
results indicate that DPGAN can reconstruct infrared images
with more realistic and richly detailed textures, which are more
consistent with human subjective visual perception.

Index Terms—Infrared images; Super-resolution reconstruc-
tion; Generative adversarial networks; Channel spatial atten-
tion mechanisms; Hybrid multi-feature fusion; Human subjec-
tive visual perception

I. INTRODUCTION

NFRARED imaging technology relies on the principle of

thermal radiation. It uses an infrared detector to sense the
difference in thermal radiation between the target and the
background, facilitating image formation. Unlike traditional
visible light imaging, infrared technology offers advantages
such as immunity to visible light interference, all-weather
imaging, and long-range detection. Thus, it has been widely
applied in target detection [1-2], medical imaging [3-4],
video surveillance, and remote sensing [5-6]. Nonetheless,
environmental and hardware limitations limit the quality
of infrared images. From the ecological perspective, at-
mospheric moisture attenuates energy in the infrared band
[7]. Meanwhile, from the hardware standpoint, due to the
physical constraints of the detector, it is challenging to
increase the density of the focal plane array units further [8].
These factors result in everyday issues such as insufficient
detail resolution and loss of fine texture information in
infrared images, limiting its broader application in real-world
engineering systems.

Improving infrared image quality can be accomplished
through two primary approaches. One is hardware optimiza-
tion through the refinement of optical components and sensor
structures. However, due to the physical limitations of focal
plane arrays, this approach suffers from high implementation
costs and limited scalability due to physical constraints.
Another one is the algorithmic approach, which adopts super-
resolution techniques to restore fine details and suppress
noise to recover high-frequency details from low-resolution
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images and reduce noise. This manner offers practical ben-
efits without requiring additional hardware modifications,
cost-effectiveness, and real-time processing capabilities. As a
result, it has found wide applications in fields such as medical
imaging [9] and satellite remote sensing [10].

The goal of image super-resolution reconstruction [11]
is to generate a high-quality, high-resolution image from
single or multiple low-resolution inputs. Existing methods
are typically classified into three ways: interpolation-based
[12], reconstruction-based [13], and learning-based [14].
Interpolation-based methods, such as bilinear, bicubic, and
nearest-neighbor interpolation, estimate pixel values based
on spatial continuity assumptions. They are computationally
efficient but fail to recover high-frequency details lost during
degradation, incurring blurred textures in the reconstructed
images. Reconstruction-based methods create degradation
models to inversely derive high-resolution images by com-
bining low-resolution features with structural constraints,
such as Markov random fields and regularization techniques.
While these methods usually perform better than interpola-
tion, they heavily depend on a priori knowledge and are often
less robust in handling complex scenes and reconstructing
complex structures. Learning-based methods use machine
learning algorithms to learn implicit priors from data from a
large set of training images. This characteristic enables the
system to learn image features, which beneficially reconstruct
the missing high-frequency details in low-resolution images.

The generative adversarial network (GAN) is presented to
enhance the realism of generated images, establishing the
adversarial training paradigm of the generator-discriminator
paradigm [15]. Its generator produces super-resolution im-
ages using residual networks, while the discriminator dis-
tinguishes between generated and authentic images based
on adversarial loss. This approach is denoted as the super-
resolution generative adversarial network (SRGAN), which
introduces perceptual loss derived from visual geometry
group (VGG) feature space alongside adversarial loss to
alleviate the limitations of mean squared error (MSE) loss
and enhance perceptual quality, significantly improving the
fidelity of texture details. However, it has limitations in
handling complex noise scenarios. To address this issue,
Wang et al. [16] proposed an enhanced super-resolution
generative adversarial network (ESRGAN), which enhances
generalization ability through residual scaling and a rel-
ativistic discriminator. Moreover, a downsampling module
is incorporated to approximate the real-world degradation
model better, making the reconstructed network more adap-
tive to actual noise interference. Previous findings show that
ESRGAN improves peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) compared to SRGAN,
effectively balancing visual quality and objective metrics.

GANs perform well in visible image super-resolution
tasks. However, when directly applied to infrared images,
these methods are less effective due to the unique charac-
teristics of infrared imaging, such as dependence on thermal
radiation, high noise, low contrast, and low texture contrast
or sparsity. On the one hand, thermal radiation affects the
infrared images, resulting in sparse high-frequency details
and non-uniform noise distributions [17]. Simple single-
branch feature extraction networks struggle to separate high-
frequency signals from noise, incurring blurred details or

amplified noise in the reconstructed images. On the other
hand, the existing algorithms using PSNR-based pixel-wise
loss functions overly focus on global pixel alignment while
disregarding the human visual system’s sensitivity to local
texture realism [18]. Consequently, while these methods
perform well in objective metrics like PSNR, they produce
unnaturally smooth images, causing discrepancies between
subjective and objective evaluations.

To address the above issues, this paper proposes a detail-
fidelity and perception-optimized generative adversarial net-
work, i.e., DPGAN, for infrared image super-resolution.
First, constructing a hybrid generator with a multi-level fea-
ture fusion network guided by channel spatial attention real-
izes multi-level feature extraction to strengthen the network’s
ability to extract high-frequency detailed features. Second,
the channel spatial attention mechanism is applied, which can
effectively allocate the attention weights of different regions
in the low-resolution infrared image so that the network
can focus on the high-frequency detail regions of the in-
frared image and suppress the background noise interference.
Next, the exponential linear unit (ELU) activation function
enhances the network’s nonlinear representational capacity
in the discriminator design. It improves the discriminator’s
ability to assess the realism of texture representations in
the generator’s infrared images and reduces the perceptual
artifacts caused by hallucinated details in human subjective
perception. Finally, by including a synergistic optimiza-
tion mechanism of visual perception loss, total variance
regularization, and structural similarity constraints, a loss
function system oriented to the consistency of subjective and
objective evaluations is constructed, which further reduces
the discrepancy between the generated infrared images and
the subjective visual perception of human beings accordingly.

II. PROPOSED METHODOLOGY

In this paper, the design of DPGAN, a super-resolution
generative adversarial network for infrared images with detail
fidelity and perceptual optimization, is carried out based on
ESRGAN from the practical problems existing in infrared
images. The overall flowchart of the DPGAN is illustrated
in Fig. 1. In this section, the main components of the
network (generator network and discriminator network), the
core modules (improved channel spatial attention module and
hybrid multi-feature extraction fusion module), and the loss
function are described step by step.

A. Generator Network and Discriminator Network

The generator network continuously optimizes the quality
of the generated image, making it asymptotically close to
the real image through the adversarial training mechanism.
It comprises three main components: a shallow feature ex-
tractor, a deep feature extractor, and an upsampling-based
reconstruction module.

The shallow feature extractor is a convolutional layer
used to extract shallow features from low-resolution infrared
images, as expressed:

Fohatiow = Fc(ILr) (D

where I i denotes the input low-resolution infrared image,
F¢ is the convolution operation, and Fjpqi10,, means the
extracted shallow features.
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Fig. 1. Overall flowchart of the proposed DPGAN.

After extracting the shallow features, the residual in the
residual inception attention block (RRIAB) and improved
convolutional block attention module (ICBAM) extract deep
features from the infrared images. The deep features are
then merged with the shallow features through a long-link
operation to obtain the fused features, as expressed:

2
3)

where Fiprap and FLp .., are the N-RRIAB and M-
ICBAM blocks employed for extracting the deep features, re-
spectively, Fy.., denotes the extracted deep features, Fi.opcat
represents the merging of shallow and deep features, and
Frergea 1s the fused features obtained after merging.

The final fused features are processed through two sub-
pixel convolutional up-sampling operations. Moreover, two
convolutional layers are employed to refine the detailed
features of the infrared image, reconstructing a high-quality
super-resolution infrared image accordingly.

ISR = Fé(Fip(Fmerged)) (4)

where ng represents the two upsampling operations, F2
means the two convolution operations, and Igr denotes the
reconstructed super-resolution infrared image.
Subsequently, regarding the discriminator network, its core
function effectively discriminates between synthesized and
ground-truth images with high precision, which can be
regarded as a classifier in this study. Specifically, it receives

Facep = FRr1AB(Fiépant(FRr1AB (Fshatiow)))

Fme'r'ged = Fconcat(FShallowa Fdeep)

the generated and corresponding authentic infrared images
as input, extracting features from these images followed by
ELU activations.

These extracted features are then passed through two dense
layers and a final tripping function to obtain the probability
of sample classification. In this paper, the discriminator
network is based on the adaption from the original ESR-
GAN discriminator, in which ELU is used in place of the
original LeakyReLU function. Compared to the LeakyReLU,
the ELU function enhances the nonlinear representational
capacity of the discriminator network, improving the discrim-
inator’s ability to capture subtle differences between real and
synthetic data distributions. The ELU is as follows:

ae®*—1) ifx<0
y:{< )

5
T ifx>0 )

B. Improved Channel Spatial Attention Module

Preserving high-frequency details remains a core chal-
lenge in infrared image super-resolution, leading to blurred
textures and degraded perceptual fidelity. Therefore, this
paper considers a dual-channel attention module (channel
attention and spatial attention) in the generator network
based on the theoretical framework of the convolutional
block attention module (CBAM) [19], which facilitates the
network focuses on high-frequency detail regions in the low-
resolution infrared images while ignoring irrelevant areas.
In addition, this paper improves the traditional channel and

Volume 33, Issue 8, August 2025, Pages 3188-3196



Engineering Letters

Channel Attention

Module
MaxPool Share |
Input axPoo MLP MaxPool Feature Output

Feature \
AvgPool /" I AvgPool Feature ‘
Triping

Feature

[Extractor ! Feature i
[ / ‘ ‘ ‘ ‘Conv+Concat
. — L |
Ouput
MaxPool, AvgPool
[MaxPool, AvgPool] Feature
Spatial Attention
Module
Fig. 2. Improved dual-channel attention module.
spatial attention modules by replacing the Sigmoid activation *T2*
function in the dual-channel attention module with the Trip- 4 VTV )
ing function. This results in the new channel attention module K, re
(CA_Triping) and spatial attention module (SA_Triping), as Concat Conv
shown in Fig. 2. Ks i
Here, the proposed improvements to the attention module 3%3 3%3
are guided by two design principles: first, the non-saturation Conv Conv

property of the Triping function reduces the risk of gradi-
ent vanishing and enhances the convergence speed of the
model; second, the sparse activation property of the Trip-
ing function effectively inhibits the activation of redundant
features, strengthening the network’s ability to focus on high-
frequency details in infrared image features.

C. Hybrid Multi-feature Extraction Fusion Module

Next, this paper presents a multi-branch feature extraction
fusion module, Inception-A [20], into the generator network
to address the challenge of improving the network’s ability
to separate the coupled features of high-frequency signals
and noise in infrared images using a relatively straightfor-
ward, single-branch network architecture. The Inception-A
module has four branches, AvgPooling+1x1Conv, 1x1Conv,
1x1Conv+3x3Conv, and 1x1Conv+3x3Conv+3x3Conv, as
depicted in Fig. 3. After the input feature map T (H X
W x C) is processed in parallel through four branches,
four feature matrices k;(¢ = 1,2,3,4) are obtained, each
capturing distinct levels of feature information. These feature
matrices are subsequently concatenated through a matrix
concatenation operation to generate a new feature map
To(H x W x ().

Inspired by the ESRGAN residual-in-residual structure,
this paper innovatively constructs the residual-in-residual hy-
brid multi-feature extraction fusion module (RRIAB). Specif-
ically, the channel attention module (CA_Triping), spatial
attention module (SA_Triping), and Inception-A modules are

Avg

Pooling
T
Sa_Triping
Tl
(H*W*C)

Fig. 3. Hybrid multi-feature extraction fusion module.

cascaded to form a hybrid multi-feature extraction fusion
module (IAB). Based on that, the IAB module is embedded
into the residual-in-residual framework for constructing the
RRIAB.

D. Loss Function

During the training process of the generative adversarial
network, the generator G and the discriminator D are trained
against each other through a minimax game. The total
loss function of the overall network is:

(6)

Liotar = mingmaxp(Le + Lp)
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where L;,:q; 18 the total loss function, Ls means the
generator loss, Lp represents the discriminator loss, ming
denotes minimization (continuously optimizing the quality of
the IR image generated by the generator), and maxp refers
to maximization (continuously improving the discriminator’s
ability to correctly distinguish between the real IR image and
the generated IR image).
The loss function of the generator is:

LG = Lpercept + )\Lga + gLssim + OZLTV @)

where Lpercep: denotes the visual perception loss, Lg“
means the generator confrontation loss, Lgg,, refers to
the structural similarity loss, and Ly represents the total
variance loss. Moreover, A is the coefficient of Lga , which
takes the value of 8 x 1072 in this study. ¢ is the coefficient
of Lsgim. To align the effect of the generated infrared image
with subjective visual evaluation, it is set to 1. « is the
coefficient of L7y . In the experiment, it was found that when
is « greater than 2 X 1078, the generated result exhibits a
significant color difference compared to the original image.
On the other hand, when « is less than 2 x 1078, the
generated infrared image shows slight speckling. Thus, «
is set to 2 x 1078,

The visual perceptual 10ss Lpeycept 1s utilized to measure
the difference between the generated image and the target
image in the visual feature space [21]. It evaluates image
quality by comparing the features extracted at different layers
of a pre-trained network, ensuring that the generated image
visually resembles the target image:

1
Lpercept = Z ﬁt H ¢Z(Igenerated) - ¢Z(Itarget)||2 (8)
t

where Igeneratea refers to the generated image, Iiorger de-
notes the target image, ¢; represents the features extracted
by the pre-trained network at layer [ , and INV; is the
dimensionality of the layer features.

Traditional super-resolution reconstruction algorithms for
infrared images usually utilize a content loss L;.e1 based
on pixel-level metrics within the generator loss. Although
content loss L;,e; ensures pixel-level alignment between
the generated and real images, it frequently causes exces-
sive smoothing, degrading the image’s subjective quality
perceived by humans. To mitigate this issue, this paper
introduces the structural similarity loss L, as expressed:

Lssim(Isr, Inr) =1 —SSIM(Isg,Iur) 9

where Igrp means the generated super-resolution infrared
image and Iyp denotes the real high-resolution infrared
image.

The total variation loss Ly minimizes the differences
between adjacent pixels in an image, reducing artifacts and
enhancing image smoothness [22], as expressed:

Ly = / \/ Wi+ w drdy
Dy

where D,, refers to the domain of definition of the function
w, and w,, and w, are the partial derivatives of the function
w with respect to x and y, respectively.

The generator loss design incorporates a combination of
visual perception loss, structural similarity loss, and total
variation loss to establish a loss function system that aligns

(10)
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with subjective and objective evaluation criteria. This system
effectively minimizes the discrepancy between the generated
infrared images and human subjective visual perception.
Generator adversarial loss LE® represents a key compo-
nent in GAN, realized through adversarial training between
the generator and the discriminator, as shown in (11) and
(12):
L§* = —Ex, [log(1 — Dga(Xr, Xy))]
- EXf [log(DRa(Xfa Xr))}
Dpa(r,2f) = 0(C(Xy) = Ex [Clzf)])
where z; = G(z;)and z; denote the input low-resolution
infrared images, o is the activation function operation, and
C(X,.) means the untransformed output of the discriminator.

Finally, the loss function of the discriminator is presented
in (13):

(1)
12)

Lp = Lj}" = —Ex, [log(Dra(Xy, Xy))]

~ Ex,[log(1 — Dpa(Xy, X,))] (13)

where F,, represents the averaging operation over all
pseudo-data in a mini-batch.

III. EXPERIMENT
A. Experimental Details

The datasets used in this paper are the publicly available
CVC09 and CVC14 datasets provided by FIR. They consist

Volume 33, Issue 8, August 2025, Pages 3188-3196



Engineering Letters

SRGAN ESRGAN OURS
PSNR: 26.27 PSNR: 29.61 PSNR: 31.30
SSIM: 0.76 SSIM: 0.89 SSIM: 0.92

SRGAN ESRGAN OURS
HR PSNR: 23.48 PSNR: 26.20 PSNR: 27.47
SSIM: 0.71 SSIM: 0.83 SSIM: 0.86

SRGAN ESRGAN OURS
HR PSNR: 23.88 PSNR: 27.31 PSNR: 28.46
SSIM: 0.71 SSIM: 0.87 SSIM: 0.89

HR SRGAN ESRGAN OURS
PSNR: 22.52 PSNR: 24.50 PSNR: 26.87
SSIM: 0.68 SSIM: 0.81 SSIM: 0.87

Fig. 6. Comparison of the reconstruction effect using various algorithms.

of two sets of single-channel infrared images: the day set
and the night set. These infrared images mainly feature street
scenes, covering common targets such as pedestrians, cars,
buildings, and roads, making them suitable for studying the
super-resolution reconstruction task of infrared images.

The deep learning framework used in this experiment is
PyTorch. The experiments were conducted on two NVIDIA
GeForce GTX 4090D GPUs. All training images were uni-
formly cropped to 100x100 pixels for efficient batch process-
ing. Low-resolution infrared images were generated using
bicubic downsampling with a fourfold degradation. Before
the experiment, 1000 infrared images were randomly selected
from the training sets of the CVC09 and CVCI14 datasets,
respectively, and then shuffled to form a new training set,
train-CVC, containing 2000 infrared images. Additionally,
1000 infrared images were randomly selected from the
test sets of each dataset to create two new test sets, test-
CVC09, and test-CVC14, which were used for performance
evaluation in this study. Adam is chosen as the optimizer for
both the generator network and the discriminator network,
batch_size is set to 32, epochs are set to 1000, and the initial
learning rate is set to 0.0004.

B. Evaluation Metrics

In this study, ten RRIAB layers are used within the
generator network to enhance deep feature extraction. During
training, a learning rate decay strategy is adopted, where
the learning rate is multiplied by a decay coefficient of
0.8 every 50 epochs, promoting stable convergence and
improved model performance over time. During the training
process, for the first 15 epochs, only the Lgg;y, is trained.
Starting from the 16th epoch, both the generator loss L and
discriminator lossare Lp optimized together, enabling the
adversarial training between the generator and discriminator
to improve the overall performance of the model.

PSNR is an objective metric used to evaluate image quality
[23]. Generally, a higher PSNR value indicates less image
distortion and better reconstruction. The PSNR is as follows:

MAX?
PSNR = 10~log10(M—SE) (14)
_ 1 LN .. .2
MSE = m.n;gmm ~K(i,7) (9

where M AX refers to the maximum possible pixel value
of the image, M SE denotes the mean squared error, (4, j)
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TABLE I
COMPARISON OF DIFFERENT ALGORITHMS ON OBJECTIVE INDICATORS
Dataset Faluation SRCNN ESPCN SRGAN ESRGAN SWINIR  Lite-SRGAN Ours
SSIM 0.72 0.74 0.75 0.88 0.88 0.87 0.91
test-CVE09 PSNR 23.25 24.19 25.04 27.95 29.98 29.78 30.02
SSIM 0.71 0.70 0.72 0.85 0.88 0.88 0.88
test-CVC14
PSNR 2293 23.16 23.39 25.89 27.61 27.23 27.67
. . Co TABLE Il
means the pixel value of the target image, K(i,j) is the  COMPARISON OF ALGORITHMS ON SUBJECTIVE EVALUATION
pixel value of the generated image, and m and n represent METRICS
the width and height Of- tbe lmage. : Algorithms Evaluation Metrics Score (in S-point
SSIM measures the similarity between two images regard- g scale)
ing lumlpance, contrast, and s'tructure [24]. I.Jnhke PSNR, SRGAN MOS 418
SSIM aligns more closely with human subjective visual
. . . ESRGAN MOS 4.24
perception. The SSIM is as follows:
DPGAN MOS 4.32

(2uguy + C1)(204y + Ca)
(u2 +u +Cr)(02 + 02 + Cy)

SSIM (x,y) = (16)
where u, and u, represent the average luminance of the two
images, o2 and 05 represent the contrast of the two images,
oy refers to the covariance between the two images, which
measures their structural similarity, and C; and C5 refer to
the constants added to avoid a zero denominator.

The mean opinion score is a commonly used method
for subjective image quality evaluation [25]. It involves
professionally trained evaluators rating image samples on
a scale from 1 to 5 (with 1 indicating blurriness and 5
indicating high clarity). The MOS value is calculated as
the arithmetic mean of all evaluators’ scores. This subjective
quality assessment can be further categorized into absolute
and relative evaluation methods. In this paper, we use the
relative evaluation criteria. As a result, in this paper, PSNR
and SSIM are used as objective evaluation metrics, while
MOS is used as the subjective evaluation metric for the
generated image results.

C. Comparison Results

This paper tests and compares PSNR and SSIM met-
rics for objective evaluation on the test-CVC09 and test-
CVC14 datasets. The performance of SRCNN, ESPCN [26],
SRGAN, ESRGAN, SWINIR [27], Lite-SRGAN [28], and
the proposed DPGAN algorithm is assessed. As shown in
Table I (with bolded values representing the best results),
the proposed approach significantly improves both evaluation
metrics, particularly in SSIM, which is more aligned with
human vision. Compared to SRCNN, ESPCN, and SRGAN,
the results indicate that the proposed approach achieves
better super-resolution reconstruction of infrared images, as
evidenced by the data.

To further validate the proposed DPGAN’s effectiveness,
two representative images from the test-CVC09 and test-
CVCl14 datasets are selected for visual comparison with
SRGAN and ESRGAN. The results of these experiments are
presented in Fig. 6.

The SRGAN algorithm exhibits the lowest overall clarity,
with significant distortion and poor visualization. While
ESRGAN performs better than SRGAN, it still has blurred

edges, suggesting a loss of high-frequency information dur-
ing reconstruction and a more significant color difference
from the original high-resolution infrared image. In contrast,
the proposed DPGAN algorithm produces more detailed
results, showing effective denoising during reconstruction
and better texture and feature details recovery. Such improve-
ments highlight that the algorithm in this paper enhances both
objective evaluation metrics and human subjective visual
perception.

In the subjective evaluation comparison, SRGAN, ESR-
GAN, and the proposed DPGAN algorithm are evaluated
based on MOS scores for the generated results under the
test-CVC09 dataset. The objective evaluations of the infrared
images generated by these three algorithms were collected
from 50 volunteers, followed by testing multiple discrete
samples. The results are presented in Table II (with bolded
values representing the best results).

Table II shows that the proposed DPGAN algorithm
achieves the highest score of 4.32, followed by ESRGAN
with a score of 4.24 and SRGAN with a score of 4.18.
Such performance indicates that compared to algorithms like
ESRGAN, the infrared images generated by DPGAN are
better aligned with human subjective visual perception.

D. Ablation Experiment

To demonstrate the effectiveness of incorporating the ELU
activation function and structural similarity loss function
in enhancing the model’s performance, we remove these
improvements from the DPGAN algorithm and revert to the
original configurations. The experimental results are then
compared between the improved and the original models.
The ELU activation function in the DPGAN discriminator is
replaced with the original LeakyReL U function to obtain the
DPGAN-LeakyReLU model. Similarly, the DPGAN-Pixel
model is created by replacing the L,g;,, in the generator
loss function Ls of DPGAN with the original pixel-based
loss Ly;zei- Each model was run under the previously exper-
imental conditions to obtain the evaluation metrics, as listed
in Table III.

As shown in Table III (with bolded values representing the
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TABLE III
ABLATION EXPERIMENTS FOR ACTIVATION FUNCTION ELU
AND LOSS FUNCTION Lggim

test-CVC09 test-CVC14
Model
SSIM PSNR SSIM PSNR
DPGAN-LeakyRelu 0.9 28.65 0.87 26.39
DPGAN-Pixel 0.86 27.94 0.82 25.88
DPGAN 0.91 30.02 0.88 27.67
TABLE IV
COMPARISON OF ATTENTION MODULE ABLATION
EXPERIMENTS
test-CVC09 test-CVC14
Model
SSIM PSNR SSIM PSNR
DPGAN-Sigmoid
(5 layers) 0.91 29.94 0.88 27.53
DPGAN-Sigmoid
(10 layers) 0.91 30.06 0.88 27.67
DPGAN-Triping
(5 layers) 0.91 30.02 0.88 27.67
DPGAN-Triping
(10 layers) 0.92 30.24 0.89 27.81

best results), after removing the improvements of the ELU
activation function and loss function L,;,,, the PSNR and
SSIM values decrease significantly. This proves that both the
ELU activation function and loss function L., effectively
enhance the infrared image reconstruction performance using
the proposed DPGAN.

Furthermore, the improvement of the channel attention
module and spatial attention module is vital to the algorithm
proposed in this paper. The following ablation experiments
were designed to verify their effectiveness: The model
DPGAN-Sigmoid was obtained by replacing the Triping
activation function in CA_Triping and SA_Triping within
RRIAB with a Sigmoid function, respectively. The below
models were then run under the previously mentioned ex-
perimental conditions:

1) DPGAN-Sigmoid with RRIAB layers of 5;
2) DPGAN-Sigmoid with RRIAB layers of 10;
3) DPGAN-Triping with RRIAB layers of 5;
4) DPGAN-Triping with RRIAB layers of 10;

The experimental results are shown in Table IV. As
analyzed in Table IV (with bolded values representing
the optimal results), DPGAN-Triping and DPGAN-Sigmoid
achieve equal SSIM scores using the RRIAB with five layers.
However, DPGAN-Triping outperforms DPGAN-Sigmoid in
PSNR metrics, indicating that DPGAN-Triping reconstructs
infrared images with more realistic textures. At an RRIAB
of 10 layers, DPGAN-Sigmoid maintained identical SSIM
scores and showed a slight improvement in PSNR, while
DPGAN-Triping improved both PSNR and SSIM.

In summary, the improved attention module in this paper
demonstrates stronger high-frequency information extraction
and more effective feature detail mining compared to tradi-
tional attention mechanisms, leading to a better reconstruc-
tion of infrared images.

IV. CONCLUSION

This paper proposes a DPGAN, which addresses the issues
of high-frequency detail distortion and inconsistency between
subjective and objective evaluations in infrared image super-
resolution reconstruction tasks. The proposed DPGAN pri-
marily consists of a generator network and a discriminator
network. The generator synthesizes high-quality infrared
images, while the discriminator progressively guides the
generator to produce images that visually approximate real
infrared images. Furthermore, to enhance the realism and
richness of the texture details in the generated infrared
images, a hybrid multi-feature fusion network structure is
constructed, guided by channel-spatial attention mechanisms.
Lastly, a loss function framework oriented towards the
consistency between subjective and objective evaluations is
designed, ensuring that the generated infrared images are
better aligned with human visual perception. Experimental
results demonstrate that the proposed algorithm outperforms
comparative methods in objective evaluation metrics and
human subjective visual perception. Future research can
explore extending the network’s depth and width and further
optimizing the attention module.
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