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Abstract—The concentrate grade is a crucial economic in-
dicator for evaluating flotation production. Establishing an
effective prediction model is of great significance for improving
resource recovery and reducing production costs. Given the
complex nonlinear relationships and high-dimensional data
in flotation prediction, which are difficult to deduce using
simple mathematical formulas, this study proposes an Extreme
Learning Machine (ELM) model optimized by an improved
Crayfish Optimization Algorithm (COA) for predicting concen-
trate grade. First, to enhance the optimization performance of
the COA, an opposition-based learning strategy and an optimal
cave strategy are introduced. Additionally, a Lévy flight strategy
with short-and long-distance random jumps is incorporated
to expand the search space and balance solution distribution,
allowing the improved COA to escape local optima. Second,
the improved COA algorithm is compared with four other
algorithms on the CEC2022 benchmark functions, demonstrat-
ing its superior performance in various aspects. Finally, the
improved COA is used to optimize the parameters of the ELM,
forming the RCOA-ELM model for flotation concentrate grade
prediction. Compared with other ELM optimization models,
the proposed model achieves a mean absolute error (MAE)
of 0.0774, a root mean square error (RMSE) of 0.1045, and
a coefficient of determination (R2) of 0.8529, all of which
outperform competing models. The results indicate that the
proposed model effectively improves the prediction accuracy of
concentrate grade and accurately reflects its variation trends,
meeting practical industrial requirements.

Index Terms—Crayfish Optimization Algorithm, Extreme
Learning Machine, Concentrate Grade, Flotation Prediction.

I. INTRODUCTION

FLOTATION technology plays a crucial role in the
mineral processing industry, and the concentrate grade

directly affects product quality, making it a key economic
indicator for evaluating flotation production. A low con-
centrate grade leads to a decline in product quality, while
an excessively high concentrate grade increases the tailings
grade, reducing metal recovery rates and causing metal
losses, which negatively impact economic benefits. There-
fore, maintaining the concentrate grade within a reasonable
range is of great significance for improving resource recovery
and reducing production costs.

The flotation production process is characterized by multi-
ple couplings and multiple stages, making it difficult to pre-
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dict the flotation concentrate grade using simple mathemati-
cal formulas due to its complex nonlinear relationships and
high-dimensional data. With the rapid development of soft
sensing technology, neural network-based prediction methods
have emerged and been increasingly applied in industrial
production, gradually becoming an effective approach for
optimizing the flotation process. To establish a flotation
concentrate grade prediction model, some researchers have
utilized intelligent algorithm-optimized neural network soft
sensing models to measure the flotation concentrate grade,
providing a novel method. Al-Thyabat et al. [1] used a
multilayer feedforward neural network to study the effects
of feed particle size, reagent dosage, and impeller speed on
concentrate grade and flotation recovery. Hoseinian et al.
[2] employed a hybrid neural network combining Genetic
Algorithm-based Neural Networks (GANN) and Multiple
Linear Regression (MLR) to achieve a more accurate pre-
diction of ion removal efficiency in the ion flotation process.
Rachel Cook et al. [3] integrated a random forest model
with the Firefly Algorithm to develop a hybrid machine
learning (ML) model for predicting the flotation efficiency
of galena and chalcopyrite. Their results demonstrated that
the hybrid ML model outperformed standalone ML models
and exhibited superior predictive capability.

The Crayfish Optimization Algorithm (COA), proposed
by Jia et al. [4], is a novel swarm intelligence optimization
algorithm inspired by the foraging, shelter-seeking, and com-
petitive behaviors of crayfish. Based on these behaviors, the
COA was developed to simulate how crayfish search for food,
find shelters, and compete for survival. While COA exhibits
strong global search capabilities, is easy to implement, and
depends on the initial population distribution, it suffers from
slow local convergence and unstable search efficiency. These
limitations become particularly evident when dealing with
high-dimensional complex problems, where COA is prone to
falling into local optima, leading to suboptimal optimization
results. To address these issues, researchers have proposed
various improvements to COA. Shikoun N H et al. [5]
introduced a new binary Crayfish Optimization Algorithm
(BinCOA) by integrating refraction-based opposition learn-
ing and crossover strategies for feature selection. Jia H et
al. [6] enhanced COA by incorporating an environmental
update mechanism based on water quality factors and a
ghost-adversarial learning strategy, proposing the Modified
Crayfish Optimization Algorithm (MCOA) to solve multiple
engineering application problems. Chaib L et al. [7] devel-
oped a novel method combining COA with fractional-order
chaotic maps (FC-maps) for photovoltaic model parameter
estimation.
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The Extreme Learning Machine (ELM) algorithm, pro-
posed by Huang et al. [8], is a highly efficient learning
algorithm that does not require adjustments to the input
weights and hidden biases during execution. Instead, it
only requires setting the number of hidden layer nodes to
obtain the optimal solution. In recent years, ELM has been
widely used for classification and regression tasks due to its
advantages of short training time, high execution efficiency,
and strong generalization ability [9]. Li et al. [10, 11]
accurately predicted the transient stability of power systems
using an improved ELM model. However, the initialization
of input weights and hidden biases in the ELM network is
random, which affects prediction stability. To address this
issue, Miao et al. [12] proposed an improved ELM model
optimized by the Whale Optimization Algorithm (WOA)
for gas outburst risk level prediction, effectively enhancing
ELM’s predictive accuracy. Jia Z et al. [13, 14] applied the
Grey Wolf Optimizer (GWO) to optimize the input weights
and hidden layer thresholds of ELM, developing a GWO-
ELM model for predicting rock blasting fragmentation.

Based on the above background, this study proposes
an improved Crayfish Optimization Algorithm (RCOA) to
optimize the Extreme Learning Machine (ELM) for flotation
concentrate grade prediction. First, to enhance the effec-
tiveness of COA, several improvements are introduced. The
opposition-based learning strategy is employed to replace
random initialization, ensuring population diversity [15, 16].
A nonlinear convergence factor is designed to better balance
the exploration and exploitation capabilities of the algorithm.
The optimal cave strategy is adopted to perturb and update
the best position, improving the quality of individual position
selection and enhancing global search ability. Finally, the
Lévy flight strategy is incorporated to help the improved
COA escape local optima, achieving higher solution accuracy
and better problem-solving capability. Next, comparative
experiments are conducted using three classical algorithms
and the original COA algorithm on the CEC2022 benchmark
functions. The results demonstrate the effectiveness of the
proposed improvements to the COA algorithm. Finally, the
RCOA algorithm is applied to optimize the ELM, estab-
lishing the RCOA-ELM prediction model. A comparative
analysis is conducted by optimizing ELM using four different
algorithms. The experimental results indicate that the RCOA-
ELM model exhibits superior predictive performance.

II. CRAYFISH OPTIMIZATION ALGORITHM
Intelligent optimization algorithms are proposed based on

principles such as simulating natural biological evolution and
swarm intelligence. Inspired by the social behaviors of cray-
fish in foraging, summer shelter-seeking, and competition,
Jia et al. [4] introduced the Crayfish Optimization Algorithm
(COA) in 2023. The algorithm operates in three stages:
shelter-seeking, competitive cave selection, and foraging.
Foraging and competitive behaviors represent the develop-
ment phase of COA, while shelter-seeking behavior is the
exploration phase. The change in environmental temperature
directly affects crayfish behavior, causing them to enter dif-
ferent stages. When the temperature exceeds 30°C, crayfish
enter the shelter-seeking phase, where they prefer cooler
environments. In this phase, they may encounter empty caves
and enter them directly or may need to compete to obtain a

cave. In suitable temperatures (ranging from 15°C to 30°C),
crayfish enter the foraging phase, and their food intake is
adjusted based on the temperature. The optimal foraging
temperature is 25°C, and the crayfish’s intake follows an
approximately normal distribution.

temp = rand× 15 + 20 (1)

p = C1 ×
(

1√
2× π × σ

× exp

(
− (temp− µ)2

2σ2

))
(2)

Here, rand is a random number between 0 and 1, µ
represents the optimal foraging temperature for crayfish,
which is 25°C, C1 is a constant with a value of 0.2, and
σ is set to 3. By adjusting C1 and σ, the food intake of
crayfish under different temperatures can be controlled.

A. Shelter-seeking phase

When the temperature of the environment where the
crayfish are located exceeds 30°C, they will seek caves
and enter the shelter-seeking phase. The COA algorithm
first randomly generates position information in the search
space and calculates the fitness of each individual. Assuming
the individual’s optimal position is XG and the current
population’s optimal position is XL, the position information
of the cave Xcave is defined as follows.

Xcave =
XG +XL

2
(3)

The event of crayfish competing for and occupying caves
is treated as a probabilistic event in COA. When rand<0.5,
it indicates that no other crayfish are competing for the cave,
and the crayfish will directly enter the cave to seek shelter.

Xt+1
i,j = Xt

i,j + C2 × rand ×
(
Xcave −Xt

i,j

)
(4)

C2 = 2−
(

t

T

)
(5)

In the equation, t represents the current iteration, and
T represents the maximum number of iterations. C2 is
a control parameter that linearly decreases from 2 to 0,
balancing exploration and exploitation. During the shelter-
seeking phase, the goal of the crayfish is to move closer
to the cave, bringing the individual closer to the optimal
solution, which enhances the exploration capability of COA,
thereby speeding up the convergence of the algorithm.

B. Competition phase

When the temperature of the environment where the
crayfish are located exceeds 30°C and rand ≥ 0.5, it indicates
that the crayfish will compete for the cave.

Xt+1
i,j = Xt

i,j −Xt
z,j +Xcave (6)

Z = round
(
rand × (N − 1)

)
+ 1 (7)

In the equation, Z represents a randomly selected crayfish
individual, and N denotes the total population of crayfish.
During the competition phase, crayfish compete with each
other, and crayfish Xi,j update their position based on a
randomly selected individual Xz,j . This expands the search
range of COA and enhances the algorithm’s global optimiza-
tion capability.
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C. Foraging phase

When the temperature is less than or equal to 30°C,
reaching a suitable temperature for crayfish feeding, the
crayfish will move toward the food location to forage. The
food position is defined as Xf . After finding the food, the
crayfish will determine the food quantity Q based on the
following equation.

Xf = XG (8)

Q = C3 × rand ×
(
fitnessi
fitness f

)
(9)

C3 represents the food factor, which is a constant value set
to 3. fitnessi denotes the fitness value of the ith crayfish,
while fitnessf represents the fitness value of the food
position. During feeding, the crayfish will decide whether to
tear the food based on its size. When Q > C3+1

2 , it indicates
that the food is too large, and the crayfish will use its first
claw to tear the food.

Xf = exp

(
− 1

Q

)
×Xf (10)

When the food is torn into smaller pieces, the second and
third claws will alternately grasp and consume the food. A
combination of sine and cosine functions is used to simulate
this alternating process.

Xt+1
i,j =Xt

i,j +Xf ×Q×
(
cos(2π × rand)

− sin(2π × rand)
) (11)

When the food quantity Q ≤ C3+1
2 , the crayfish will

move toward the food position and consume it directly. The
equation is as follows:

Xt+1
i,j =

(
Xt

i,j −Xf
)
×Q+Q× rand ×Xt

i,j (12)

III. IMPROVED COA ALGORITHM

The classical Crayfish Optimization Algorithm (COA)
already possesses good global search capability and is easy
to implement. However, it suffers from a slow local conver-
gence rate and unstable search efficiency, making it prone
to getting trapped in local optima. To address these issues,
this paper introduces improvements focusing on the initial
population distribution, nonlinear convergence factors, and
search strategies of the COA. The specific improvements and
the enhanced algorithm’s workflow are as follows.

A. Opposition-Based Learning for Population Initialization

Population initialization plays a crucial role in meta-
heuristic algorithms. In the population initialization phase
of the Crayfish Optimization Algorithm (COA), individuals
are randomly generated within a predefined search space.
However, due to the randomness of position updates, this
may lead to an uneven population distribution, reducing the
effectiveness of global search. Therefore, this paper adopts
an opposition-based learning strategy for population initial-
ization. By generating a mirror individual for each original
individual with respect to the center of the search space, the
search range is expanded, helping to prevent the algorithm

from getting trapped in local optima. The corresponding
equation is as follows:

Xol = lb+ ub−X (13)

Where: Xol is the opposition-based mirror individual, X is
an individual from the original population, and lb and ub
represent the lower and upper bounds of the search space,
respectively.

B. Nonlinear Convergence Factor

In COA, the control parameter C2 affects the algorithm’s
performance. If C2 is greater than 2 or less than 1, it
will quickly cause the algorithm to diverge. In the COA
algorithm, C2 decreases linearly during the iteration process,
which results in slow convergence and a tendency to fall into
local optima, making it difficult to balance the algorithm’s
global search and local exploitation abilities. To improve the
algorithm’s solving capability and address the issue of slow
convergence in COA, a nonlinear C2 is designed to better
balance exploration and exploitation in the algorithm. The
equation is as follows:

C2 =
(t− T )2

T 2
+ 1 (14)

The curve of C2 variation with iterations before and
after the improvement is shown in Figure 1. Compared to
the traditional linear decay method, this nonlinear decay
factor is smoother, decreasing rapidly in the early stages
and slowing down in the later stages. It better balances the
global exploration and local exploitation abilities, effectively
avoiding premature convergence and improving both the
global search capability and convergence accuracy of the
algorithm.
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Fig. 1: Comparison of control parameter C2

C. Optimal Cave Strategy

In the original Crayfish Optimization Algorithm (COA),
the shading and competition stages tend to focus on searching
near the caves. As the number of iterations increases, the po-
sitions of crayfish individuals gradually converge, potentially
leading to local optima and limiting the effective exploration
of the solution space. Inspired by the hunting phase of the
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Grey Wolf Optimizer (GWO) [17] and incorporating diverse
individual movement patterns, the optimal cave strategy is
introduced. This strategy selects the best-performing individ-
uals and guides others toward these high-quality solutions to
improve the overall quality of the population. The optimal
cave is defined as follows:

Xcave best ={XL, XG, X2, X3, X,X0} (15)

X =
XL +X2 +X3

3
(16)

X0 =

∑
Xi

N
(17)

Here, XG represents the historically best position, which is
the optimal solution obtained after multiple iterations. XL

denotes the best individual in the current population. X2 and
X3 are the individuals ranked second and third in fitness
within the current population. Their mean value balances
exploration and exploitation. X0 represents the center of the
entire population, providing global distribution information.
Compared to the traditional COA algorithm, which relies
solely on a single cave, the optimal cave strategy offers six
possible solutions. This allows individuals to select different
positions during the search process, enhancing global search
capability and reducing the likelihood of getting trapped
in local optima. The position is updated according to the
following equation. During the iteration process, an indi-
vidual is randomly selected from the optimal caves, where
all candidate solutions have an equal probability of being
chosen.

Xt+1
i,j = Xt

i,j + C2 × rand× (Xcave best −Xt
i,j) (18)

Xt+1
i,j = Xt

i,j −Xt
z,j +Xcave best (19)

This strategy leverages the guiding effect of the optimal
individuals to dynamically balance exploitation and explo-
ration. By introducing diverse guiding points, such as the
population center and the mean of the top three best individu-
als, it further enhances the flexibility of individual movement.
As a result, the algorithm effectively avoids falling into local
optima, improves global search performance, and accelerates
convergence speed.

D. Lévy Flight

Lévy flight is a stochastic walk strategy used to simulate
the foraging behavior of many organisms in nature. In the
foraging phase, when the food size is appropriate, crayfish
will feed. However, updating the position based on the
difference between the current individual position and the
food position is easily influenced by the food location, which
may cause individuals to miss potential optimal solutions in
other directions. Therefore, this paper adopts Lévy flight to
perform food searches before feeding, randomly switching
between long and short distance movements [18]. This ap-
proach helps the algorithm conduct effective global searches
in the search space, avoiding local optima and enhancing
search diversity and exploration capability.

X(t+ 1) = r × (Xbc(t)− s×X(t)) (20)

s =
u

v1/β
(21)

u ∼ N(0, σ2
u), v ∼ N(0, σ2

v) (22)

σu =


Γ(1 + β) sin

(
πβ

2

)

Γ

(
1 + β

2

)
β · 2

β − 1

2


1

β

, σv = 1
(23)

In the formula: r is the parameter vector used to control
exploration and exploitation; Xbc is the position vector of the
best candidate in the current population; s is the Lévy flight
path; the parameter β ranges between 0 and 2, typically taken
as β = 1.5; the parameters µ and v are normally distributed
random numbers; σu and σv are the standard deviations of
the normal distributions.

E. Structure of the RCOA algorithm

To clearly illustrate the structure of the proposed RCOA,
Algorithm 1 presents its pseudo-codes, which visualize the
procedural framework of RCOA. These pseudo-codes facili-
tate a better understanding of the core steps and operational
mechanisms of RCOA.

Algorithm 1: Pseudocode of RCOA
1 Initialize parameters.
2 Initialize the population according to Equation (13).
3 Evaluate the population fitness and obtain the best value.
4 t = 1;
5 while t ≤ T do
6 Compute temperature temp according to Equation (1).
7 Calculate control parameter C using Equation (14).
8 if temp > 30 then
9 Identify elite cave individuals according to Equation (15).
10 if rand < 50 then
11 Update position via cooling phase using Equation (18).
12 else
13 Update position via competition phase using Equation (19).
14 end if
15 else
16 Perform foraging using Lévy flight mechanism.
17 end if
18 Apply boundary control and update fitness values accordingly.
19 t = t+ 1;
20 end while

IV. PERFORMANCE TESTING OF IMPROVED CRAYFISH
OPTIMIZATION ALGORITHM

A. Test Function

To verify the effectiveness of the improved crayfish op-
timization algorithm (RCOA) in global search and con-
vergence speed, the performance of RCOA is evaluated
using the CEC2022 benchmark function set [19]. CEC2022
provides four types of functions: unimodal functions, mul-
timodal functions, hybrid functions, and composition func-
tions, as shown in Table 1. Different types of functions
can comprehensively and effectively test the optimization
capability and stability of the algorithm.

B. Parameter setting

To ensure a fair comparison experiment, the parameter
settings are as follows: the population size is set to 50,
the number of iterations is 500, and each test function is
independently executed 30 times. The optimal value, mean,
and standard deviation are recorded. The search domain
for all functions is [−100, 100], and their dimensions are
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TABLE I: Test functions

No. Function F ∗
i

Unimodal Function 1 Shifted and full Rotated Zakharov Function 300

Basic Functions 2 Shifted and full Rotated Rosenbrock’s Function 400

3 Shifted and full Rotated Expanded Schaffer’s f6 Function 600

4 Shifted and full Rotated Non-Continuous Rastrigin’s Function 800

5 Shifted and full Rotated Levy Function 900

Hybrid Functions 6 Hybrid Function 1 (N=3) 1800

7 Hybrid Function 2 (N=6) 2000

8 Hybrid Function 3 (N=5) 2200

Composition Functions 9 Composition Function 1 (N = 5) 2300

10 Composition Function 2 (N = 4) 2400

11 Composition Function 3 (N = 5) 2600

12 Composition Function 4 (N = 6) 2700

10. The programming software used is MATLAB 2024a,
running on a PC with 16GB of RAM and a 2.50GHz
processor, with Windows 11 as the operating system. The
improved algorithm, RCOA, is compared with four other
algorithms: the original Crayfish Optimization Algorithm
(COA) [4], the Whale Optimization Algorithm (WOA) [20],
the Harris Hawks Optimization Algorithm (HHO) [21], and
the Dung Beetle Optimization Algorithm (DBO) [22]. These
algorithms have been widely validated and applied in previ-
ous studies, demonstrating strong optimization performance,
which further highlights the effectiveness of the improved
algorithm proposed in this paper.

C. Experimental Results and Analysis
RCOA is compared with three classical algorithms and

COA, with the results detailed in Table 2. The comparison
includes three performance metrics: mean value, standard
deviation, and optimal value. The improved Crayfish Op-
timization Algorithm demonstrates excellent performance
across various benchmark functions. For unimodal function
F1, RCOA ranks first in performance. In multimodal func-
tions (F2-F5), it consistently achieves the best performance.
In hybrid functions (F6-F8), RCOA ranks first across all
cases. For composition and asymmetric functions (F9-F12),
it ranks first in F9, F10, and F12. Overall, for different
types of test functions in the CEC2022 benchmark suite,
the RCOA algorithm significantly outperforms the four com-
parison algorithms in terms of optimization performance.
The improved RCOA achieves the best mean value, standard
deviation, and optimal value for most functions, proving its
effectiveness and strong problem-solving capability.

To better observe the convergence of the RCOA algorithm
on the CEC2022 benchmark set, Figure 2-7 presents the
iteration convergence curves of six selected functions from
the CEC2022 test set for the five algorithms. The horizontal
axis represents the number of iterations, while the vertical
axis indicates the average fitness value after 30 independent
runs. RCOA demonstrates significant advantages in both
convergence speed and convergence accuracy, highlighting
its strong competitiveness. In summary, the improved RCOA
algorithm exhibits superior performance on the CEC2022
test set, achieving a better balance between exploration and
exploitation compared to other algorithms.

D. Computational complexity analysis of RCOA

The algorithmic complexity is a key indicator for evaluat-
ing the efficiency of an algorithm. Time complexity studies
the dominant computational processes of the algorithm to
analyze the theoretical computation time of different algo-
rithms. In this paper, we use Big-O notation to calculate the
time complexity of COA and RCOA.

The time complexity calculation for the standard Crawling
Optimization Algorithm (COA) is as follows: during the ini-
tialization phase of the algorithm, an initial population needs
to be generated, which has a time complexity of O(N ×D)
, where N is the population size and D is the problem
dimension. During the iteration process, for each generation,
the fitness values of all individuals must first be calculated,
which has a time complexity of O(N × D); updating the
positions of all individuals also has a time complexity of
O(N ×D). The algorithm repeats the fitness evaluation and
position update until the maximum number of iterations T ,
is reached. Therefore, the overall time complexity of COA
is O(T ×N ×D).

The RCOA improvement algorithm introduces an oppo-
sition learning mechanism based on the COA algorithm.
During the initialization phase, additional opposition indi-
viduals are generated and filtered, but the overall complexity
remains O(N×D). After adopting the optimal cave strategy,
although more guiding information is introduced, an extra
O(N × D) computation for the population center is added
each generation. However, this increase in complexity is still
within the same order of magnitude and does not signifi-
cantly affect the overall complexity. The introduction of a
nonlinear convergence factor and Lévy flight does not add
any extra loops or operations to the original algorithm’s code.
Therefore, the overall time complexity of RCOA remains
O(T ×N ×D), which is the same as that of COA, without
increasing the runtime and remaining in the same complexity
class.

V. RCOA-ELM PREDICTION MODEL

To verify the accuracy and effectiveness of the RCOA-
ELM prediction model, flotation data collected from actual
production in a certain region is selected as the research
subject. The data is first preprocessed and then split into
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TABLE II: Results of comparing algorithms on the CEC2022 benchmark function

F Index RCOA COA DBO HHO WOA

F1 Mean 3.0009E+02 3.6379E+03 1.7733E+03 1.1483E+03 2.9606E+04

Std 1.9691E-01 2.8121E+03 1.5212E+03 5.1625E+02 1.2097E+04

Min 3.0000E+02 3.2342E+02 3.0226E+02 4.1508E+02 9.8194E+03

Rank 1 5 3 2 4

F2 Mean 4.0952E+02 4.1884E+02 4.2304E+02 4.7030E+02 4.9604E+02

Std 1.2721E+01 2.7092E+01 2.8004E+01 8.6314E+01 9.7641E+01

Min 4.0039E+02 4.0002E+02 4.0001E+02 4.0046E+02 4.0717E+02

Rank 1 2 3 4 5

F3 Mean 6.0027E+02 6.0489E+02 6.0984E+02 6.4426E+02 6.4402E+02

Std 4.6227E-01 6.3909E+00 6.9639E+00 1.0237E+01 1.3179E+01

Min 6.0000E+02 6.0001E+02 6.0094E+02 6.1603E+02 6.1950E+02

Rank 1 2 3 5 4

F4 Mean 8.0844E+02 8.2982E+02 8.3613E+02 8.2791E+02 8.4021E+02

Std 2.4710E+00 6.6981E+00 1.3451E+01 7.5410E+00 1.7196E+01

Min 8.0398E+02 8.0498E+02 8.1393E+02 8.1324E+02 8.1450E+02

Rank 1 5 3 2 4

F5 Mean 9.0093E+02 1.0780E+03 1.0182E+03 1.3954E+03 1.4492E+03

Std 1.4456E+00 2.3917E+02 1.4151E+02 1.7812E+02 3.1601E+02

Min 9.0000E+02 9.0063E+02 9.0063E+02 1.1176E+03 9.7565E+02

Rank 1 3 2 4 5

F6 Mean 2.2370E+03 4.2470E+03 4.4429E+03 5.7656E+03 6.8747E+03

Std 1.2200E+03 2.1214E+03 1.9580E+03 3.2157E+03 4.8254E+03

Min 1.8538E+03 1.8617E+03 1.8454E+03 2.0032E+03 2.3872E+03

Rank 1 2 3 4 5

F7 Mean 2.0206E+03 2.0262E+03 2.0417E+03 2.0698E+03 2.0800E+03

Std 6.4609E+00 2.3017E+01 2.0682E+01 3.1898E+01 2.5180E+01

Min 2.0016E+03 2.0044E+03 2.0211E+03 2.0258E+03 2.0331E+03

Rank 1 2 3 4 5

F8 Mean 2.2195E+03 2.2353E+03 2.2378E+03 2.2359E+03 2.2359E+03

Std 7.2227E+00 3.1035E+01 3.3832E+01 1.2337E+01 8.1025E+00

Min 2.2032E+03 2.2104E+03 2.2208E+03 2.2254E+03 2.2255E+03

Rank 1 2 5 3 4

F9 Mean 2.5293E+03 2.5293E+03 2.5623E+03 2.6098E+03 2.6046E+03

Std 6.7556E-13 4.0210E-03 4.3070E+01 4.1313E+01 4.7176E+01

Min 2.5293E+03 2.5293E+03 2.5293E+03 2.5365E+03 2.5303E+03

Rank 1 2 3 5 4

F10 Mean 2.5076E+03 2.5901E+03 2.5503E+03 2.5904E+03 2.7024E+03

Std 2.7309E+01 1.2128E+02 6.6307E+01 1.4537E+02 3.2149E+02

Min 2.5003E+03 2.5004E+03 2.5005E+03 2.5005E+03 2.5005E+03

Rank 1 3 2 4 5

F11 Mean 2.8369E+03 2.8073E+03 2.7656E+03 2.8719E+03 3.0872E+03

Std 1.1575E+02 1.2905E+02 1.3014E+02 2.5745E+02 2.2225E+02

Min 2.6000E+03 2.6002E+03 2.6000E+03 2.6082E+03 2.7530E+03

Rank 3 2 1 4 5

F12 Mean 2.8634E+03 2.8696E+03 2.8773E+03 2.9256E+03 2.9055E+03

Std 1.0816E+00 1.2736E+01 1.8704E+01 5.5058E+01 3.9517E+01

Min 2.8594E+03 2.8621E+03 2.8640E+03 2.8615E+03 2.8658E+03

Rank 1 2 3 5 4

Rank sum 14 30 35 46 55

Final Standings 1 2 3 4 5
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a training set and a test set in an 8:2 ratio. The improved
Crayfish Optimization Algorithm is used to optimize the
ELM neural network model by obtaining the optimal initial
weights and biases. A prediction model is then constructed
to complete the case study on flotation concentrate grade
prediction.

A. Data Preprocessing

This paper uses the 3σ-principle for outlier detection [23].
For the flotation concentrate grade data, outlier handling is
performed based on the 3σ-principle using SPSS software.
The basic process is as follows:

|xdata − xmean| ≥ 3σ (24)

σ =

√√√√ 1

N

N∑
i=1

(xi − xmean) (25)

xmean =
1

N

N∑
i=1

xi (26)

Where Xi is the value of a certain feature sample, and
Xmean is the mean value. N is the number of samples.
With the assistance of SPSS and Excel software, the original
616 data points were reduced to 446 data points, which
include 5 feature dimensions such as feed grade and feed
concentration. After data preprocessing, the data is split into
a training set and a test set in an 8:2 ratio to establish the
flotation concentrate grade prediction model for research.

B. Concentrate Grade Prediction Model

To improve the prediction accuracy of flotation concentrate
grade, an RCOA-ELM hybrid model is used for flotation
concentrate grade prediction research, with the structural
diagram shown in Figure 8. The RCOA-ELM prediction
model consists of two main modules: the RCOA module
and the ELM module. The fitness evaluation is performed
based on the update mechanism of the RCOA algorithm,
and when the conditions are met, the global optimal value
is recorded and assigned as the initial weights and biases of
the ELM neural network. The ELM prediction model is then
trained and calculated to complete the prediction of flotation
concentrate grade.

VI. EXPERIMENT AND ANALYSIS

A. Experimental Evaluation Metrics

To verify the reliability of the flotation concentrate grade
prediction model established in this paper, comparative ex-
periments are conducted with the ELM, COA-ELM, HHO-
ELM, WOA-ELM, and DBO-ELM models. A reasonable
evaluation metric system is established, primarily using the
Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and the coefficient of determination R2 to assess
the prediction performance.

(1) Mean Absolute Error (MAE): This metric prevents
errors from canceling each other out and can accurately
reflect the average fluctuation between the model’s predicted
values and the true values of the samples.

MAE =
1

N

N∑
i=1

∣∣ypre(i)− y(i)
∣∣ (27)

(2) Root Mean Square Error (RMSE): The RMSE shows
the deviation between the model’s predicted values and the
true values. The smaller the value, the higher the prediction
accuracy of the model.

RMSE =

√√√√ 1

N

N∑
i=1

(ypre(i)− y(i))
2 (28)

(3) Coefficient of Determination R2: This describes the
degree of fit of the model to the predicted problem. The
closer the value is to 1, the stronger the model’s ability to
fit the data [24].

R2 = 1−

N∑
i=1

(
ytrain(i)− ypre(i)

)2
N∑
i=1

(
ytrain(i)− ytrain

)2 (29)

B. Analysis of Experimental Results

To ensure fair experimental results, all model tests are
conducted in the same testing environment, with identical
hardware and software configurations. Comparative experi-
ments are performed to predict flotation concentrate grade
using the ELM network optimized by COA, HHO, DBO,
WOA, and RCOA algorithms. The population size for all
algorithms is set to 30, and the maximum number of iter-
ations is 200. The upper and lower bounds of the initial
positions are set to [−1, 1]. The performance comparison of
each flotation prediction model is shown in Table 3, and
the comparison between predicted values and true values is
illustrated in Figures 4-9.

TABLE III: Comparison of flotation concentrate grade
prediction results

Predictive models MAE RMSE R2

ELM 0.1004 0.1267 0.7836

WOA-ELM 0.0946 0.1201 0.8057

HHO-ELM 0.0933 0.1173 0.8147

DBO-ELM 0.0868 0.1119 0.8312

COA-ELM 0.0867 0.1116 0.8321

RCOA-ELM 0.0774 0.1045 0.8529

As shown in Table 3, the ELM neural network optimized
by RCOA predicts flotation concentrate grade with higher
accuracy. All performance metrics are significantly better
than those of other algorithms, with MAE and RMSE
values of 0.0774 and 0.1045, respectively, and a fitting
coefficient R2 of 0.8529, which is much higher than the
models optimized by other algorithms. This indicates that
the optimization effect of the improved RCOA algorithm is
significant, achieving a good balance between global search
ability and local search ability. Additionally, the prediction
performance has improved compared to the original ELM
neural network. From the comparison of the true values and
predicted values in Figures 9-14, it can be seen that the
RCOA-ELM neural network’s predictions are much closer
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Fig. 8: The structure diagram of the RCOA-ELM flotation prediction model
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Fig. 9: Prediction result graph of ELM model
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Fig. 10: Prediction result graph of WOA-ELM model
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Fig. 11: Prediction result graph of HHO-ELM model
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Fig. 12: Prediction result graph of DBO-ELM model

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3217-3228

 
______________________________________________________________________________________ 



0 10 20 30 40 50 60 70 80 90
Flotation concentrate grade prediction samples

68

68.5

69

69.5

70

70.5

71

Actual concentrate grade
COA-ELM predicts concentrate grade

Fig. 13: Prediction result graph of COA-ELM model
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Fig. 14: Prediction result graph of RCOA-ELM model

to the true values. Through a combined analysis of the
numerical results and figures, it can be concluded that the
RCOA-ELM flotation concentrate grade prediction model
exhibits better stability and predictive ability.

VII. CONCLUSION

The Crayfish Optimization Algorithm (COA) is a new
swarm intelligence optimization algorithm. To address its
limitations in optimization accuracy and its tendency to get
stuck in local extrema, this paper proposes an improved
Crayfish Optimization Algorithm (RCOA) that utilizes a non-
linear convergence factor and an optimal cave strategy. The
optimal cave strategy increases the likelihood of individuals
exploring the search space, while the nonlinear convergence
factor balances global search ability and local exploitation
ability. This improvement enhances both the convergence
accuracy and speed, strengthening the optimization perfor-
mance of the COA algorithm.The proposed RCOA is thor-

oughly compared with the original COA, WOA, HHO, and
the latest swarm intelligence algorithm DBO. The numerical
results and convergence curves of the CEC2022 bench-
mark functions show that the comprehensive performance of
RCOA is significantly better than the comparison algorithms.
The RCOA algorithm is used to optimize the weights and
biases of the ELM model, establishing the RCOA-ELM pre-
diction model. This model is applied to predict the flotation
concentrate grade in mining, and a comparison with different
algorithms optimizing the ELM prediction results shows that
the optimized model has good predictive accuracy and can
accurately predict the concentrate grade, proving the model’s
effectiveness and practical significance.
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