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Abstract—To effectively remove noise and detect outliers
from high-dimensional data, we propose a two-stage manifold
denoising and outlier detection algorithm while preserving the
manifold structure. In the pre-processing stage, the algorithm
partitions the original data into multiple local patches covering
the entire dataset. For each patch, the covariance matrix
is computed, and the affine invariant riemannian metric
(AIRM) is utilized to measure geometric differences between
patches. Riemannian gradient descent is then applied on the
symmetric positive definite (SPD) manifold to achieve denoising
result. In the post-processing stage, manifold learning and the
local outlier factor (LOF) algorithm are introduced to the
dimension-reduced data for outlier detection, further enhancing
data quality and usability. Finally, the proposed algorithm
is comprehensively evaluated on eight synthetic datasets and
six real-world datasets. The results demonstrate that the
proposed algorithm significantly reduces MSE in recovering
low-dimensional manifold structures, denoising reconstruction,
and outlier detection, while achieving superior performance
in metrics such as AUC, GDNRR, SNR, and manifold
scores. Joint analysis of bandwidth and neighborhood distance
thresholds, along with ablation experiments, further confirms
the robustness of the two-stage processing in preserving both
global and local geometric structures.

Index Terms—Manifold Denoising, Outlier Detection,
Manifold Learning, High-Dimensional.

I. INTRODUCTION

IN high-dimensional data analysis, as the dimensionality
of data increases, data points often become more

and more sparse, with complex distributions, making
traditional methods ineffective and unreliable for handling
such data. Traditional dimensionality reduction methods,
such as Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA), rely on linear assumptions
about the data. However, for high-dimensional data with
nonlinear structures, these traditional methods may fail
to capture the geometric relationships within the data.
Thus, it is necessary to explore more flexible nonlinear
dimensional-reduction techniques to adapt to the complex
structures of high-dimensional data.
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Unlike traditional linear methods, manifold learning
approaches are more suited for high-dimensional data
with nonlinear structures. Manifold learning assumes that
high-dimensional data are distributed on a low-dimensional
manifold embedded in a high-dimensional space. By
analyzing local geometric relationships in the data,
manifold learning identifies the underlying low-dimensional
structure and extracts low-dimensional embeddings,
thereby revealing the intrinsic geometric structure of
the data. Common manifold learning algorithms include
Local Linear Embedding (LLE) [7], Isometric Mapping
(ISOMAP) [8], and Laplacian Eigenmaps (LE) [9]. These
algorithms preserve the geometric properties of local
neighborhoods and effectively map high-dimensional data
to a lower-dimensional space.

Manifold learning is widely recognized for its
effectiveness in analyzing high-dimensional data and
has been applied to various fields, including image
processing [1], bioinformatics [2], computer vision [3],
natural language processing [4], gene data analysis [5],
and financial data modeling [6]. Manifold-based methods
provide a robust analytical tool for handling complex
high-dimensional data.

Noise is unavoidable in high-dimensional data collection,
often arising from measurement errors or environmental
factors and causing deviations from the true manifold
structure. In such cases, the performance of manifold
learning algorithms will degrade due to the presence of
noise, preventing accurate representation of the underlying
manifold. Therefore, noise removal is essential to ensure
the effectiveness of manifold learning algorithms. Manifold
denoising aims to preserve the low-dimensional manifold
structure of data while reducing the interference of noise,
thus generating clean data points that are closer to the
underlying manifold.

To preserve the low-dimensional manifold structure of
data during denoising, several studies develop different
algorithms. These methods aim to effectively remove noise
while retaining the main features of the data. Yao et al.
[10] present the recursive empirical mode decomposition
algorithm (EMD), an adaptive technique for decomposing
nonlinear and non-stationary data. Park et al. [11] propose
the non-local means (NLM) algorithm, which compares
and weights similar patterns within the dataset to achieve
denoising, particularly effective for removing Gaussian
noise. Lin et al. [12] suggest a graph-based filtering
approach. By applying filtering operations along graph
edges, this method is well-suited for graph-structured data.
Sober et al. [13] formulate the moving least squares (MLS)
technique. This approach reduces noise by projecting noisy
samples onto a smooth manifold while preserving the
manifold structure. Lyu et al. [14] establish nonlinear robust

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3204-3216

 
______________________________________________________________________________________ 

mailto:lanli@xsyu.edu.cn
mailto:wwdd529@163.com
mailto:mljingsy@xsyu.edu.cn
mailto:rickybss@163.com


PCA (NRPCA), extending robust PCA to nonlinear settings
by leveraging local patches and curvature information on
data manifolds for denoising. Jiang et al. [15] design
a manifold embedding-based domain adaptation algorithm
(eSPDA) for decoding electroencephalogram (EEG) signals
in motor imagery brain-computer interface (MI-BCI)
systems. By integrating Laplacian embedding and domain
alignment techniques, eSPDA generates low-dimensional
submanifold embeddings, effectively reducing domain shifts
while preserving local manifold geometric structures.
Meng et al. [16] construct an unsupervised feature
selection algorithm (LRLSP) based on Laplacian rank
constraints and local structure preservation, which builds
sparse block-diagonal similarity matrices to achieve unified
feature selection and manifold structure preservation in
high-dimensional data.

Outliers, refer to data points that significantly deviate
from the distribution of most other points. These points
are often caused by special events or anomalies and not
random in nature but instead appear as extreme outliers.
Detecting outliers is essential because these points can distort
the overall structure of the data and negatively impact the
performance of algorithms. The goal of manifold outlier
detection is to identify points that deviate from the manifold
structure. Widely applied algorithms for outlier detection
include the local outlier factor (LOF) [17] and isolation
forest [18], which detect outliers by comparing the local
density of data points or by isolating outliers through random
trees. Additionally, adversarial examples are often regarded
as a specific type of outliers that deviate from the true
manifold. Manifold-based adversarial denoisers, such as
APE-GAN++ [19], utilize generative adversarial networks
(GANs) to map adversarial examples back to the manifold
region of benign examples, thereby enhancing the robustness
of neural networks against adversarial attacks.

Despite significant progress made by existing methods,
several issues and challenges remain:

• Current algorithms often focus on either noise removal
or outlier detection, which reduces their effectiveness in
handling complex data and preserving the manifold structure,
as they lack the ability to address both simultaneously.

• Methods either focus on the fine processing of local
structures, such as local regression and local smoothing
techniques, or examine the global distribution, such as global
probability models. This separation may fail to account
for the interaction between local structures and global
distributions, limiting the effectiveness of algorithms on
complex data structures.

Based on the aforementioned problem, this paper proposes
a two-stage denoising and outlier detection algorithm.
In the preprocessing stage, the algorithm partitions the
high-dimensional data into multiple patches collectively
covering the entire dataset. Each patch is aligned by
centering its coordinates and assessed for geometric
similarity using the Affine Invariant Riemannian Metric
(AIRM), thereby integrating local geometric features with
the global data distribution. Riemannian gradient descent on
the Symmetric Positive Definite (SPD) manifold improves
denoising accuracy and effectively restores the underlying
manifold structure. The post-processing stage employs
the Local Outlier Factor (LOF) within the embedded
low-dimensional manifold space to identify and mitigate

outliers. For determining outlier thresholds, the quartile
range method is utilized, offering a robust statistical
approach that does not yield a normal distribution and
thereby increasing the algorithm’s adaptability.

The structure of the paper is as follows: Section II
introduces the concept of patch manifolds and explains
the construction of graph structures on high-dimensional
manifolds. Section III presents a two-stage algorithm for
manifold denoising and outlier detection. It describes the
main steps in the pre-processing and post-processing stages.
Section IV demonstrates the performance of the algorithm
through experimental results on multiple datasets and
provides a comparative analysis. Section V summarizes
the results, discusses potential applications of the proposed
algorithm.

II. PRELIMINARIES

A. Patch Manifold

In the context of processing raw data containing noise, the
dataset X is defined for N points in a D-dimensional space
as: X = {xi | i = 1, 2, · · · , N},xi ∈ RD.

The noisy data can be simply modeled by the equation:

X = U+E, (1)

where U is the matrix of clean data, and E is a noise matrix.
In the dataset, patches are initially defined by selecting a

subset of M points from X to serve as the patch centers,
denoted by {cm}Mm=1 ⊆ X. A patch Pm is centered at
cm and formed by selecting its k-nearest neighbors based
on Euclidean distance. These patches collectively cover the
entire dataset, i.e.,

⋃M
m=1 Pm = X, and each patch Pm is

represented in RD×k.
It is assumed that these patches represent samples from

a low-dimensional smooth manifold embedded in RD×k,
referred to as the patch manifold M(U) of the dataset U.
To evaluate the similarity between patches, coordinates of
Pm are translated relative to cm, positioning cm at the
origin of the D-dimensional space. resulting in the adjusted
coordinates:

P′
m = Pm − cm1⊤, (2)

where P′
m represents the adjusted coordinates of patch m,

1 is a k-dimensional column vector of ones, and 1⊤ denotes
the transpose of 1.

B. Computation of Patch Distances with AIRM

To accurately compute the distance between two patches
in high-dimensional space, the Affine Invariant Riemannian
Metric (AIRM) is employed, leveraging the comparison
of covariance matrices. Let Pm and Pn represent two
patches, each containing k data points, denoted as Pm =
{xm

i }ki=1 and Pn = {xn
i }ki=1, where xm

i ,x
n
i ∈ RD. The

objective is to compute a distance dAIRM that reflects the
similarity between these two patches while accounting for
their intrinsic manifold structure.

The process begins with calculating the sample covariance
matrix for each patch. The sample mean vector for patch Pm

is given by:

µm =
1

k

k∑
i=1

xm
i , (3)
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and the sample covariance matrix for Pm can be calculated
as follows:

Σm =
1

k − 1

k∑
i=1

(xm
i − µm)(xm

i − µm)⊤, (4)

and the covariance matrix for patch Pn is calculated
similarly.

The computation of the covariance matrix for each patch
is influenced by the bandwidth ϵ, which defines the local
neighborhood of the patch. For a given patch Pm with center
point cm, the local neighborhood Nm is defined as:

Nm = {xi ∈ X | d(cm,xi) ≤ ϵ},

where d(cm,xi) denotes the distance metric, typically the
Euclidean distance. The bandwidth ϵ controls the scale of
the local neighborhood and directly affects the accuracy of
the covariance matrix Σm, thereby impacting subsequent
denoising operations.

These covariance matrices reflect the variance and
correlation structure of the data points within each patch,
providing a basis for comparing the two patches. The
AIRM is utilized to measure the distance between covariance
matrix:

dAIRM(Σm,Σn) =
∥∥∥log (Σ−1/2

m ΣnΣ
−1/2
m

)∥∥∥
F
, (5)

where log(·) represents the matrix logarithm, and ∥ · ∥F is
the Frobenius norm.

The AIRM measures the Riemannian distance on the
manifold of covariance matrix. This distance is computed
using the eigenvalues λi of Σ−1

m Σn, obtained from the
eigenvalue decomposition:

Σ−1
m Σnvi = λivi, (6)

where λi and vi are the i-th eigenvalue and eigenvector of
Σ−1

m Σn, respectively.
The distance is then given by:

dAIRM(Σm,Σn) =

(
D∑
i=1

[lnλi]
2

)1/2

. (7)

C. Graph Construction

This distance is then incorporated into the graph
construction, where the AIRM distance dAIRM is used in the
weight function for the graph edges. The weight between
two patches Pm and Pn is defined as:

wmn =
ψ(dAIRM)

(ρmρn)
α , (8)

where ρm and ρn represent the unnormalized degrees of the
vertices corresponding to patches Pm and Pn, respectively,
and α is a parameter controlling the degree of normalization,
typically selected within the range [0,1].

The unnormalized degree ρn for a patch is given by:

ρn =
M∑

m=1

ψ(dAIRM), (9)

where represents the local density of patches around Pn.

The function ψ(dAIRM) is a thresholded Gaussian function,
defined as:

ψ(dAIRM) =

{
exp

(
−d2

AIRM
2ϵ2

)
, if dAIRM < r;

0, otherwise,
(10)

where ϵ is bandwidth parameter, and r is the neighborhood
radius within which patches are considered connected. This
weight function ensures that only patches within a certain
distance r influence each other, thereby emphasizing locality
in the graph construction.

III. TWO-STAGE MANIFOLD DENOISING AND OUTLIER
DETECTION ALGORITHM

This section proposes a two-stage manifold denoising
framework. Geometric similarity constraints and manifold
regularization effectively address geometric differences
between patches. The original high-dimensional data is
divided into patches to capture local geometric structures,
and optimization is performed using Riemannian gradient
descent on the symmetric positive definite (SPD) manifold
to achieve denoising. The post-processing stage further
addresses the impact of outliers by adjusting the manifold
structure to identify and mitigate their influence, ensuring
optimal denoising results. The detailed implementation of
each stage is provided below. The two-stage framework is
illustrated in Fig. 1.

A. The Pre-Processing Stage: denoising

In the patch manifold denoising model, the dataset
is decomposed into a series of patches that cover
the entire original dataset. These patches may exhibit
significant geometric differences and can be sampled
from different manifolds of changing dimensions. This
local processing effectively captures the underlying
geometric structures of high-dimensional data, providing a
foundation for noise reduction while preserving the inherent
geometry. Each patch is treated as a local data block,
facilitating the extraction of structural information from the
high-dimensional space.

By leveraging the geometric similarities between patches,
the model reduces the impact of noise while preserving
local structural consistency. Imposing constraints on the
geometric differences between neighbourhood patches
ensures alignment across local structures and minimizes
distortions during the denoising process. This approach is
particularly beneficial when different patches are sampled
from distinct manifolds, as the similarity constraints ensure
that the complex geometric structure of the data remains
intact after denoising.

The objective function for this algorithm is formulated as
follows:

min
U

1

2

N∑
i=1

∥ui−xi∥2+
λ

2

∑
m,n

wmnd
2
AIRM(Σm,Σn), (11)

where ui represents the denoised data points, and xi denotes
the original noisy data points, and λ is the regularization
parameter. Σm and Σn are the covariance matrices for
patches pm and pn, respectively, describing the local

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3204-3216

 
______________________________________________________________________________________ 



Fig. 1. Two-Stage manifold denoising and outlier detection algorithm framework

geometric structure of each patch. The AIRM distance
dAIRM(Σm,Σn) is used to measure the geometric differences
between these covariance matrices, and wmn denotes the
similarity weight between patches.

In this problem, the variable U is an element of the
Euclidean space RD, whereas the covariance matrix Σm

belongs to the SPD manifold. Consequently, computing the
Riemannian gradient of the objective function with respect
to U is performed on the SPD manifold.

Riemannian gradient descent operates on a curved
manifold, accounting for its geometric structure rather than
treating it as a flat Euclidean space. This method is essential
for handling the structured covariance matrices Σm, which
belong to the SPD manifold.

For a function L defined on a manifold M, the
Riemannian gradient of L at a point p ∈ M is denoted by
gradL(p). The Riemannian gradient satisfies the following
condition:

⟨gradL(p), ξ⟩ = DL[ξ], ∀ξ ∈ TpM, (12)

where⟨·, ·⟩ denotes the inner product defined on the tangent
space TpM, DL[ξ] is the directional derivative of L at p in
the direction ξ, and TpM is the tangent space at p.

Based on (5), the Riemannian gradient of this distance
metric with respect to Σm is expressed as:

∂

∂Σm

(
1

2
d2AIRM(Σm,Σn)

)
=

−Σ−1
m

(
log(Σ−1

m Σn)
)
Σ−1

m .

(13)

The covariance matrix Σm is defined in terms of the patch
data um

i , and its gradient with respect to each um
i can be

derived using the following:

Σm =
1

k − 1

k∑
i=1

(um
i − µm)(um

i − µm)⊤. (14)

To compute the gradient of Σm with respect to um
i , the

chain rule is applied, The gradient of the mean vector µm

with respect to um
i is:

∂µm

∂um
i

=
1

k
I. (15)

The gradient of the covariance matrix Σm with respect to
um
i is:

∂Σm

∂um
i

=
1

k
I
[
(um

i − µm) + (um
i − µm)⊤

]
. (16)

According to the chain rule, the gradient of Σm with
respect to um

i can be calculated by considering both the
mean µm and the deviation terms. Since the gradient
formulations for patch m and n are symmetric, the derivation
for patch n follows the same steps as for patch m. Therefore,
only the gradient for patch m is presented here. The gradient
of the objective function with respect to ui is finally
expressed as:
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∂L

∂ui
=(ui − xi) + λ

M∑
m=1

∑
n

wmn[
∂

∂Σm
d2AIRM(Σm,Σn) ·

∂Σm

∂ui

+
∂

∂Σn
d2AIRM(Σm,Σn) ·

∂Σn

∂ui

]
.

(17)

After computing the Riemannian gradient of L with
respect to U, the variables are updated iteratively using the
gradient descent rule:

u
(t+1)
i = u

(t)
i − η gradL(u(t)

i ), (18)

where η is the step size, and gradL(u(t)
i ) is the gradient of

L at iteration t,
This iterative process continues until convergence,

ensuring that the clean data U is recovered through iterative
denoising.

B. The Post-processing Stage: outlier detection

While denoising effectively removes random errors
and minor disturbances, the presence of outliers may
still significantly affect the accuracy and robustness of
subsequent analysis. Outliers differ from noise in that
they represent pronounced deviations, often caused by
special circumstances or extreme events in the data
generation process. Therefore, outlier detection is a crucial
post-denoising step to ensure the quality and reliability of
the data.

In high-dimensional data, the “curse of dimensionality”
exacerbates the complexity of outlier detection. Traditional
outlier detection methods often fail in such environments
due to distance or density. To address this, manifold learning
assumes that the data lie on a lower-dimensional manifold
MH , and maps the data to a low-dimensional space while
preserving their local geometric structure. Depending on the
characteristics of the data distribution, different manifold
dimensionality reduction methods, such as LLE, T-SNE, or
UMAP, can be employed to effectively identify outliers in
the embedded space.

Subsequently, local outlier factor (LOF) is employed to
identify and eliminate outliers based on the low-dimensional
manifold structure of the denoised data. This step calculates
each point’s local reachability density and outlier factor,
not only reducing noise interference but also improving
the accuracy and generalization of data analysis. The LOF
provides a quantitative measure for identifying outliers
by comparing each data point’s local reachability density
against those of its neighbors. A point is considered an
outlier if its density is significantly lower than that of its
neighbors. Mathematically, LOF is calculated based on the
ratio of these local densities, with higher values indicating
potential outliers.

The k-distance of a point p, denoted as k-distance(p)
, measures the relative sparsity of an object within its
neighborhood. It is defined by the distance d(p, o) that
satisfies:

• At least k points exist such that d(p, o′) ≤ d(p, o),
• At most k-1 points exist such that d(p, o′) < d(p, o).

where, o denotes the “critical” point used to determine the
k-distance of p, o′ is a general notation referring to all data
points compared with p in terms of distance.

The k-distance neighborhood of a point p includes
all points whose distance to p does not exceed the
k-distance. These points are termed p’s k-nearest neighbors.
Mathematically, it is defined as:

Nk-dist(p) = {q ∈ D|d(p, q) ≤ k-distance(p)}, (19)

where D represents the dataset.
The reachability distance between two points p and o is

given by:

reach-dist(p, o) = max(k-distance(o), d(p, o)) (20)

The local reachability density of p is calculated as:

lrd(p) =
1∑

o∈Nk(p) reach-dist(p,o)

|Nk(p)|

, (21)

where Nk(p) denotes the k-nearest neighborhood of p.
The local outlier factor of p is determined by comparing

the local reachability density of p to those of its neighbors:

LOF(p) =

∑
o∈Nk(p)

lrd(o)
lrd(p)

|Nk(p)|
. (22)

Calculate the LOF values for all points in the dataset. A
point P is considered an outlier if its LOF is significantly
greater than 1, indicating that the density around P is much
lower compared to its neighbors:

Outlier if LOF(P ) > 1. (23)

Outliers can be generally classified into distributional
outliers and structural outliers, based on their relative
positions on the manifold. Given a high-dimensional
observation space H and a low-dimensional parameter
space Θ ⊂ Rd, the data are generated from a probability
distribution P and mapped onto a high-dimensional manifold
MH ⊂ H . This mapping is performed via an isometric
mapping ϕ : Θ →MH , while an embedding space Y ⊂ Rd′

and an embedding map e : MH → Y preserves the
structure of MH in the low-dimensional space. Based on this
framework, the types of outliers can be precisely defined:

Let ϕ : Θ → Mc ⊂ Rd be a mapping from the
parameter space Θ to the main data manifold Mc, the main
data manifold Mc = MΘc,ϕc and an alternative manifold
Ma =MΘa,ϕa

.
For a dataset X ⊂Ma ∪Mc, and assuming the structural

outlier ratio r is given by:

r =
|{xi ∈ X | xi ∈Ma ∧ xi /∈Mc}|

|{xi ∈ X | xi ∈Mc}|
≪ 1,

then an observation xi ∈ X is classified as:
• If xi ∈Ma and xi /∈Mc, then xi is a structural outlier.
• If xi ∈ Mc is a distributional outlier, where θi ∈ Θc

and xi = ϕc(θi), Ω∗
α represents the minimum volume set

generated by the probability distribution, containing at least
a probability mass of α.

This outlier detection framework utilizes the
low-dimensional manifold structure of high-dimensional
data. The framework is built on two core assumptions:
first, the manifold assumption, which posits that
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observed high-dimensional data is distributed across a
low-dimensional manifold; second, it assumes outliers
are structural anomalies from different data generating
processes, or distributional anomalies that are structurally
similar to the main data but still significantly different
in some respects. These mappings and the LOF scoring
facilitate a robust approach to identifying and analyzing
outliers in high-dimensional data by leveraging the
underlying manifold structure.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets
To evaluate the performance of the proposed algorithm,

8 synthetic datasets and 6 real-world datasets were selected
for the experiments. A summary of the datasets, including
sample sizes and dimensions, is provided in Table 1.

The synthetic datasets comprise Swiss Roll, S-curve,
Helix, Torus, Spiral, and Sphere. From the Swiss Roll and
S-curve datasets, 1,000 sample points were selected, each
with added Gaussian noise (standard deviation σ = 0.1)
and 50 outliers. The Helix dataset consists of 1,000 sample
points generated by uniformly sampling the parameter t ∈
[0, 4π], with Gaussian noise (σ = 0.1) and 50 outliers. The
Torus dataset contains 500 sample points generated using
a parametric equation with a major radius of R = 10 and
a minor radius of r = 2, with Gaussian noise (σ = 0.1)
and 50 outliers. The Spiral dataset includes 1,000 sample
points generated by uniformly sampling angle ∈ [0, 4π] and
height ∈ [−1, 1], with Gaussian noise (σ = 0.1) and 50
outliers. The Sphere dataset comprises 500 sample points
generated by uniformly sampling parameters ϕ ∈ [0, π]
and θ ∈ [0, 2π], with Gaussian noise (σ = 0.1) and 50
outliers. Additionally, the MNIST dataset consists of 70,000
handwritten digit images (28×28 pixels) divided into 10
classes (digits 0 to 9) with added Gaussian noise (σ = 0.4).
The Fashion-MNIST dataset contains 70,000 clothing item
images (28×28 pixels) categorized into 10 classes (e.g.,
T-shirts, shoes), also with Gaussian noise (σ = 0.4).

The real-world datasets include ECG Heartbeat
Categorization, Libras Movement, FordA, Iris, Adult
Income, and Banknote Authentication. The ECG dataset
contains electrocardiogram signals, with each sample
comprising 187 features representing time-series signal
amplitudes. The Libras Movement dataset consists of
hand gesture motion data, with each sample containing 15
features representing time-series points of hand movement
trajectories. The FordA dataset includes time-series sensor
data from Ford vehicles, with 500 features representing
sensor signals for each sample. The Iris dataset contains 4
features (sepal length, sepal width, petal length, and petal
width) divided into 3 classes corresponding to different
iris species. The Adult Income dataset contains census
data, with each sample comprising 14 features such as age,
occupation, education level, and marital status. Finally,
the Banknote Authentication dataset includes features
extracted from banknotes, with each sample consisting
of 4 features representing wavelet transform coefficients,
variance, skewness, and entropy.

The following evaluation metrics were employed in the
experiments:

• Mean Squared Error (MSE) MSE is used to measure
the difference between the data processed by the proposed

algorithm and the clean, ground-truth data. It evaluates the
algorithm’s ability to restore the original data structure by
simultaneously removing noise and outliers. Smaller MSE
values indicate higher reconstruction accuracy and better
preservation of the underlying data characteristics.

MSE =
1

N

N∑
i=1

(xi − x̂i)
2, (24)

where xi represents the ground-truth data, x̂i is the processed
data, and N is the total number of data points.

• Area Under the Curve (AUC) AUC quantifies the
overall performance of outlier detection, with values ranging
from 0 to 1. Higher values indicate better discrimination
between normal samples and outliers. AUC was used to
validate the effectiveness of the two-stage approach across
multiple datasets.

AUC =

∫ 1

0

TPR(FPR) dFPR, (25)

where TPR is the True Positive Rate and FPR is the False
Positive Rate.

• Geodesic Distance Neighborhood Retention Rate
(GDNRR) GDNRR reflects the preservation of manifold
structure after denoising and is defined as:

GDNRR =
1

N

N∑
i=1

|N true
i ∩N denoised

i |
k

, (26)

where N true
i and N denoised

i represent the k-nearest neighbors
of point i in the original and denoised data, respectively.
A higher GDNRR indicates better preservation of the local
geometry.

• Signal-to-Noise Ratio (SNR) SNR evaluates the
effectiveness of outlier detection and is defined as:

SNR = 20 lg

(
RI

RO

)
, (27)

where RI represents the number of retained inliers, and
RO denotes the number of undetected outliers. Higher SNR
values indicate better detection accuracy and retention of
normal samples.

• Manifold Score Manifold score evaluates the alignment
of denoised data with the ideal manifold structure, ranging
from 0 to 1. Higher scores indicate better global geometric
consistency.

B. Experimental Results

1) Synthetic Dataset: Experiments were conducted on
synthetic datasets with clear geometric structures. These
datasets clearly show the impact of noise and outliers
on manifold distributions and demonstrate the algorithm’s
effectiveness.

As shown in Fig.2, the first row of results illustrates
the disruption of the original manifold structure caused
by noise and outliers. Specifically, noise introduces local
distortions on the manifold surface, while outliers appear
as isolated points distant from the main manifold. For
instance, in the Swiss Roll dataset, noise interferes with the
smoothness of the manifold, and outliers compromise the
overall spiral shape. In the Torus dataset, noise and outliers
obscure the originally symmetric geometric properties. For
the Helix dataset, noise blurs local structures, and outliers
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TABLE I

SUMMARY OF SYNTHETIC AND REAL-WORLD DATASETS.

Type Dataset Samples Dimensions

Synthetic Dataset Swiss Roll 1,000 3
S-curve 1,000 3
Helix 1,000 3
Torus 500 3
Spiral 1,000 3
Sphere 500 3
MNIST 70,000 784

Fashion-MNIST 70,000 784
Real-world Dataset ECG Heartbeat Categorization 5,000 187

Libras Movement 360 15
FordA 3,600 500

Iris 150 4
Adult Income 48,842 14

Banknote Authentication 1,372 4

Fig. 2. Visualization of the dataset before and after processing with the proposed algorithm

disrupt the continuity of the helical manifold. Similarly, for
the S-curve and Spiral datasets, noise and outliers jointly
damage the overall distribution of low-dimensional and
nonlinear manifolds.

The second-row results illustrate the data distribution
after algorithm processing. It can be observed that the
geometric structure of the manifolds is restored, and most
noise and outliers are successfully removed. In the Swiss
Roll and S-curve datasets, the smoothness and overall shapes
of the manifolds are significantly improved. In the Helix
and Spiral datasets, local consistency and continuity are
restored. For the Torus and Sphere datasets, the algorithm
not only removes outliers but also effectively preserves the
global symmetry of the original manifolds. These results
demonstrate that the proposed algorithm is adaptable to
various manifold shapes and exhibits high robustness and
applicability across diverse scenarios.

To further evaluate the specific effects of each stage,
experiments were conducted using the MNIST and
Fashion-MNIST datasets.

The results of the first stage, shown in Fig.3, demonstrate
the denoising process. The original dataset contains clear
images, but after adding Gaussian noise, image details
significantly degrade, and noise severely impacts visual
quality. After denoising, the image quality is effectively
restored, preserving important details.

In Fig. 4, we see the results of the second stage. In the
t-SNE visualization, normal samples form compact clusters,
while outliers are well-separated from the main clusters.
Using the LOF method, outliers are successfully detected
and marked as red points. These results highlight the
proposed method’s ability to reconstruct low-dimensional
manifold structures in high-noise environments and
accurately detect outliers.

As show in Fig.5 and Fig.6, the proposed algorithm results
the Fashion-MNIST dataset. The denoising stage restores
image features and visual quality, while the outlier detection
stage effectively separates normal samples from outliers,
further validating the effectiveness and robustness of the
proposed method.

2) Real-world Dataset: To further verify the effectiveness
of the denoising and outlier detection steps, the ROC-AUC
metric was used to evaluate the performance under
conditions of high noise and outliers. Specifically, the LOF
was employed to perform outlier detection on the dataset by
ranking outliers. During this process, different outlier ratios
were considered (r ∈ {0.01, 0.025, 0.05, 0.1}). Each setting
r was repeated 50 times with random outlier sampling, and
ROC-AUC was used as the final evaluation metric.

Fig.7 shows the visualization of three typical datasets:
ECG Heartbeat, Libras Movement, and FordA. The normal
samples are represented in gray, while the outlier samples
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Fig. 3. MNIST sample images before and after denoising

Fig. 4. The t-SNE visualization of the MNIST dataset after
denoising. Gray points represent normal samples, red crosses
indicate the detected outliers

are represented in red. From (a) ECG Heartbeat to (b)
Libras Movement, and to (c) FordA datasets, a trend of
normal samples concentrating within the distribution can be
observed, while outlier samples show significant deviation.
This deviation serves as the foundation for subsequent
LOF-based outlier detection.

The manifold denoising in the preprocessing stage
effectively reduced noise in the dataset, making the true
outliers more prominent within the data structure. The
difference between outliers and normal data points was
thereby enhanced. Based on this, the LOF detected outliers
more accurately by comparing the local density of each point
with that of its neighbors. The experimental results showed
that, after manifold denoising, the low-dimensional structure
of the dataset was well preserved, and the added outliers
were easier to identify due to their significant deviation from
the data manifold.

Table II shows, for all datasets, the two-stage approach
of manifold denoising followed by LOF resulted in high
ROC-AUC values (mostly above 0.95). This indicates that
manifold denoising effectively improved the performance
of LOF in outlier detection by removing noise from the
dataset. For example, in the ECG Heartbeat Categorization
and FordA datasets, despite the complexity of time series
features and inherent noise, manifold denoising allowed
LOF to maintain high detection accuracy across various
outlier ratios. For the ECG Heartbeat dataset, the AUC value
reached 0.95 when r = 0.01, demonstrating high detection

TABLE II

THE ROC-AUC VALUES OF DIFFERENT DATASETS.

Dataset k r: 0.01 r: 0.025 r: 0.05 r: 0.1

ECG

0.01n 0.75 0.72 0.70 0.58
0.1n 0.95 0.97 0.95 0.90
0.75n 0.85 0.85 0.88 0.85
0.9n 0.70 0.70 0.71 0.70

Libras

0.01n 0.85 0.62 0.67 0.67
0.1n 0.98 1.00 0.98 0.77
0.75n 0.90 0.90 0.90 0.90
0.9n 0.80 0.80 0.81 0.99

FordA

0.01n 0.70 0.62 0.58 0.66
0.1n 0.90 0.92 0.92 0.90
0.75n 0.95 0.95 0.92 0.95
0.9n 0.92 0.92 0.92 0.89

Iris

0.01n 0.98 0.75 0.60 0.59
0.1n 0.99 1.00 1.00 0.70
0.75n 1.00 1.00 1.00 1.00
0.9n 0.99 1.00 1.00 1.00

Adult Income

0.01n 0.70 0.62 0.62 0.60
0.1n 0.95 0.97 0.97 0.95
0.75n 0.92 0.93 0.93 0.92
0.9n 0.90 0.91 0.91 0.92

Banknote

0.01n 0.70 0.60 0.58 0.59
0.1n 0.95 0.95 0.95 0.95
0.75n 0.98 1.00 1.00 1.00
0.9n 0.97 1.00 1.00 0.97

performance. In the FordA dataset, AUC values remained
stable (around 0.9) as the neighborhood size k varied (from
0.1n to 0.9n), indicating robustness of the algorithm.

For the Libras Movement and Iris datasets, the results
demonstrated that manifold denoising effectively supported
LOF in detecting outliers, even in low-dimensional datasets.
In particular, the AUC value for Libras Movement was 0.85
when r = 0.01, which highlighted the effectiveness of the
preprocessing step, even with a small neighborhood size
(e.g., 0.01n).

In datasets with complex features, such as Adult Income
and Banknote Authentication, the results showed that the
LOF exhibited a certain degree of robustness to changes
in neighborhood size and outlier ratio. Specifically, at a
small outlier ratio (r = 0.01), detection performance was
not sensitive to parameter variations. For most datasets,
when using an appropriate neighborhood size (e.g., 0.75n),
LOF maintained good detection performance even at higher
outlier ratios (e.g., r = 0.1).
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Fig. 5. Fashion-MNIST sample images before and after denoising

Fig. 6. The t-SNE visualization of the Fashion-MNIST
dataset after denoising. Gray points represent normal
samples, red crosses indicate the detected outliers

C. Effect of Parameter Settings

To verify the effect of bandwidth selection on
local geometric structure estimation, the distribution of
eigenvalues of local covariance matrices under different
bandwidth conditions was analyzed. Manifold denoising
relies on the accurate estimation of local covariance matrices,
and the bandwidth choice directly affects the estimation
of local neighborhoods by covariance matrices. Therefore,
analyzing the effect of bandwidth on the distribution of
eigenvalues of covariance matrices can help understand how
bandwidth controls the size of local neighborhoods, thereby
influencing the estimation of local geometric features.

The experimental settings are as follows: the S-curve
dataset contains 1000 sampled points, which are embedded
in a 30-dimensional space. Local covariance matrices are
computed using the 20 nearest neighbors of each center
point. The experiment includes both noise-free data and data
with added Gaussian noise (standard deviation σ = 0.1). The
bandwidth parameter ϵ takes values of 0.15, 0.2, 0.25, and
0.3 for the noise-free data; for the data with noise, the values
are 0.5, 1, 1.5, 2, 2.5, and 3.

1) Effect of Bandwidth ϵ: Fig.8 shows the eigenvalue
distributions of local covariance matrices under different
bandwidths for the S-curve in the noise-free case. The
horizontal axis represents the index of eigenvalues i, ranging
from 1 to 30, and the vertical axis represents the magnitude
of the eigenvalues. Under all bandwidth conditions, the first
two eigenvalues are significantly larger than the rest, and

(a) ECG Heartbeat

(b) Libras Movement

(c) FordA

Fig. 7. Visualizations of the three datasets

the remaining eigenvalues rapidly decrease to near zero
from the third eigenvalue onward. This indicates that there
are two principal directions in the local covariance matrix,
consistent with the intrinsic geometry of the S-curve as
a two-dimensional manifold. For smaller bandwidths (e.g.,
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Fig. 8. Eigenvalue distribution of local covariance matrices under different bandwidths (noise-free case).

ϵ = 0.15, 0.2), the eigenvalues of the local covariance matrix
accurately reflect the local structure of the manifold, with
the first two eigenvalues being significant and the remaining
ones approaching zero. As the bandwidth increases (e.g.,
ϵ = 0.25, 0.3), the first two eigenvalues increase, indicating
that the increased bandwidth includes more neighborhood
information, but the overall eigenvalue distribution still
reflects the low-dimensional nature of the manifold.

Fig.9 shows the eigenvalue distribution with added
Gaussian noise. For smaller bandwidths (e.g., ϵ = 0.5, 1),
the eigenvalue distribution still shows a trend where the first
two eigenvalues are larger and the subsequent eigenvalues
quickly approach zero, but the magnitude of the first
two eigenvalues is larger than in the noise-free case,
indicating that noise has affected the estimation of the local
covariance matrices. As the bandwidth increases (e.g., ϵ =
1.5, 2, 2.5, 3), the first few eigenvalues increase significantly.
Especially when ϵ = 3, the first five eigenvalues all have
large values, indicating that the larger bandwidth introduces
more distant neighborhood points, resulting in a significant
impact of noise on the estimation of the local geometric
structure by the covariance matrices.

2) Joint Analysis of Bandwidth ϵ and Neighborhood
Distance Threshold r: On the Swiss roll dataset, the
Pareto front is used to select the optimal bandwidth ϵ
and neighborhood distance threshold r, aiming to achieve
the best balance between reconstruction error (MSE) and
geodesic distance neighborhood retention rate (GDNRR).
The bandwidth ϵ determines the range of neighboring points
included in the denoising process. A large ϵ may lead to
an overly smooth denoising result that blurs the original
geometric structure, while a small ϵ may result in insufficient
denoising, leaving residual noise. The neighborhood distance
threshold r controls the connectivity between points. A
high r can lead to incorrect connections between unrelated
points, while a low r may cause local structures to be
disconnected. Selecting suitable values for ϵ and r enables
effective noise suppression and accurate preservation of the
manifold structure.

Gaussian noise with a standard deviation of 0.01 is added
to the noise-free Swiss roll data. The bandwidth ϵ is set
to values between [0.1, 1.0] with a step size of 0.1, and
the neighborhood distance threshold r ranges from [0.5, 2.0]
with a step size of 0.1. For each (ϵ, r) combination, the
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Fig. 9. Eigenvalue distribution of local covariance matrices under different bandwidths (gaussian noise σ = 0.1).

Fig. 10. Pareto Optimal ϵ and r combinations

Fig. 11. Effect of two patch center distance difference on
MSE for MNIST and Fashion-MNIST

denoising algorithm is run, and both MSE and GDNRR
are computed to evaluate the denoising precision and
preservation of the manifold structure.

As shown in Fig.10, the horizontal axis represents
MSE, and the vertical axis represents GDNRR. Each point
represents the denoising performance for a specific (ϵ, r)
combination. In the upper left region of the plot, the Pareto
front appears, indicating optimal solutions that achieve a
balance between MSE and GDNRR. Combinations with
ϵ = 0.1 and r between 1.0 and 2.0 are located on the
Pareto front, demonstrating an effective balance between
MSE (0.000132) and GDNRR (0.9929).

3) Impact of Patch Center Distance: Fig.11 shows the
variation in Mean Squared Error (MSE) for the MNIST
and Fashion-MNIST datasets under different patch center
distances. The horizontal axis represents the distance
between the centers of two patches, while the vertical axis
shows the MSE, measured in 10−3. The figure also includes
an average MSE curve to assess the overall performance
as the patch center distance changes. It can be observed
that the MSE for both the MNIST and Fashion-MNIST
datasets increases with the patch center distance. This trend
is consistent for both datasets. The results indicate that as the
distance between patch centers grows, the overlapping region
between patches decreases. This reduction in overlap reduces
the algorithm’s ability to capture local image information,
leading to higher reconstruction errors.

D. Ablation Experiment

To evaluate the algorithm’s ability to preserve the global
geometric structure during the manifold denoising stage, the
manifold score is introduced as a performance metric. Unlike
GDNRR, which validates local neighborhood preservation,
the manifold score focuses on global consistency and
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(a) Swiss Roll-100 (b) Swiss Roll-300 (c) Swiss Roll-600

(d) S-curve-100 (e) S-curve-300 (f) S-curve-600

Fig. 12. Swiss Roll and S-curve with 100, 300, 600 outliers.

measures the alignment of denoised data with the ideal
manifold’s overall geometric properties.

As shown in Table III, the manifold score improves
consistently with increasing sample size, indicating that the
algorithm effectively suppresses noise and restores the global
geometric structure across datasets of varying scales.

Accurate recovery of the global geometric structure is
critical for the subsequent outlier detection process. The
combination of local structure preservation (validated by
GDNRR) and global consistency enhances the algorithm’s
ability to identify structural anomalies while minimizing
the influence of geometric distortions introduced during the
denoising stage.

To verify the effectiveness of the proposed method in
the outlier detection post-processing stage, experiments were
conducted on the Swiss Roll and S-curve datasets. In
these experiments, only post-processing was performed, and
different numbers of outliers were directly added to a
dataset containing a total of 2000 samples to evaluate the
effectiveness of the post-processing method in removing
outliers. Table IV shows the performance comparison
between the proposed method and NRPCA on the Swiss Roll
and S-curve datasets under different numbers of outliers,
listing the comparison results for the number of identified
inliers (RI), the number of correctly identified outliers (RO),
and the signal-to-noise ratio (SNR).

Fig.12 (a)-(c) represent the Swiss Roll dataset with 100,
300, and 600 outliers, respectively, while Fig.12 (d)-(f) show
the corresponding distribution for the S-curve dataset. It can
be observed that, as the number of outliers increases, the
distribution of outliers becomes more complex, the more

TABLE III

MANIFOLD SCORES OF SIX DATASETS.

Dataset 200 Samples 500 Samples 1000 Samples

Swiss Roll 0.8975 0.9019 0.9571
S-curve 0.8512 0.8921 0.9315
Helix 0.8125 0.8732 0.9176
Torus 0.8301 0.8705 0.9107
Spiral 0.7890 0.8523 0.8981
Sphere 0.8954 0.9213 0.9478

TABLE IV

THE EXPERIMENTAL RESULTS COMPARING NRPCA AND
THE PROPOSED ALGORITHM.

Dataset Outliers NRPCA Ours

RI RO SNR RI RO SNR

Swiss Roll
100 1837 29 36.03 1895 23 38.32
300 1873 148 22.05 1859 104 25.04
600 1815 406 13.01 1815 322 15.02

S-curve
100 1805 28 36.19 1886 23 38.28
300 1860 147 22.04 1870 105 25.01
600 1802 403 13.00 1896 337 15.00

outliers deviating from the original manifold structure.
Experimental results indicate that, for both the Swiss

Roll and S-curve datasets, the performance trend of the
proposed method is similar to that of NRPCA under different
numbers of outliers. When the number of outliers is small
(100), the performance of both methods is comparable,
and the SNR difference is insignificant. However, as the
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number of outliers increases, the proposed method gradually
demonstrates a more pronounced advantage, particularly
when the number of outliers reaches 600. This result shows
that the proposed method is more effective in detecting
outliers at a high outlier ratio, successfully removing outliers
that deviate from the manifold structure while retaining a
higher number of inliers.

To verify the necessity of the post-processing module
(outlier detection), this experiment compares the manifold
denoising only approach with the two-stage approach
(manifold denoising + outlier detection) on the MNIST and
Fashion-MNIST datasets. Fig. 13 shows that the two-stage
approach significantly reduces MSE in datasets (from 2.0 to
1.5 for MNIST and from 2.4 to 1.8 for Fashion-MNIST).
The post-processing with outlier detection is essential for
improving image reconstruction quality.

Fig. 13. MSE comparison for MNIST and Fashion-MNIST:
only denoising vs two-stage process

V. CONCLUSIONS

This paper proposes a two-stage manifold denoising and
anomaly detection algorithm that effectively reduces noise in
high-dimensional data and accurately identifies anomalies.
The proposed algorithm employs the AIRM and gradient
descent on the SPD manifold to preserve the intrinsic
geometric structure of the data. In the post-processing stage,
the LOF is utilized to detect and remove anomalies. By
leveraging a patch-based analysis, the proposed algorithm
integrates local and global information, enhancing its
robustness and applicability to complex data structures.
Experimental results demonstrate the proposed algorithm’s
effectiveness in preserving data structures and improving
denoising performance. Its effective performance across
multiple quantitative metrics, further validated by visual
results, highlights its robustness and reliability.
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