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Abstract—We develop a family of robin-type domain de-
composition techniques, employing a two-grid methodology,
for the efficient solution of the Navier-Stokes-Darcy system.
Our methodology commences by utilizing the well-established
robin-type domain decomposition technique to generate initial
coarse grid approximations. Following this, we enhance the fine
grid problem formulation within the two grid methodologys
framework, by substituting certain interface conditions with
data derived from the coarse grid, thereby refining the overall
solution process.

Index Terms—Navier-Stokes equations, Domain decomposi-
tion method, Two-grid method, Darcy’s law.

I. INTRODUCTION

THE coupled problems are increasingly prevalent in
a wide range of natural and industrial applications.

Notable examples include the analysis of groundwater fluid
flow, the transport of materials in industrial filtration systems,
and the study of blood flow dynamics within arteries. This s-
tudy investigates the Navier-Stokes-Darcy system, integrating
free fluid flow principles from the Navier-Stokes equations
with porous media flow behavior as described by Darcy’s
law. This integration is achieved through an interface that
connects two distinct subdomains.

Extensive research has focused on the creation and e-
valuation of numerical methods for addressing the coupled
problem. The methods encompass a broad spectrum of
approaches, including: two-grid or multi-grid methods [1],
[2], [3], [4], [5], local and parallel finite element methods
[6], [7], [8], domain decomposition method [9], [10], [11],
[12], [13], [14], [23], lagrange multiplier method [15], [16],
discontinuous Galerkin method [17], [18], [19], [20], and
several other ways [21], [22], [24], [25], [26], [27], [28].
These methodologies represent the forefront of computation-
al techniques aimed at addressing the complex interactions
between fluid flows and porous media, thereby enhancing our
ability to model and understand phenomena across a wide
range of engineering and scientific fields.

Among the various methods considered, the two-grid
approach is particularly noteworthy for its effectiveness in
addressing the inherent difficulties associated with the strong
interdependencies between different models across separate
domains. Similarly, the domain decomposition technique,
augmented by robin-type interface boundary conditions, has
proven highly effective in tackling the complexities of multi-
domain problems and integrating diverse physical processes.
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The efficacy of this method is underpinned by the availabil-
ity of robust solvers for the individual, disentangled sub-
problems.

Sun recently proposed the two-grid domain decomposi-
tion method [23] for solving coupled problems, enhancing
solution accuracy and efficiency via robin-type domain de-
composition within a two-grid framework.

We have performed an in-depth analysis of the interaction
between the two equations within their coupled system.
Leveraging the domain decomposition method [9] and the
two-grid domain decomposition method [23], we introduce
a novel two-grid domain decomposition technique. We in-
corporate the BJ interface condition for the model. The
proposed method begins by employing a robin-type domain
decomposition technique to get the solution on the coarse
grid. Afterward, the interface terms are replaced by the
solution from the coarse grid. Thereby obtaining a corrected
fine grid problem. The method combines the advantages
of both domain decomposition and two-grid techniques.
An error analysis has been conducted to demonstrate the
convergence of the method.

The subsequent sections of this paper are outlined below.
Section II gives the Coupled Navier-Stokes-Darcy problem.
In section III, the essential method is outlined. Section IV
introduces the newly proposed method. Section V provides
a clear error analysis of the newly method, demonstrating its
superiorities compared to other algorithms. In section VI, we
discuss the prospective applications and future advancements
of the two-grid domain decomposition method.

II. COUPLED NAVIER-STOKES-DARCY PROBLEM

We introduce a coupled Navier-Stokes-Darcy system with-
in a bounded domain Ω ⊂ Rd (d = 2, 3), consisting of a fluid
region Ωf and a porous medium region Ωp, separated by the
interface Γ = ∂Ωf ∩∂Ωp. Here, Ωf ∩Ωp = ∅, Ωf ∪Ωp = Ω.
Let Γf = Ωf \Γ, Γp = Ωp \Γ.

Within the Ωf , the Navier-Stokes equations govern the
fluid flow:{−→u f · ∇−→u f −∇ · (T (−→u f , pf )) =

−→
f 1,

∇ · −→u f = 0,
(1)

among them

T (−→u f , pf ) = −pfI + 2νD(−→u f ),

D(−→u f ) =
1

2
(∇T−→u f +∇−→u f ),

−→u f and pf denote the fluid velocity and kinematic pressure
within Ωf . Additionally,

−→
f 1 represents the external body

force, and T (−→u f , pf ) is the stress tensor, which involves the
identity matrix I and the fluid’s kinematic viscosity ν > 0.
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Within the Ωp, the Darcy equation govern the porous
medium flow: {

∇ · −→u p = f2,
−→u p = −K∇φp,

(2)

in the porous medium domain Ωp, −→u p denotes the fluid
discharge rate. Without loss of generality, the hydraulic con-
ductivity tensor is considered isotropic which is represented
by K. And φp = z +

pp
ρg means the piezometric head.

Involving the dynamic pressure pp, height z, fluid density
ρ, and gravitational acceleration g. Additionally, the source
term f2 satisfies the solvability condition.∫

Ωp

f2 = 0.

By integrating Darcy’s law with (2), we obtain the elliptic
partial differential equation:

−∇ · (K∇φp) = f2. (3)

Assume the −→u f and φp satisfying homogeneous Dirichlet
boundary conditions:

−→u f = 0 on Γf , φp = 0 on Γp.

The interface Γ is subject to three interface conditions,
stated as:

−→u f · −→n f +−→u p · −→n p = 0,

1

2
−→u f · −→u f − (T (−→u f , pf ) · −→n f ) · −→n f

= gφp − gz,
− (T (−→u f , pf ) · −→n f ) · −→τ i

=
αν
√
d√

trace(
∏

)
· −→τ i · (−→u f −−→u p),

(4)

where −→n f and −→n p are the unit outer normals at the interface
Γ, respectively. The vectors −→τ i (i = 1, · · · , d − 1) are
mutually orthogonal unit tangential vectors to Γ, α is a
constant parameter, and

∏
= Kν

g .
To introduce the weak formulation of the mixed model,

we set

Hf = {−→v f ∈ (H1(Ωf ))d : −→v f = 0 on Γf},
Hp = {ψp ∈ H1(Ωp) : ψp = 0 on Γp},
Qf = L2(Ωf ).

We use (·, ·)ΩX
and ‖ · ‖L2(ΩX) to denote the standard

L2-scalar product of the spaces L2(ΩX)(X = f, p) and the
associated L2-norms of the space L2(ΩX), respectively.

III. DOMAIN DECOMPOSITION METHOD

We provide an overview of the domain decomposition
method as described in [9]. This approach breaks down the
Navier-Stokes-Darcy into two distinct subproblems, which
are solved in parallel within the Ωf , and Ωp. Through the
use of domain decomposition, the computational problem
is effectively downsized, allowing for the leveraging of
established software packages to solve each subproblem
independently.

We will present the key robin-type interface conditions.
For two predetermined positive constants ξf and ξp, there

exist corresponding functions gf , gp, and gfτ on the interface
Γ which satisfy the following relationship:

(T (−→u f , pf ) · −→n f ) · −→n f −
1

2
−→u f · −→u f + ξf

−→u f · −→n f
= gf , (5)

ξpK∇φp · −→n p + gφp = gp, (6)

− αν
√
d√

trace(
∏

)
Pτ
−→u f − Pτ (T (−→u f , pf ) · −→n f )

= gfτ . (7)

By (4), we can get

gf = ξf
−→u f · −→n f − gφp + gz on Γ, (8)

gp = ξp
−→u f · −→n f + gφp on Γ, (9)

gfτ =
αν
√
d√

trace(
∏

)
Pτ (K∇φp) on Γ. (10)

It is easy to verify that the interface conditions (4) are
equivalent to the aforementioned robin-type conditions (5)-
(7) if and only if the functions gf , gp, and gfτ fulfill the
compatibility requirements on the interface Γ.

Then the weak formulation as follows: for three given
functions gf , gp, and gfτ and two normal numbers ξf , ξp,
find (−→u f , pf ) ∈ Hf ×Qf , φp ∈ Hp such that

ap(φp, ψp) + 〈gφp
ξp

, ψp〉 = 〈gp
ξp
, ψp〉+ (f2, ψp)Ωp

,

∀ ψp ∈ Hp, (11)
δbf (−→u f ,−→u f ,−→v f ) + af (−→u f ,−→v f )− δdf (−→v f , pf )

+ δdf (−→u f , qf ) + δξf 〈−→u f · −→n f ,−→v f · −→n f 〉

+
α
√
d√

trace(
∏

)
〈Pτ−→u f , Pτ−→v f 〉

= δ(
−→
f 1,
−→v f )Ωf

+ δ〈gf ,−→v f · −→n f 〉 − δ〈gfτ , Pτ−→v f 〉,
∀ (−→v f , qf ) ∈ Hf ×Qf , (12)

where

δ =
1

ν
,

Pτ
−→u f =

d−1∑
j=1

(−→u f · −→τ j)−→τ j

Pτ
−→u f is the projection onto the tangent space on Γ.
The bilinear forms are

af (−→u f ,−→v f ) = (∇−→u f ,∇−→v f )Ωf
,

ap(φD, ψD) = (K∇φp,∇ψp)Ωp
,

df (−→v f , qf ) = (∇ · −→v f , qf )Ωf
,

and the trilinear form is

bf (−→u f ,−→u f ,−→v f ) = (−→u f · ∇−→u f ,−→v f )Ωf

− 1

2
〈−→u f · −→u f ,−→v f · −→n f 〉

+
1

2
((∇ · −→u f )−→u f ,−→v f )Ωf

.

Because bf (−→u f ,−→u f ,−→v f ) is continuous on the space triplet
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Hf ×Hf ×Hf , we have

bf (−→u f ,−→u f ,−→v f )

= (−→u f · ∇−→u f ,−→v f )Ωf
+

1

2
((∇ · −→u f )−→u f ,−→v f )Ωf

− 1

2
〈−→u f · −→u f ,−→v f · −→n f 〉

=
1

2
(−→u f · ∇−→u f ,−→v f )Ωf

− 1

2
(−→u f · ∇−→v f ,−→u f )Ωf

+
1

2
〈−→u f · −→v f ,−→u f · −→n f 〉 −

1

2
〈−→u f · −→u f ,−→v f · −→n f 〉

∀−→u f ,−→v f ∈ Hf .

According to the value of 1
2 ((∇·−→u f )−→u f ,−→v f )Ωf

being equal
to 0, the trilinear form is suitable for the current problem (1)-
(4). Also, it satisfy the following identity:

bf (−→u f ,−→u f ,−→u f ) = 0 ∀−→u f ∈ Hf .

He and others have proved the well-posedness of above weak
formulation (11)-(12) in [9].

The following finite element discretization methodology is
crucial for the domain decomposition approach. Let Th be
a regular quasi-uniform triangulation of Ω with mesh size
h > 0. In addition, Bh represents the segmentation of Γ
derived by Th.

Let Hf,h ⊂ Hf , Qf,h ⊂ Qf and Hp,h ⊂ Hp be the finite
element subspaces defined on the partition Th. The P2-P1
to Navier-Stokes problem finite element, Darcy by matching
the P2 finite element problem.

Hf,h = {−−→vf,h ∈ (H1(Ωf ))d : −−→vf,h |T ∈ (P2(T ))d

∀T ∈ Tf,h,−−→vf,h |Γf
= 0},

Qf,h = {qf,h ∈ L2(Ωf ) : qf,h |T ∈ P1(T ) ∀T ∈ Tf,h},
Hp,h = {ψp,h ∈ H1(Ωp) : ψp,h |T ∈ P2(T )

∀T ∈ Tp,h, ψp,h |Γp= 0},

the Spaces Hf,h and Qf,h satisfy the inf-sup condition.
The discrete trace space on the interface is defined below.:

Xh = {gh ∈ L2(Γ) : gh |τ∈ P2(τ) ∀ τ ∈ Bh, gh |∂Γ= 0}
= Hf,h |Γ ·−→n f = Hp,h |Γ .

Drawing upon the robin conditions for the Navier-Stokes-
Darcy equation and compatibility conditions (8)-(10), we can
outline the method as described in [9]:

1) Initial values of g0
f , g0

p,and g0
fτ are guessed.

2) For n=0,1,2, find φnp,h ∈ Hp,h satisfy

ap(φ
n
p,h, ψp) + 〈

gφnp,h
ξp

, ψp〉 = 〈
gnp,h
ξp

, ψp〉+ (f2, ψp)Ωp
,

∀ ψp ∈ Hp,h, (13)

and (−→u nf,h, pnf,h) ∈ Hf,h ×Qf,h satisfy

δbf (−→u nf,h,−→u nf,h,−→v f ) + af (−→u nf,h,−→v f )− δdf (−→v f , pnf,h)

+ δdf (−→u nf,h, qf ) + δξf 〈−→u nf,h · −→n f ,−→v f · −→n f 〉

+
α
√
d√

trace(
∏

)
〈Pτ−→u nf,h, Pτ−→v f 〉

= δ(
−→
f 1,
−→v f )Ωf

+ δ〈gnf,h,−→v f · −→n f 〉 − δ〈gnfτ,h, Pτ−→v f 〉,
∀ (−→v f , qf ) ∈ Hf,h ×Qf,h, (14)

respectively.

3) Update gn+1
f,h , g

n+1
p,h , g

n+1
fτ,h by the following way:

gn+1
f,h =

ξf
ξp
gnp,h − (1 +

ξf
ξp

)gφnp,h + gz,

gn+1
p,h = −gnf,h + (ξf + ξp)

−→u nf,h · −→n f + gz,

gn+1
fτ,h =

αν
√
d√

trace(
∏

)
Pτ (K∇φnp,h)

The convergence analysis of domain decomposition
method has been obtained in [9]. Additionally, the method
attains an error estimate that is independent of the mesh
size h when ξf < ξp, provided that the parameters ξf
and ξp are selected judiciously, in accordance with specific
control criteria. The robin-robin method also approximates
the decoupled Navier-Stokes-Darcy problem with FEM and
boundary conditions (5)-(7). Specifically, for given functions
gf,h, gp,h, gfτ,h and two normal numbers ξf , ξp, the method
seeks to find (−→u f,h, pf,h) ∈ Hf,h × Qf,h and φp,h ∈ Hp,h

such that

ap(φp,h, ψp) + 〈gφp,h
ξp

, ψp〉 = 〈gp,h
ξp

, ψp〉+ (f2, ψp)Ωp
,

∀ ψp ∈ Hp,h, (15)
δbf (−→u f,h,−→u f,h,−→v f ) + af (−→u f,h,−→v f )− δdf (−→v f , pf,h)

+ δdf (−→u f,h, qf ) +
α
√
d√

trace(
∏

)
〈Pτ−→u f,h, Pτ−→v f 〉

+ δξf 〈−→u f,h · −→n f ,−→v f · −→n f 〉

= δ(
−→
f 1,
−→v f )Ωf

+ δ〈gf,h,−→v f · −→n f 〉 − δ〈gfτ,h, Pτ−→v f 〉,
∀ (−→v f , qf ) ∈ Hf,h ×Qf,h, (16)

with the compatibility conditions:

gf,h = ξf
−→u f,h · −→n f + gz − gφp,h on Γ, (17)

gp,h = ξp
−→u f,h · −→n f + gφp,h on Γ, (18)

gfτ,h =
αν
√
d√

trace(
∏

)
Pτ (K∇φp,h) on Γ. (19)

IV. THE TWO-GRID DOMAIN DECOMPOSITION METHOD

This section focuses on a decoupling strategy for solving
the coupled equations. Inspired by the method from the
previous section III, we propose a tailored two-grid domain
decomposition method specifically designed for the Navier-
Stokes-Darcy model.

The two-grid domain decomposition method for solving
the coupled problem proceeds in two successive steps, as
outlined below.

1) On a coarse grid with mesh size H, we recall domain
decomposition method to solve problems (15)-(16). Then we
obtain the coarse grid result gf,H , gp,H , gfτ,H .

2) An modified fine grid problem is constructed and solved
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by finding (−→u hf , phf ) ∈ Hf,h ×Qf,h, φhp ∈ Hp,h, such that

ap(φ
h
p , ψp) + 〈

gφhp
ξp

, ψp〉 = 〈gp,H
ξp

, ψp〉+ (f2, ψp)Ωp ,

∀ ψp ∈ Hp,h, (20)

δbf (−→u hf ,−→u hf ,−→v f ) + af (−→u hf ,−→v f )− δdf (−→v f , phf )

+ δdf (−→u hf , qf ) + δξf 〈−→u hf · −→n f ,−→v f · −→n f 〉

+
α
√
d√

trace(
∏

)
〈Pτ−→u hf , Pτ−→v f 〉

= δ(
−→
f 1,
−→v f )Ωf

+ δ〈gf,H ,−→v f · −→n f 〉 − δ〈gfτ,H , Pτ−→v f 〉,
∀ (−→v f , qf ) ∈ Hf,h ×Qf,h. (21)

The two-grid domain decomposition method utilizes the
advantages of both the two-grid strategy and the domain
decomposition framework to enhance its performance. It
seamlessly navigates the complex coupling between disparate
models across separate domains. Additionally, this method
is particularly well-suited for addressing multi-domain and
multi-physics coupling challenges. For decoupled solutions,
it significantly amplifies the efficiency of computations.

V. ERROR ANALYSIS

We will echoes the rationale presented in [9] to demon-
strate the convergence of the proposed method. For the sake
of brevity, we introduce the notation x . y to indicate that
x is less than or comparable to Cy. C is a generic constant
that may take on various values depending on the context.
We now revisit the error estimates for the decoupled scheme
as discussed in [9]:

‖−→u f −−→u f,h‖1 . h2, ‖−→u f −−→u f,h‖ . h3,

‖φp − φp,h‖1 . h2, ‖φp − φp,h‖ . h3,

‖pf − pf,h‖ . h2.

For the finite element approximation given by equations
(15)-(16), we express the error functions, which are related to
the discrepancies between the solution components on coarse
and fine meshes, as follows:

σf,H = gf,h − gf,H , σp,H = gp,h − gp,H ,
σfτ,H = gfτ,h − gfτ,H , ζf,H = pf,h − pf,H ,

θp,H = φp,h − φp,H ,
−→
θ f,H = −→u f,h −−→u f,H .

Then, by means of the triangle inequality, we can easily
get several basic error estimates about the numerical solution
of (15)-(16) on coarse and fine meshes

‖
−→
θ f,H‖1 . H2, ‖

−→
θ f,H‖ . H3,

‖θp,H‖1 . H2, ‖θp,H‖ . H3,

‖ζf,H‖ . H2. (22)

To implement the error estimation, the following lemma
is essential:

Lemma 1: Along the interface Γ, error estimates for σf,H
and σp,H associated with the interface conditions are given
by

‖σf,H‖Γ . (ξf + g)H
5
2 , (23)

‖σp,H‖Γ . (ξp + g)H
5
2 , (24)

‖σfτ,H‖Γ .
αν
√
dK√

trace(
∏

)
H

5
2 . (25)

Proof: According to the definition of σf,H , σp,H , σfτ,H
and (17)-(19), we can derive the following formula

σf,H = ξf
−→
θ f,H · −→n f − gθp,H ,

σp,H = ξp
−→
θ f,H · −→n f + gθp,H ,

σfτ,H =
αν
√
d√

trace(
∏

)
Pτ (K∇φp,h −K∇φp,H),

Using the Young inequality we can launch

‖σf,H‖Γ = ‖ξf
−→
θ f,H · −→n f − gθp,H‖Γ

≤ ξf‖
−→
θ f,H · −→n f‖Γ + g‖θp,H‖Γ.

Based on the trace inequality, we are aware that there
exists C such that

‖
−→
θ f,H · −→n f‖Γ ≤ C‖θf,H‖

1
2 ‖θf,H‖

1
2
1 ,

‖θp,H‖Γ ≤ C‖θp,H‖
1
2 ‖θp,H‖

1
2
1 ,

then we can conclude that

ξf‖
−→
θ f,H · −→n f‖Γ + g‖θp,H‖Γ ≤ ξfC‖θf,H‖

1
2 ‖θf,H‖

1
2
1

+ gC‖θp,H‖
1
2 ‖θp,H‖

1
2
1

≤ ξfCH
3
2H + gCH

3
2H

. (ξf + g)H
5
2 .

The error estimate of ‖σp,H‖Γ, ‖σfτ,H‖Γ can be obtained
in the same way.

Furthermore, building on the groundwork described above,
we can derive the error estimate for the new domain decom-
position method, as follows.

Theorem 1: Let (−→u f,h, pf,h, φp,h) be the solution comes
from domain decomposition method, and assume that
(−→u hf , phf , φhp) is the solution derived from two-grid domain
decomposition method, the following error estimates hold:

‖φp,h − φhp‖1 .
ξp + g

Kξp
H

5
2 , (26)

‖−→u f,h −−→u hf‖1 . R1H
5
2 , (27)

‖pf,h − phf‖ . R2H
5
2 , (28)

where

R1 =
C2

0δ
√

2ν
(
(ξf + g)

√
trace(

∏
) + αν

√
dK
)

(2
√

2ν − C2
0δ)
√
trace(

∏
)

,

R2 =
(
(δ
√
trace(

∏
) +

√
trace(

∏
)
√

2νC1ξf

+
√

2νC2
2α
√
d)
C2

0

(
(ξf + g)

√
trace(

∏
) + αν

√
dK
)

(2
√

2ν − C2
0δ)(

√
trace(

∏
))2

+ ξf + g +
αν
√
dK√

trace(
∏

)

)
.

Proof: On the fine grid, subtracting (20)-(21) from (13)-
(14) yields

ap(φp,h − φhp , ψp) + 〈
g(φp,h − φhp)

ξp
, ψp〉

= 〈gp,h − gp,H
ξp

, ψp〉, ∀ ψp ∈ Hp,h, (29)
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δbf (−→u f,h −−→u hf ,−→u f,h,−→v f )

+ δbf (−→u f,h,−→u f,h −−→u hf ,−→v f )

− δbf (−→u f,h −−→u hf ,−→u f,h −−→u hf ,−→v f )

+ af (−→u f,h −−→u hf ,−→v f )− δdf (−→v f , pf,h − phf )

+ δdf (−→u f,h −−→u hf , qf )

+ δξf 〈(−→u f,h −−→u hf ) · −→n f ,−→v f · −→n f 〉

+
α
√
d√

trace(
∏

)
〈Pτ (−→u f,h −−→u hf ), Pτ

−→v f 〉

= δ〈(gf,h − gf,H),−→v f · −→n f 〉
− δ〈(gfτ,h − gfτ,H), Pτ

−→v f 〉.
∀ (−→v f , qf ) ∈ Hf,h ×Qf,h. (30)

Let ψp = φp,h − φhp ∈ Hp,h in (29), get

ap(φp,h − φhp , φp,h − φhp) + 〈
g(φp,h − φhp)

ξp
, (φp,h − φhp)〉

= 〈gp,h − gp,H
ξp

, (φp,h − φhp)〉. (31)

Utilizing the Cauchy-Schwarz inequality in conjunction
with the trace inequality, we can conclude that

‖φp,h − φhp‖21 ≤
1

K
ap(φp,h − φhp , φp,h − φhp),

ap(φp,h − φhp , φp,h − φhp)

≤ ap(φp,h − φhp , φp,h − φhp) +
g

ξp
‖φp,h − φhp‖2Γ,

then, from Lemma 1 and (31), we get the following inequal-
ity,

‖φp,h − φhp‖21 ≤
1

K
[ap(φp,h − φhp , φp,h − φhp)

+ 〈
g(φp,h − φhp)

ξp
, (φp,h − φhp)〉]

≤ 1

K
〈gp,h − gp,H

ξp
, (φp,h − φhp)〉

≤ 1

Kξp
‖σp,H‖Γ‖φp,h − φhp‖Γ

.
ξp + g

Kξp
H

5
2 ‖φp,h − φhp‖1. (32)

We can get (26) by eliminating ‖φp,h − φhp‖1 from (32).
Setting (−→v f , qf ) = (−→u f,h−−→u hf , pf,h−phf ) ∈ Hf,h×Qf,h

and substituting into (30), we have

δbf (−→u f,h −−→u hf ,−→u f,h,−→u f,h −−→u hf )

+ δbf (−→u f,h,−→u f,h −−→u hf ,−→u f,h −−→u hf )

+ af (−→u f,h −−→u hf ,−→u f,h −−→u hf )

− δdf (−→u f,h −−→u hf , pf,h − phf )

+ δdf (−→u f,h −−→u hf , pf,h − phf )

+ δξf 〈(−→u f,h −−→u hf ) · −→n f , (−→u f,h −−→u hf ) · −→n f 〉

+
α
√
d√

trace(
∏

)
〈Pτ (−→u f,h −−→u hf ), Pτ (−→u f,h −−→u hf )〉

= δ〈(gf,h − gf,H), (−→u f,h −−→u hf ) · −→n f 〉
− δ〈(gfτ,h − gfτ,H), Pτ (−→u f,h −−→u hf )〉, (33)

for the trilinear terms in (33), we have

bf (−→u f,h −−→u hf ,−→u f,h,−→u f,h −−→u hf )

+ bf (−→u f,h,−→u f,h −−→u hf ,−→u f,h −−→u hf )

.
1√
2ν
‖−→u f,h −−→u hf‖21,

by the Korn′s inequality, there exists C0 that makes

‖−→u f,h −−→u hf‖21 ≤
C2

0

2
af (−→u f,h −−→u hf ,−→u f,h −−→u hf ),

then we can get

‖−→u f,h −−→u hf‖21

≤ C2
0

2
[af (−→u f,h −−→u hf ,−→u f,h −−→u hf )

+ δξf 〈(−→u f,h −−→u hf ) · −→n f , (−→u f,h −−→u hf ) · −→n f 〉

+
α
√
d√

trace(
∏

)
〈Pτ (−→u f,h −−→u hf ), Pτ (−→u f,h −−→u hf )〉]

≤ C2
0

2
[δ〈(gf,h − gf,H), (uf,h − uhf ) · nf 〉

+ δ|bf (−→u f,h −−→u hf ,−→u f,h,−→u f,h −−→u hf )|
+ δ|bf (−→u f,h,−→u f,h −−→u hf ,−→u f,h −−→u hf )|
+ δ|〈(gfτ,h − gfτ,H), Pτ (−→u f,h −−→u hf )〉|]

.
C2

0δ

2
[‖σf,H‖Γ‖−→u f,h −−→u hf‖Γ

+
1√
2ν
‖−→u f,h −−→u hf‖21 + ‖σfτ,H‖Γ‖−→u f,h −−→u hf‖Γ].

(34)

Thanks to Lemma 1 we know

‖σf,H‖Γ‖−→u f,h −−→u hf‖Γ . ‖−→u f,h −−→u hf‖1(ξf + g)H
5
2 ,

‖σfτ,H‖Γ‖−→u f,h −−→u hf‖Γ . ‖−→u f,h −−→u hf‖1
αν
√
dK√

trace(
∏

)
H

5
2 ,

by subdividing (34) and simplifying it, we get

‖−→u f,h −−→u hf‖1

.
C2

0δ
√

2ν
(
(ξf + g)

√
trace(

∏
) + αν

√
dK
)

(2
√

2ν − C2
0δ)
√
trace(

∏
)

H
5
2 .

Let qf = pf,h − phf ∈ Qf,h, there exist −→v f ∈ Hf,h such
that

‖pf,h − phf‖ ≤
df (−→v f , pf,h − phf )

‖−→v f‖1
.

It can also be inferred from (30) that

‖pf,h − phf‖ ≤
1

‖−→v f‖1δ

[
δ|〈(gf,h − gf,H),−→v f · −→n f 〉|

+ δ|bf (−→u f,h −−→u hf ,−→u f,h −−→u hf ,−→v f )|
+ δ|bf (−→u f,h −−→u hf ,−→u f,h,−→v f )|
+ δ|bf (−→u f,h,−→u f,h −−→u hf ,−→v f )|
+ |af (−→u f,h −−→u hf ,−→v f )|
+ δξf |〈(−→u f,h −−→u hf ) · −→n f ,−→v f · −→n f 〉|
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+
α
√
d√

trace(
∏

)
|〈Pτ (−→u f,h −−→u hf ), Pτ

−→v f 〉|

+ δ|〈(gfτ,h − gfτ,H), Pτ
−→v f 〉|

]
. ‖σf,H‖Γ + ‖σfτ,H‖Γ

+ (
1√
2ν

+ C1ξf )‖−→u f,h −−→u hf‖1

+
C2

2

δ

α
√
d√

trace(
∏

)
‖−→u f,h −−→u hf‖1.

Thus,

‖pf,h − phf‖

.
C2

0δ
(
(ξf + g)

√
trace(

∏
) + αν

√
dK
)

(2
√

2ν − C2
0δ)
√
trace(

∏
)

H
5
2

+ C1ξf
C2

0δ
√

2ν
(
(ξf + g)

√
trace(

∏
) + αν

√
dK
)

(2
√

2ν − C2
0δ)
√
trace(

∏
)

H
5
2

+
C2

2α
√
d

δ
√
trace(

∏
)

C2
0δ
√

2ν
(
(ξf + g)

√
trace(

∏
) + αν

√
dK
)

(2
√

2ν − C2
0δ)
√
trace(

∏
)

H
5
2

+ (ξf + g)H
5
2 +

αν
√
dK√

trace(
∏

)
H

5
2

.
(
(δ
√
trace(

∏
) +

√
trace(

∏
)
√

2νC1ξf

+
√

2νC2
2α
√
d)
C2

0

(
(ξf + g)

√
trace(

∏
) + αν

√
dK
)

(2
√

2ν − C2
0δ)(

√
trace(

∏
))2

+ ξf + g +
αν
√
dK√

trace(
∏

)

)
H

5
2

which completes the proof of (28).
Drawing from Theorem 1, we can establish the error

estimate for the solution obtained by the new method in
relation to the exact solution as detailed below.

Corollary 1: Let (−→u hf , phf ) ∈ Hf,h × Qf,h, φhp ∈ Hp,h,
and (−→u f , pf ) ∈ Hf × Qf , φp ∈ Hp be the solution
of two-grid domain decomposition method and (9)-(10),
respectively. Choosing H = h

4
5 , we have

‖φp − φhp‖1 . h2, ‖−→u f −−→u hf‖1 + ‖pf − phf‖ . h2.

The two-grid domain decomposition technique adeptly
combines the strengths of the two-grid approach with the
domain decomposition paradigm. It masterfully handles the
strong interconnections between distinct models spanning
multiple domains. Moreover, this innovative method directly
addresses the inherent complexities of multi-domain and
multi-physics coupling, providing a robust solution to these
challenging issues. When it comes to decoupled solutions, it
markedly boosts the computational efficiency.

VI. CONCLUSION

This paper, targeting the coupled model, improves upon
the classical domain decomposition method and proposes a
novel two-grid domain decomposition approach. The core
idea is to leverage the advantages of domain decomposition
methods in conjunction with the two-grid method, thereby

enhancing the approach for multi-domain, multi-physics cou-
pling models. Specifically, the domain is divided into two
subregions by enforcing the boundary conditions: one repre-
senting free flow and the other representing porous medium
flow. For each region, an existing algorithm is first employed
to get a coarse grid approximate solution. Then, by replac-
ing some interface terms with functions from the coarse
grid, an improved fine grid problem is derived. Compared
to previous methods, the two-grid domain decomposition
method significantly reduces the number of iterative steps
and saves computation time. Future developments can extend
the two-grid domain decomposition method to more complex
multi-physics models; it can also be further researched and
improved into a multi-grid domain decomposition method to
solve even more complex coupling problems.

REFERENCES

[1] G. Z. Du, Q. T. Li, and Y. H. Zhang, “A two-grid method with
backtracking for the mixed Navier-Stokes/Darcy model,” Numerical
Methods for Partial Differential Equations, vol. 36, no. 6, pp. 1601-
1610, 2020.

[2] G. Z. Du, and L. Y. Zuo, “A two-grid method with backtracking for
the mixed Stokes/Darcy model,” Journal of Numerical Mathematics,
vol. 29, no. 1, pp. 39-46, 2021.

[3] Y. R. Hou, and D. D. Xue, “Numerical analysis of two-grid decoupling
finite element scheme for Navier-Stokes/Darcy model,” Computers and
Mathematics with Applications, vol. 113, pp. 45-51, 2022.

[4] Y. Z. Sun, F. Shi, H. B. Zheng, H. Li, and F. Wang, “Two-grid
domain decomposition methods for the coupled Stokes-Darcy system,”
Computer Methods in Applied Mechanics and Engineering, vol. 385,
pp. 114041, 2021.

[5] G. Z. Du and L. Y. Zuo, “A two-grid decoupled algorithm for a multi-
dimensional Darcy-Brinkman fracture model,” Journal of Scientific
Computing, vol. 90, no. 3, pp. 88, 2022.

[6] G. Z. Du, L. Y. Zuo, and Y. H. Zhang, “A new local and parallel
finite element method for the coupled Stokes-Darcy model,” Journal
of Scientific Computing, vol. 90, no. 1, pp. 43, 2022.

[7] X. H. Wang, G. Z. Du, and L. Y. Zuo, “A novel local and parallel
finite element method for the mixed Navier-Stokes-Darcy problem,”
Computers and Mathematics with Applications, vol. 90, pp. 73-79,
2021.

[8] Q. T. Li, G. Z. Du, “Local and parallel finite element methods based
on two-grid discretizations for a non-stationary coupled Stokes-Darcy
model,” Computers and Mathematics with Applications, vol. 113, pp.
254-269, 2022.

[9] X. M. He, J. Li, Y. P. Lin, and J. Ming, “A domain decomposition
method for the steady-state Navier-Stokes-Darcy model with Beavers-
Joseph interface condition,” SIAM Journal on Scientific Computing,
vol. 37, no. 5, pp. S264-S290, 2015.

[10] W. Y. Liu, and K. Y. Ma, “An iterative non-overlapping domain
decomposition method for optimal boundary control problems gov-
erned by parabolic equations,” IAENG International Journal of Applied
Mathematics, vol. 46, no. 3, pp. 291-297, 2016.

[11] Y. Z. Liu, Y. N. He, X. J. Li, and X. M. He, “A novel convergence anal-
ysis of Robin-Robin domain decomposition method for Stokes-Darcy
system with Beavers-Joseph interface condition,” Applied Mathematics
Letters, vol. 119, pp. 107181, 2021.

[12] F. Shi, Y. Z. Sun, and H. B. Zheng, “Ensemble domain decomposition
algorithm for the fully mixed random Stokes-Darcy model with the
Beavers-Joseph interface conditions,” SIAM Journal on Numerical
Analysis, vol. 61, no. 3, pp. 1482-1512, 2023.

[13] T. T. P. Hoang, and H. Lee, “A global-in-time domain decomposition
method for the coupled nonlinear Stokes and Darcy flows,” Journal of
Scientific Computing, vol. 87, no. 1, pp. 1-22, 2021.

[14] Y. Boubendir, and S. Tlupova, “Domain decomposition methods
for solving Stokes-Darcy problems with boundary integrals,” SIAM
Journal on Scientific Computing, vol. 35, no. 1, pp. B82-B106, 2013.

[15] W. J. Layton, F. Schieweck, and I. Yotov, “Coupling fluid flow with
porous media flow,” SIAM Journal on Numerical Analysis, vol. 40, no.
6, pp. 2195-2218, 2002.

[16] R. Glowinski, T. W. Pan, and J. Periaux, “A Lagrange multipli-
er/fictitious domain method for the numerical simulation of incom-
pressible viscous flow around moving rigid bodies:(I) case where
the rigid body motions are known a priori,” Comptes Rendus de

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3197-3203

 
______________________________________________________________________________________ 



l’Académie des Sciences-Series I-Mathematics, vol. 324, no. 3, pp.
361-369, 1997.

[17] A. Cesmelioglu, and S. Rhebergen, “A hybridizable discontinuous
Galerkin method for the coupled Navier-Stokes and Darcy problem,”
Journal of Computational and Applied Mathematics, vol. 422, pp.
114923, 2023.

[18] J. P. Song, and H. X. Rui, “A combined stabilized mixed finite element
and discontinuous Galerkin method for coupled Stokes and Darcy
flows with transport,” Computers and Mathematics with Applications,
vol. 120, pp. 92-104, 2022.

[19] A. Cesmelioglu, J. J. Lee, and S. Rhebergen, “A strongly conservative
hybridizable discontinuous Galerkin method for the coupled time-
dependent Navier-Stokes and Darcy problem,” ArXiv preprint ArX-
iv:2303.09882, 2023.

[20] K. Lipnikov, D. Vassilev, and I. Yotov, “Discontinuous Galerkin and
mimetic finite difference methods for coupled Stokes-Darcy flows on
polygonal and polyhedral grids,” Numerische Mathematik, vol. 126,
no. 2, pp. 321-360, 2014.

[21] P. Cao, and J. Chen, “An extended finite element method for coupled
Darcy-Stokes problems,” International Journal for Numerical Methods
in Engineering, vol. 123, no. 19, pp. 4586-4615, 2022.

[22] A. Márquez, S. Meddahi, and F. J. Sayas, “Strong coupling of finite
element methods for the Stokes-Darcy problem,” IMA Journal of
Numerical Analysis, vol. 35, no. 2, pp. 969-988, 2015.

[23] Y. Z. Sun, F. Shi, H. B. Zheng, H. Li, and F. Wang, “Two-grid
domain decomposition methods for the coupled Stokes-Darcy system,”
Computer Methods in Applied Mechanics and Engineering, vol. 385,
pp. 114041, 2021.

[24] M. Discacciati, and T. Vanzan, “Optimized Schwarz methods for
the time-dependent Stokes-Darcy coupling,” ArXiv preprint ArX-
iv:2305.07379, 2023.

[25] Y. Qin, L. L. Chen, Y. Wang, Y. Li, and J. Li, “An adaptive time-
stepping DLN decoupled algorithm for the coupled Stokes-Darcy
model,” Applied Numerical Mathematics, vol. 188, pp. 106-128, 2023.

[26] J. Yue, and J. Li, “Efficient coupled deep neural networks for the time-
dependent coupled Stokes-Darcy problems,” Applied Mathematics and
Computation, vol. 437, pp. 127514, 2023.

[27] W. Chen, M. Gunzburger, D. Sun, and X. Wang, “Efficient and long-
time accurate second-order methods for the Stokes-Darcy system,”
SIAM Journal on Numerical Analysis, vol. 51, no. 5, pp. 2563-2584,
2013.

[28] W. Chen, M. Gunzburger, D. Sun, and X. Wang, “An efficient and
long-time accurate third-order algorithm for the Stokes-Darcy system,”
Numerische Mathematik, vol. 134, pp. 857-879, 2016.

[29] V. Thomée, “Galerkin finite element methods for parabolic problems,”
Springer Science and Business Media, vol. 25, 2007.

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3197-3203

 
______________________________________________________________________________________ 




