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Abstract—Diabetes mellitus, a leading global health threat,
demands precise blood glucose prediction for effective clinical
management, yet traditional models struggle to capture nonlin-
ear dynamics. This study proposes the RFA-CNN model, a novel
framework integrating Random Forest (RF) and Convolutional
Neural Network (CNN), to address this challenge: RF identifies
31 key physiological features (e.g., age, hemoglobin) via an auto-
matic search algorithm while CNN extracts local features from
high-dimensional data, and the SHAP framework is integrated
to quantify feature contributions and reveal nonlinear interac-
tions, enabling both global importance ranking and individual
sample attribution. Employing multiple imputations for data
preprocessing, the model reduces RMSE by 1.2% compared
to suboptimal methods, ensuring data integrity. Evaluated on
5,642 clinical samples, RFA-CNN achieves a test set MSE of
0.003689 (4.97% lower than the second-best MLP model), an
MAE of 0.035084, and Clarke Error Grid results with 83.9%
of predictions in clinically accurate Region A and over 99%
in A+B regions, outperforming benchmarks like DNN and
LSTM. SHAP analysis highlights age, high-density lipoprotein
cholesterol, and albumin as critical influencers, underscoring
the model’s interpretability in uncovering complex physiological
correlations. By synergizing RF’s feature selection, CNN’s
local feature extraction, and SHAP’s interpretability, RFA-CNN
effectively captures nonlinear blood glucose patterns, offering
robust, accurate predictions with superior generalization and
clinical compliance to support personalized diabetes manage-
ment, reducing decision risks, and enhancing therapeutic inter-
ventions, with future work focusing on multicenter validation
and dynamic data integration.

Index Terms—Diabetes, Blood Glucose Prediction, CNN,
Random Forest, Clarke Error Grid, SHAP

1. INTRODUCTION

IABETES is a chronic health condition in which the

body is unable to properly process blood glucose, often
due to insufficient insulin production (Type 1) or insulin
resistance (Type 2) [2]. Alarmingly, this metabolic disorder
ranks 7th among the top ten global causes of death, as
highlighted by the 2016 Global Burden of Disease Study. On
a global scale, diabetes imposes a substantial financial burden
on healthcare systems, with 537 million (10.5%) adults aged
20-79 currently managing the disease [3]. It is genuinely
concerning that the incidence rate of Diabetes Mellitus (DM)
is projected to rise significantly. Specifically, it is expected
to reach 643 million, accounting for 11.3% of the global

Manuscript received February 14, 2025; revised May 30, 2025. This work
was supported in part by the Doctoral Research Initiation Fund of Shandong
University of Technology under Grant No. 417037.

Weipu Wu is a graduate student in applied statistics at the School of
Mathematics and Statistics, Shandong University of Technology, China (e-
mail: 2863375150@qq.com).

Zhenhua Qu is a graduate student in statistics at the School of Mathe-
matics and Statistics, Shandong University of Technology, China (e-mail:
18463064907 @163.com).

Yuan Cao is an associate professor at the School of Mathematics and
Statistics, Shandong University of Technology, China (Corresponding au-
thor, e-mail: yuancao@sdut.edu.cn).

population by 2030, and further increase to 783 million,
which will make up 12.2% of the global population by
2045 [4]. Within this global trend, China faces a particularly
pressing challenge. As the country with the world’s largest
diabetic population [5], China reported 140 million cases
(10.6% prevalence) among 20-79-year-olds in 2021, with
projections surpassing 174 million by 2045 [6]. Tragically,
these numbers coincide with 1.39 million annual diabetes-
related deaths in China, accounting for 20% of the global
total [7].

Diabetes poses significant health threats not only through
its high prevalence but also via its intricate complications.
Chronic hyperglycemia progressively damages the systemic
vascular system, leading to severe consequences such as car-
diovascular diseases [8], diabetic retinopathy [1], nephropa-
thy [9], and neuropathy [10]. According to the International
Diabetes Federation, cardiovascular complications account
for approximately 50% of diabetes-related deaths globally,
with diabetic patients facing 2-4 times higher risks of
coronary heart disease and stroke compared to the general
population. In China, approximately 60% of type 2 diabetes
patients have comorbid hypertension [11], further exacer-
bating cerebrovascular risks. Alarmingly, diabetes frequently
coexists with other metabolic disorders like obesity and
dyslipidemia, creating a vicious cycle that exponentially
complicates disease management. This interconnected health
crisis underscores the critical need for integrated strategies
targeting both hyperglycemia and associated comorbidities.

Significant bottlenecks persist in current diabetes research
and model development. In blood glucose prediction, dual
limitations in methodology and data quality constrain the im-
provement of model performance. Conventional approaches,
relying heavily on empirical formulas and linear regres-
sion models, struggle to capture the non-linear character-
istics and dynamic fluctuations of blood glucose levels,
suffering from notable prediction delays. While machine
learning has transcended traditional frameworks, existing
algorithms—confined mainly to early models like random
forests or support vector machines—perform inadequately in
processing high-dimensional time-series data, failing to fully
explore the profound correlations between blood glucose
and metabolic markers. Regarding data quality, contemporary
studies commonly face the dual challenges of insufficient
sample size and limited feature diversity. Most research
incorporates only hundreds or even dozens of samples,
leading to overfitting of individual characteristics and poor
generalization to broader populations. Additionally, monitor-
ing indicators primarily focus on basic parameters such as
fasting blood glucose and HbAlc, lacking systematic anal-
ysis of critical pathological markers like insulin sensitivity
and inflammatory cytokines. This results in models unable
to comprehensively unravel the intricate pathological mech-
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anisms of diabetes, ultimately compromising both prediction
accuracy and generalization capabilities.

This paper proposes a blood glucose concentration level
prediction model named RFA-CNN (Random Forest Assisted
Convolutional Neural Network) based on deep learning meth-
ods in response to the above issues. The main contributions
are as follows:

(1)This paper innovatively proposes a blood glucose con-
centration prediction model, RFA-CNN. This model organ-
ically combines the CNN neural network model with the
random forest feature selection method. In the face of mas-
sive non-time series physiological data, the optimal number
of features that fit the data characteristics is determined
through a built-in automatic search algorithm during the
feature processing stage. This process fully utilizes CNN’s
powerful local feature extraction ability, enabling the model
to accurately extract key features related to blood glucose
concentration from high-dimensional physiological data. To
enhance the interpretability of the model, we integrate the
SHAP (Shapley Additive exPlanations) framework. Based
on game-theoretic principles, SHAP can precisely quantify
each feature’s contribution to the model’s prediction. Ap-
plying SHAP to the RFA-CNN model allows us to analyze
how features like age, hemoglobin, and other physiological
indicators impact blood glucose predictions. It offers a global
view of feature importance and enables local interpretation
for individual samples. This helps understand the complex
non-linear relationships between features and the predicted
blood glucose levels, providing more in-depth insights into
the model’s decision-making process. At the same time, the
information crucial for blood glucose prediction is retained
by taking advantage of the random forest’s superiority in
feature importance evaluation. The synergistic effect of the
CNN, random forest, and SHAP significantly improves the
model’s blood glucose concentration prediction accuracy and
endows the prediction results with higher robustness.

(2)In the data preprocessing stage, this study systemati-
cally compared five commonly used data imputation methods
to explore the most suitable method for imputing missing val-
ues. Through the key evaluation index of Root Mean Squared
Error (RMSE), the imputation effects of each method were
quantitatively evaluated. Finally, the data imputation method
with the best performance was determined. Compared with
the second-ranked method, this optimal method achieved a
1.2% improvement in performance. This improvement not
only enhances the integrity and accuracy of the data, effec-
tively reduces the interference of missing data on subsequent
analysis, and improves the quality of the input data for
the model, but also makes the model more robust when
processing data, significantly improving the reliability and
effectiveness of the model’s predictions.

(3)The 40 features of the demographic and physiological
information used in this paper cover demographic and phys-
iological information. These features are diverse in dimen-
sions and comprehensive in content, encompassing multiple
aspects of the research subjects’ lives and health. The rich
and comprehensive data effectively prevents the model from
overfitting due to its simplicity. It creates favorable con-
ditions for the model to learn complex and realistic data
distributions, ensuring that it has excellent generalization
performance and can maintain stable prediction and analysis

performance in different scenarios.

(4)In this paper, the RFA-CNN model is compared and
analyzed with the other five benchmark models using the
Clarke Error Grid Diagram. The results show that the RFA-
CNN model has significant performance advantages. Com-
pared with the second-ranked model, its performance has
been improved by 4.97%. In the Clarke Error Grid Diagram,
the proportion of sample points in region A of the RFA-
CNN model is the highest, and the total proportion of sample
points in regions A and B exceeds 99%. This result fully
meets the strict clinical requirements. Since regions A and
B represent the clinically acceptable error range, the high
proportion of the RFA-CNN model in these regions indicates
that its prediction results are highly reliable. It can provide
accurate blood glucose prediction data for clinical decision-
making. While reducing the risks of clinical misdiagnosis
and missed diagnosis, it dramatically enhances the timeliness
and effectiveness of medical interventions, providing strong
support and guarantee for the formulation of clinical diagno-
sis and treatment plans and optimizing health management
strategies.

II. RESEARCH OVERVIEW
A. Prediction Methods Based on Machine Learning

BG Choi (2019) developed a 5-year T2DM prediction
model using 8,454 EMRs from Korea University Guro Hos-
pital, comparing logistic regression (LR), LDA, QDA, and
KNN via 10-fold cross-validation. The LR model achieved
the highest AUC (0.78), though no significant performance
gaps emerged among algorithms [12]. Meanwhile, Kun Lv
(2023) leveraged over 60,000 Chinese NFG individuals’
data, defining diabetes by HbAlc 48 mmol/mol. Logistic
regression outperformed other ML methods, yielding the
DRING model (13 features) with validated AUCs of 0.964
and 0.899 on independent datasets [13]. Key risk factors
included BMI, age, and sex, supported by a clinical web tool.
In noninvasive glucose monitoring, Meng Qi (2023) proposed
near-infrared spectroscopy models: LS-DBN-SVR (99.9%
correlation) and deep siamese network + SVR (MSE=0.024,
correlation +0.49), incorporating label-sensitive feature se-
lection [14]. Mi Peng (2023) developed a PPG-based system
using SVM/pulse rescreening, XGBoost feature selection,
and transfer learning to optimize a PSO-BP model, achieving
RMSE=0.902 mmol/L. with 88.89% A-zone accuracy [15].
For type 1 diabetes management, Daphne N. Katsarou (2025)
integrated XGBoost and SVR on 29 GlucoseML patients’
data, reducing hypoglycemia misclassification rates to en-
hance insulin precision and minimize short-term glucose
volatility. Collectively, these studies advance ML-driven di-
abetes prediction and management through EMR analysis,
noninvasive monitoring, and clinical tool development [16].

B. Prediction Methods Based on Deep Learning

Lin Zhongyan (2024) utilized single-layer perceptron
(SLP) on ophthalmology patient data from a Chinese
hospital, identifying significant correlations between al-
bumin levels, red blood cell counts, and comorbid dia-
betes/hypertension—with male patients demonstrating higher
risks [17]. He Yibo (2024) developed a 1DCNN-LSTM-
Attention hybrid model using near-infrared technology, in-
corporating a rime ice optimization algorithm (RIME) for
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parameter tuning. The architecture achieved MAE=0.121,
MSE=0.0186, and correlation coefficient=0.9823 by lever-
aging 1DCNN for local feature extraction, LSTM for tem-
poral dependencies, and attention mechanisms to emphasize
critical information. These results outperformed traditional
models, offering a novel solution for high-precision, non-
invasive glucose detection [18]. Tang Baoyu (2024) con-
structed the InsuNet ensemble neural network model using
discrete insulin injection records. The system achieved real-
time prediction without continuous monitoring by fusing
13 architectural models and validating with heterogeneous
datasets (RMSE= 14.78mg/dL). Ablation studies clarified
feature importance, and a visualization system was devel-
oped to enhance clinical interpretability [19]. Zhao Hang
(2024) optimized temporal feature extraction in deep learning
models (TEM-Former, Gluformer) through dilated convo-
lutions, periodic enhanced embedding layers, and multi-
scale residual convolutions. Combined with Huber Loss
for robustness, the model improved 30-minute prediction
accuracy (RMSE reduced by 7%—-15%, MAE decreased by
4%—-16%) and validated clinical safety via Clarke error grid
analysis (safe prediction proportion of 98.74%-99.38%) [20].
Xiao Zeqiu (2025) proposed the CNN-LSTM-attention deep
learning model (PBI-CLA) using time-series blood glucose
and insulin dose data. The model demonstrated significant
improvements over traditional methods, with RMSE reduced
by 12.82%, MAE decreased by 10.24%, and MAPE de-
creased by 10.24%, establishing a reliable framework for
real-time clinical glucose management [21].

III. ALGORITHM INTRODUCTION
A. Feature Selection Method: Random Forest

Random Forest is an ensemble learning algorithm with
multiple decision trees [22]. When performing feature se-
lection, Random Forest can evaluate the importance of each
feature. Its basic idea is to determine the importance of a
feature by comparing the degree of change in the Random
Forest model’s prediction accuracy after randomly shuffling
that feature’s values. The calculation steps and formula for
feature importance are as follows: Calculate the out-of-bag
data error of each tree T; (i=1,2,,n, wheren is the number of
trees) as

OOBérror =

> Iy # i) (1)

N
O0B cooB

Here, NOOB is the number of out-of-bag samples, I(-) is
the indicator function, y; is the actual label, and §; ; is the
predicted value of the j — th out-of-bag sample by the tree
T;. For each feature f, shuffle its values in the out-of-bag
data and then recalculate the out-of-bag data error, which is
denoted as OOB(, ... . The formula for the importance score
for the feature f is
1 n
importance f = - Z (OOBlor 5 —

i=1

OOBZ,rror ) (2)

B. Regression Model: CNN Model

The Convolutional Neural Network (CNN) is a type of
deep learning model widely used in fields such as im-
age recognition and predictive classification [23]. Its core

components include convolutional layers, activation function
layers, pooling layers, and fully connected layers, which can
automatically extract features from data.

(1)Convolutional Layer: The convolutional layer is one
of the core components of a Convolutional Neural Network
(CNN). It performs a convolution operation on the input data
through convolutional kernels to extract the features within
the data. The one-dimensional convolutional layer conducts
a convolution operation on a one-dimensional input sequence
with the aid of convolutional kernels, thereby extracting the
local features within the sequence.

Suppose the input sequence is a one-dimensional signal
with the size of X € RLXCin where L is the length of the
sequence and C},, is the number of input channels. The size
of the convolutional kernel is, here K € RL*CinXxCout ig the
length of the convolutional kernel, and C,,; is the number of
output channels. The convolutional operation will slide the
convolutional kernel over the input sequence and, at each
position, calculate the sum of the products of the elements
of the convolutional kernel and the corresponding elements
of the input sequence. The calculation formula of the output
feature map Y € REoutXCoutis as follows:

k—1 Cp—1

Z Z 1+m,c mc,j (3)
=0 c¢=0

Among them, Y; ; is the value of the output feature map at
the ¢ — th position and the j — th channel; X, ,, . is the
value of the input sequence at the (i +m) — th position and
the ¢ — th channel; K, . ; is the value of the convolutional
kernel at the m — th position, the ¢ — th input channel,
and the j — th output channel; b; is the bias of the j — th
output channel. The length L, of the output sequence can
be calculated by the following formula:

L — k + 2 x padding
stride

Lous = +1 “)
Here, padding is the size of the padding, and stride is the
step size by which the convolutional kernel slides.
(2)Activation Function Layer: The activation function
layer is a processing layer located after the convolutional
layer. It performs a non-linear transformation on the linear
results output by the convolutional layer, thereby enhancing
the expressive ability of the CNN and enabling the network
to learn complex data features. The activation function layer
in the RFA-CNN model of this paper uses the SiLU function,
and the mathematical expression of the SiLU function is:

flz) =2 x o(x) (5)

Among them, o(z) = = is the Sigmoid function. The
SiLU function combines the characteristics of the linear and
Sigmoid functions. It exhibits linear behavior when the input
value is large and nonlinear behavior when the input value
is small.

(3)Pooling Layer: The pooling layer is crucial in a Con-
volutional Neural Network (CNN) and is primarily used
for downsampling the output of the convolutional layer.
It reduces the data dimension and computational cost by
performing specific operations (such as taking the maximum
or average value) in local regions while enhancing the
robustness of features. In this paper, three max-pooling layers
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are adopted. The max-pooling layer is a type of downsam-
pling operation layer used to reduce the dimension of the
feature sequence output by the convolutional layer in a one-
dimensional CNN. It achieves downsampling by selecting the
maximum value within a local window of a specified length.
Let the input feature sequence be X € RX*¢ where L is the
sequence length and C' is the number of channels. The size
of the pooling window is p, and the stride is s. The output
feature sequence is Y € RLDMXC.Among them,L,,; =
[% + 1} .For each channel ¢ € {1,2,--- ,C}, the value of
the output sequence at position i (¢ =0,1, -+, Loy — 1),
denoted as Y; . is: V; . = maxfgé Xixs+j,ec. That is, for
each channel, the maximum value is selected from the p
elements within each pooling window as the value of the
corresponding position in the output sequence.

C. Missing Value Handling Method: Multiple Imputation

The multiple imputation method is a data preprocessing
technique. It deals with the missing values in the dataset
through multiple strategies, comprehensively using methods
such as mean imputation, regression imputation, and mul-
tiple imputation to improve the integrity of the data. The
multiple imputation method plays a crucial role in the data
preprocessing stage. It can flexibly select various imputation
methods according to different data missing situations and
data characteristics, effectively reducing the adverse effects
of data missing on subsequent data analysis and model
construction.

D. Evaluation Indicators:MSE,MAE and EGA

This paper aims to predict blood glucose concentration
levels in diabetic patients, which is inherently a multivariate
regression task. Given the high-performance requirements for
blood glucose concentration prediction and numerous outliers
in the data samples, this paper selects Mean Squared Error
(MSE) and Mean Absolute Error (MAE) as the primary
metrics for evaluating model performance. The advantage of
MSE lies in its squaring of errors, which sensitively reflects
the degree of deviation between predicted and actual values.
MAE’s strength is in directly calculating the average of the
absolute errors, offering relative robustness to outliers, and
providing a more intuitive reflection of the actual average
size of prediction errors. The combination of both metrics
better reflects the overall performance of the model.

Additionally, the Clarke Error Grid Analysis (EGA) [29] is
commonly used in the medical field to assess the accuracy of
blood glucose measurement prediction models. The Clarke
Error Grid sets the horizontal axis to the reference actual
values and the vertical axis to the model’s predicted values.
Divided by multiple line segments, it is categorized into five
regions. Region A is considered clinically accurate; Region B
has a small error and is within clinically acceptable limits;
Region C has a larger error; and Regions D and E has a
significant error between the predicted and true values, which
is not guidance for practical clinical application. Therefore,
this paper also adopts the Clarke Error Grid as a metric for
determining the accuracy of experimental results.

The calculation formula of the Mean Squared Error (MSE)

is shown as follows:
1 — 9
MSE = — i — Ui 6
- ; (vi — ) (©)
The calculation formula of the Mean Absolute Error
(MAE) is as follows:

1< .
MAE - n Zzzl |yz yz| (7)
The true value is y; , the predicted value is ¢; , and the
number of samples is n .The smaller the values of Mean
Squared Error (MSE) and Mean Absolute Error (MAE) are,
the smaller the actual error of the model is, and the more
accurate the prediction results will be.

E. Benchmark Model

In order to verify the prediction effect of the RFA-CNN
model, this paper selects five representative models for
comparative experiments:

DNN [25](Deep Neural Network): A computational model
that achieves hierarchical feature learning through multiple
layers of non-linear transformations, excelling at automati-
cally extracting abstract representations from raw data and
widely applied in fields such as image classification, speech
recognition, and natural language processing.

ANN [26](Artificial Neural Network): A computational
model constructed by imitating the information-processing
mechanism of the human nervous system. It has powerful
adaptive and self-learning characteristics, can model complex
non-linear relationships, and can be widely applied in many
fields, such as predictive analysis, pattern recognition, and
data clustering.

MLP [27](Multilayer Perceptron): A network model based
on a feed-forward architecture consisting of an input layer,
multiple hidden layers, and an output layer. It processes
neuron inputs through non-linear activation functions and
can approximate any complex continuous function. It can
solve various machine-learning tasks such as classification
and regression.

LSTM [24](Long Short-Term Memory network): A re-
current neural network architecture that dynamically man-
ages long-term and short-term information through input,
forget, and output gates. It can effectively capture long-range
dependencies in sequential data and is widely applied in
natural language processing, speech recognition, and time
series prediction tasks.

GRU [28](Gated Recurrent Unit): A simplified variant of
recurrent neural networks that control the flow and forgetting
of information through an update gate and a reset gate.
It effectively alleviates the issues of gradient vanishing
or exploding, efficiently learns long-range dependencies in
sequential data, and is commonly used in tasks such as
machine translation, speech recognition, and text generation.

F. SHAP Interpreter

SHAP (Shapley Additive exPlanations) is a unified model
interpretation framework based on the principle of Shapley
values in game theory. It aims to quantify the marginal con-
tribution of each feature in a machine-learning model to the
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final prediction result. Its core idea is to regard the prediction
result as a payoff distribution problem in a multi-player
cooperative game. A fair distribution of feature contributions
is achieved by calculating the average marginal contribution
value of a feature in all possible combinations. Unlike tra-
ditional local interpretation methods, SHAP supports simple
algorithms such as linear models and tree-based models and
can also effectively interpret complex black-box models like
deep neural networks. It can capture both the interaction
effects and non-linear relationships among features. This
framework constructs a feature-dependent expected value de-
composition, transforming the prediction results of complex
models into an interpretable additive form. It provides a
global feature importance ranking and enables local attribu-
tion analysis for individual samples. It has broad application
value in medical diagnosis and financial risk control, which
require highly reliable decision-making support. The balance
between its mathematical rigor and computational efficiency
makes it one of the most mainstream model interpretation
tools currently. SHAP plots are a set of visualization-based
interpretation tools derived from this framework, including
various types such as summary plots, dependence plots, and
force plots. By superimposing the feature value distribution
and SHAP value scatter points, the summary plot intuitively
shows the average impact direction and intensity of features
on the prediction results and reveals the correlations among
features simultaneously.

IV. MODEL ESTABLISHMENT

A. Data Source

The research data for this paper is sourced from the Al-
ibaba Cloud Al Precision Medicine Competition project. The
dataset comprises basic information, physical indicators, and
blood glucose levels of the sample population, totaling 5642
samples. The feature variables include basic demographics of
the sample population, such as gender, physical examination
date, and age, as well as various physical indicators like
hemoglobin, platelet count, white blood cell count, creati-
nine, total cholesterol, etc. The data label is the blood glucose
level of the sample population.

B. Data preprocessing

Irrelevant variables in the original dataset, such as personal
identifiers and physical examination dates, were removed.
Features with missing values exceeding 70% of the total
dataset were excluded, while the comparative analysis of data
imputation methods will be detailed in the subsequent Data
“Imputation Methods” section. Thirty-four original clinical
indicators, including age, gender, alanine aminotransferase
(ALT), etc., were selected as independent variables, with
blood glucose levels as the dependent variable. To miti-
gate heteroscedasticity caused by varying measurement units
across medical indicators, all variables were normalized to
a [0,1] range using min-max scaling. The dataset was then
partitioned into training and test sets at a 4:1 ratio. Data
augmentation was applied to the training set by introducing
random noise to expand the sample size. The processed data
were subsequently fed into the model for analysis.

C. Comparison of Data Imputation Methods

This paper systematically evaluates five missing value
imputation methods—mean imputation, random forest im-
putation, spline interpolation, KNN imputation, and multiple
imputation—across six predictive models, with a total of
19,059 missing values imputed during experiments. The
comparative results of glucose concentration prediction using
different data completion approaches are visualized in Fig.
1.
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Fig. 1.
Methods

Comparison Diagram of RMSE for Missing Value Imputation

Specifically, the proposed RFA-CNN model achieved the
lowest test set RMSE when combined with multiple im-
putations, leading to its adoption as the optimal method.
Multiple imputation preserves original data uncertainty and
statistical properties by generating and aggregating results
from multiple plausible datasets. It outperforms single im-
putation methods by comprehensively capturing complex
dependencies while avoiding information loss (mean im-
putation) or local bias (KNN imputation). In the RFA-
CNN framework, Bayesian-based multiple imputation mit-
igates overfitting risks and enhances adaptability to high-
dimensional nonlinear features through iterative refinement
of imputed values.

D. Parameter Setting And Model Architecture

Hyperparameter optimization is a crucial aspect of ma-
chine learning and deep learning methods, directly affecting
the model’s performance and effectiveness. Commonly used
hyperparameter optimization methods include grid search,
random search, Bayesian optimization, etc. Grid search for
hyperparameters can systematically traverse hyperparameter
combinations, search for better configurations, and improve
the model’s performance. This paper employs the grid search
method with five-fold cross-validation to tune the hyper-
parameters of the RFA-CNN model, thereby minimizing
the model’s prediction error. In the experiment, the Mean
Squared Error (MSE) index is used to evaluate the hyper-
parameters’ prediction effect, and the RFA-CNN model’s
optimal hyperparameters are obtained, as shown in TABLE
L.

After using the grid search with five-fold cross-validation
for hyperparameter tuning, the researchers defined the CNN-
based neural network model CNNModel based on these
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TABLE I
HYPERPARAMETER SETTING TABLE

Hyperparameters Optimal Values  Parameter Ranges
Conv_layers_number 3 [1,2,3,4,5]
kernel_size 3 [3,5,71
Pool_layers_number 3 [1,2,3]
Pooling_kernel_size 2 [1,2,3]
Dropout Rate 0.3 [0.1,0.2,0.3]
Learning Rate 0.0001 [0.001,0.0001]
Weight Decay 0.001 [0.001,0.0001]
num_epochs 500 [300,500,1000]
Optimizer Adam [Adam,SGD]
TABLE 1T

PARAMETER QUANTITIES PER LAYER OF RFA - CNN MODEL

Layer Name Output Dimension ~ Parameters
Convld - 1 [-1, 64, 31] 256
BatchNormld - 2 [-1, 64, 31] 128
SiLU - 3 [-1, 64, 31] 0
MaxPoolld - 4 [-1, 64, 15] 0
Convld - 5 [-1, 128, 15] 24704
BatchNormld - 6 [-1, 128, 15] 256
SiLU - 7 [-1, 128, 15] 0
MaxPoolld - 8 [-1, 128, 7] 0
Convld - 9 [-1, 256, 7] 98560
BatchNormld - 10 [-1, 256, 7] 512
SiLU - 11 [-1, 256, 7] 0
MaxPoolld - 12 [-1, 256, 3] 0
Linear - 13 [-1, 512] 393728
SiLU - 14 [-1, 512] 0
Dropout - 15 [-1, 512] 0
Linear - 16 [-1, 256] 131328
SiLU - 17 [-1, 256] 0
Linear - 18 [-1, 1] 257

parameters. This enables the model’s structural and param-
eter configuration to better conform to the characteristics of
the data, allowing an appropriate number of convolutional
kernels to extract features more effectively. The architecture
of the RFA-CNN model is shown in the following figure.
Subsequently, a regressor CNNTorchRegressor compatible
with sci-kit-learn was customized. The model was trained
using the Mean Squared Error (MSE) loss function and the
Adam optimizer in the fit method. Moreover, the learning
rate was dynamically adjusted through a learning rate sched-
uler, and an early stopping strategy was adopted to prevent
overfitting.

As can be seen from TABLE II, the model structure starts
with an input layer that receives data from 31 variables. The
first convolutional layer, Convl, has a convolutional kernel
parameter of 1x64x3, where 1 represents the number of
input channels, 64 represents the number of output channels,
and 3 represents the convolutional kernel size. Immediately
following are a BatchNorm1d layer for batch normalization,
a SiLU activation function layer for introducing non-linearity,
and a MaxPoolld layer with a pooling kernel size of 2 for
downsampling. The second convolutional module is com-
posed of Conv2, with a convolutional kernel parameter of

64x128x3 (where 64 is the number of input channels, 128
is the number of output channels, and 3 is the size of the
convolutional kernel). Subsequently, a BatchNorm1d layer, a
SiLU layer, and a MaxPoolld layer (with a pooling kernel
size of 2) are connected sequentially, just like in the previous
module. The Conv3 in the third convolutional module has a
convolutional kernel parameter of 128x256x3 (where 128 is
the number of input channels, 256 is the number of output
channels, and 3 is the size of the convolutional kernel). It
is also followed by the corresponding BatchNormld layer,
SiLU layer, and MaxPoolld layer (with a pooling kernel size
of 2). After the convolutional and pooling operations, the
data enters the fully connected layer part. The Linearl layer
has an input dimension of 256 and an output dimension of
512. Then, there is a SiLU activation function layer and a
Dropout layer to prevent overfitting. The subsequent Linear2
layer inputs 512 dimensions and outputs 256 dimensions,
followed by another SiLU layer. Finally, the Linear3 layer
inputs 256 dimensions and outputs one dimension, generating
the final output result.

E. Variable Selection

This study conducts feature selection to reduce data di-
mensionality, prevent overfitting, and improve the compu-
tational efficiency, generalization ability, and interpretability
of the model. The aim is to identify the number of features
corresponding to the lowest Mean Squared Error (MSE) on
the test set and then apply this optimal number of features to
the optimal model. Given that the proposed RFA-CNN model
has three pooling layers and considering that an insufficient
number of features may lead to the omission of crucial
information, feature selection starts when the number of
features is eight. This study employs the Random Forest
(RF) algorithm for feature selection. Specifically, it trains the
model using RandomForestRegressor, obtains the importance
scores of each feature through the feature_importances_ at-
tribute, and finally uses the np. argsort function to rank the
features in descending order of importance. Subsequently,
the top eight most important features are fed into the model
for calculation, initiating an automated search for the optimal
number of features.

As shown in Fig. 2, the top 15 important features in-
clude Triglyceride, Age, Uric Acid, *Aspartate Aminotrans-
ferase, *Alanine Aminotransferase, *Alkaline Phosphatase,
*Gamma-Glutamyl Transferase, Urea, Mean Corpuscular
Volume, White Blood Cell Count, High - Density Lipoprotein
Cholesterol, Total Cholesterol, Red Blood Cell Count, Red
Cell Distribution Width, and Albumin. Triglyceride has the
highest importance score, indicating its dominant role in
influencing the model’s output, which may imply a strong
intrinsic correlation with the target variable. Age follows
closely, suggesting its non-negotiable impact on the model’s
prediction, perhaps reflecting age-related patterns in the data.
Uric Acid also holds a relatively prominent position. Various
aminotransferases and Urea highlight that these biochemical
indicators are vital for the model, likely being closely asso-
ciated with the underlying mechanisms or patterns the model
aims to capture.

The method for determining the screening threshold (i.e.,
the optimal number of features) is as follows: iterate through
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Fig. 3. The Result Graph of Feature Selection

different numbers of features, from eight to the total number
of features. Each time, select the corresponding number of
important features to train the model and make predictions
on the test set. Calculate the Mean Squared Error (MSE) of
the test set and take the number of features corresponding to
the minimum MSE as the optimal number.

Fig. 3. indicates that starting from eight features, the MSE
gradually decreases and reaches its lowest point when the
number of selected features is 31. Subsequently, the MSE
begins to increase. Therefore, the optimal number of features
is 31. If feature selection is not performed and all variables
are directly input into the model for calculation, the test set’s
Mean Squared Error (MSE) is 0.003787. Therefore, after
feature selection, the MSE of the model is reduced by 2.59%.

T T
0.04 0.06
Feature Importance

V. MODEL PERFORMANCE IN-DEPTH ANALYSIS
A. Insights from Prediction Error Scatter Plot

Fig. 4. visually depicts the distribution of prediction errors
from the RFA-CNN model. The horizontal axis represents
the sample point numbering after data augmentation, while
the vertical axis indicates the prediction error values. Most
prediction errors are clustered near zero, demonstrating a
high degree of consistency between predicted and actual
values, reflecting the model’s high accuracy and reliability
in output. Furthermore, most errors fall within the range
of [-0.1, 0.1], highlighting the precision of the model’s
predictions. Nevertheless, some outliers are present in the
dataset, particularly noticeable within certain intervals along
the horizontal axis. These outliers represent cases where
prediction errors deviate significantly from the expected
range, potentially attributable to noise introduced during
data augmentation by researchers. However, their limited
quantity has only a marginal impact on the model’s overall
performance.

B. Learning Curve Analysis

The learning curve depicted in Fig. 5. illustrates the
convergence behavior of the RFA-CNN model during its
training phase. The x-axis represents the number of epochs,
while the y-axis indicates the loss value measured by mean
squared error (MSE). Initially, the training loss (yellow line)
and test loss (purple line) exhibit a sharp decline trend within
the first few epochs. This rapid reduction suggests that the
model quickly learns from the training data and adjusts its
parameters to minimize errors. As training progresses beyond
approximately 50 epochs, both curves tend to stabilize,
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although occasional minor fluctuations or rebounds may
occur. This stability implies that the model has reached a
relatively mature stage where further training might not yield
significant improvements and could even introduce noise
due to diminishing returns. In summary, this learning curve
demonstrates favorable performance characteristics of the
RFA-CNN model throughout the training process, including
efficient error reduction across all training phases, minimal
overfitting, and ultimate stabilization, indicating optimal pa-
rameter settings. These attributes collectively underscore the
effectiveness of the chosen architecture and hyperparameter
tuning processes applied for specific tasks.

C. Model Ablation Analysis

This paper adopts a module-level ablation experiment
method to verify the contribution of key modules to the
prediction performance of the RFA-CNN model. The com-
ponents of the convolutional block, which consists of a
convolutional layer (Conv), a batch normalization layer (BN),
a SiLU activation function, a pooling layer (Pool), and the
Dropout regularization layer, are removed separately for
comparative analysis.

The results presented in TABLE III above show that when
the convolutional blocks are ablated step-by-step, the model’s
performance deteriorates notably. Removing Block 1 leads
to around a 1.82% drop in performance. When Blocks 1
and 2 are ablated, the performance decline is approximately
4.74%. If Blocks 1, 2, and 3 are further ablated, the MSE
of the test set skyrockets to 0.005156, and the performance
drops by a significant 40.85%. This shows the core benefits

0.003701, and the performance decreases by about 0.325%.
This indicates that the Dropout layer inhibits overfitting
by randomly deactivating neurons. It improves the model’s
generalization ability on the test data and keeps the training
stable. Although its small effect is still a vital component for
ensuring the model’s performance.

D. Model Interpretation with SHAP

Researchers employed the SHAP interpreter for model
interpretation to further explain the RFA-CNN model in our
study. They selected the first 100 data points from the training
set as background data to form a SHAP interpreter and chose
the top ten variables regarding SHAP values among these
100 data points for explanation. According to Fig. 6. below,
this SHAP summary plot vividly demonstrates the impact
of various features on the model output. Each dot in the
figure represents a sample. Its position on the horizontal
axis indicates the SHAP value (the impact on the model
output), and the color reflects the feature value (red for
high and blue for low). For example, "Age” shows that
as its feature value increases (red dots), the SHAP value
tends to be positive, indicating that the older the age, the
higher the blood glucose level tends to be. Similarly, "High-
density Lipoprotein Cholesterol” and ”Albumin” also exhibit
a correlation between higher feature values (red dots) and
positive SHAP values, meaning they significantly contribute
to increasing the model output. Notably, for ”Age,” “High-
Density Lipoprotein Cholesterol,” and ”Albumin,” most of
the dots are located on the left side of the axis, which
suggests that the blood glucose levels of most people are
relatively low. In addition, features such as “Neutrophil
Percentage” show a more complex distribution with mixed
colors, indicating diverse impacts on the model output.
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VI. COMPARATIVE EXPERIMENT ANALYSIS
A. Model-wise Comparison of MSE, MAE and MSE*

In this study, blood glucose concentration predictions were
conducted using the RFA-CNN, DNN, ANN, MLP, LSTM,
and GRU models. For these six models, the significance
test results of pairwise comparisons between the RFA-CNN
model and each benchmark model based on independent
sample t-tests are shown in Table IV below, and the indicators
of Mean Squared Error (MSE), Mean Absolute Error (MAE),
and MSE* (the difference between the training set MSE
and the test set MSE) for different prediction methods are
presented in Table V below.

TABLE IV
PAIRWISE COMPARISON OF MODELS: P-VALUES FOR MSE AND MAE

Model 1 Model 2 p-value-MSE  p-value-MAE
RFA-CNN DNN 1.70 x 109 2.55 x 10~8
RFA-CNN ANN 2.08 x 1077 5.12 x 10~8
RFA-CNN GRU 3.49 x 10712 123 x 10711
RFA-CNN  LSTM 777 x 1075 393 x107°
RFA-CNN MLP 4.03x 1077  6.04x 1076

The two tables clearly show that the p-values of the RFA-
CNN model compared with the other five models on both
MSE and MAE metrics are all less than 0.001, indicating
that their prediction performances have extremely significant
statistical differences. This suggests that the improvement in

TABLE V
COMPARISON TABLE OF S1X MODEL INDICATOR

Models Evaluation Indicators  Indicator Values
RFA - CNN MSE 0.003689
MAE 0.035084
MSE* 0.000142
DNN MSE 0.003891
MAE 0.035121
MSE* 0.000452
ANN MSE 0.004059
MAE 0.034705
MSE#* 0.000662
MLP MSE 0.003882
MAE 0.035867
MSE* 0.000341
LSTM MSE 0.004429
MAE 0.03527
MSE* 0.000809
GRU MSE 0.004357
MAE 0.037123
MSE#* 0.000752

blood glucose prediction accuracy of the RFA-CNN model
is not accidental but a substantial enhancement brought by
the model structure design.

The Mean Squared Error (MSE) of the RFA-CNN model
is significantly lower than that of the other five models.
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Notably, the MSE of RFA-CNN is 4.97% lower than that
of the MLP model (the second-best in MSE), indicating its
higher overall prediction accuracy. Since MSE is sensitive
to squared error terms, the lower MSE value of the RFA-
CNN model demonstrates its higher efficiency in handling
the deviation between predicted and actual values, especially
in reducing the impact of large-error samples and enhancing
the overall data fitting effect.

Regarding the Mean Absolute Error (MAE) metric, al-
though the MAE of RFA-CNN is slightly higher than that
of the ANN model, it is still lower than those of the
other four models. This indicates that the ANN model has
certain advantages in reducing the absolute error of specific
samples. At the same time, RFA-CNN exhibits more stable
performance in balancing the absolute errors across the entire
sample set, providing more balanced and stable prediction
results than most comparative models. Additionally, RFA-
CNN has the lowest MSE* value (the difference between the
training set MSE and the test set MSE), fully demonstrating
the minor error difference between the training and test sets,
lower overfitting risk, and superior generalization capability
to unknown data, thus maintaining stable prediction per-
formance across different data distributions. By integrating
CNN at appropriate positions to capture the nonlinear charac-
teristics of blood glucose data and combining random forests
to enhance feature robustness, the RFA-CNN model further
improves its prediction accuracy and reliability.

B. Model - wise Comparison of Clarke Error Grid Plot

To evaluate the performance of the models on the training
set, we presented the results of the test set in the form of a
Clarke Error Grid plot. The table compares the probabilities
of six models falling into Zone A and Zone B. Specifically,
the probability of the RFA-CNN model falling into Zone A
is 83.87%, and the probability of it falling into Zone B is
15.41%. The RFA-CNN model has the highest probability
of falling into Zone A, surpassing the ANN model (ranked
second) and the LSTM model (ranked third). The GRU
model has the lowest probability of falling into Zone A
compared to the other models. The detailed data are shown
in Table VI.

Fig. 7. illustrates that the prediction data points of the
RFA-CNN model are densely clustered in Clinical Error Grid
Area A, with a remarkable proportion of 83.9%, substantially
higher than that of the other five models. In particular, the
combined proportion of sample points in Area A and Area B
for the RFA-CNN model exceeds 99%, with a relatively high
percentage in Area A. This indicates the excellent precision
and reliability of the model [31]. This concentration signifies
that the deviation of the predicted glucose concentrations
from the reference concentrations is negligible, with the over-
whelming majority of outcomes falling within the clinically
entirely acceptable range. In diabetes management, a high
percentage of data points in Area A is crucial as it implies
that the model’s predictions are reliable and safe for clinical
decision-making, reducing the risk of incorrect treatment
actions.

In contrast, while the DNN, ANN, and MLP models
have many data points in Area A, their greater scatter and
tendency to diffuse towards Area B suggest less precision

TABLE VI
COMPARISON OF PROBABILITY OF FALLING INTO DIFFERENT ZONES
FOR S1X MODELS

Model Zone  Probability of Falling into this Zone
RFA - CNN A 83.87%
B 15.41%
DNN A 81.84%
B 17.44%
ANN A 83.52%
B 15.76%
GRU A 80.42%
B 18.86%
LSTM A 82.99%
B 16.29%
MLP A 81.48%
B 17.80%

in predictions. The LSTM and GRU models, on the other
hand, do not exhibit sufficient clustering in Area A, with
some predictions significantly underestimating the actual
values, leading to a higher incidence of sample points moving
into Area B, which can be as high as 16.4% and 18.8%
respectively. The high concentration of data points in Area
A by the RFA-CNN model is therefore of significant im-
portance in diabetes management, as it ensures that glucose
predictions are aligned closely with actual values, thereby
enhancing patient safety and the effectiveness of therapeutic
interventions.

VII. CONCLUSION

Through the application of the RFA-CNN model for blood
glucose value prediction, this paper arrives at the following
four conclusions:

(1)The model demonstrates remarkable performance ad-
vantages. The RFA-CNN model proposed in this study
innovatively combines Random Forest feature selection and
SHAP interpretability, addressing prediction accuracy and
clinical transparency. By quantifying feature contributions
via SHAP, the framework reveals the nonlinear impacts
of age, HDL-C, and albumin on blood glucose levels,
making it a robust tool for data-driven clinical decision
support. It exhibits outstanding performance in blood glucose
concentration prediction compared to five other benchmark
models. The Mean Squared Error (MSE) of its test set
reaches 0.003689, which is a 4.97% reduction compared
to the second-ranked Multi-Layer Perceptron (MLP) model.
Moreover, its test set’s Mean Absolute Error (MAE) is
0.035084, remaining at a relatively low level. In the Clarke
Error Grid analysis, as high as 83.9% of the predicted
values fall within the clinically accurate Region A, and the
proportion of Region A+B exceeds 99%, fully meeting the
strict clinical application standards. This indicates that the
model can accurately capture the nonlinear patterns of blood
glucose fluctuations, providing a reliable basis for clinical
decision-making.

(2)The data preprocessing yields favorable results. The
multiple imputation method enhances data quality: During
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the data preprocessing stage, through a systematic compar-
ison of five data imputation methods, it is found that the
multiple imputation method performs the best. Compared
with the suboptimal K-Nearest Neighbors (KNN) imputation
method, it reduces the Root Mean Squared Error (RMSE)
by 1.2%. This method retains the uncertainty and statistical
characteristics of the original data by generating and aggre-
gating the results of multiple reasonable datasets, effectively
reducing the interference of missing values on the model,
improving the integrity and accuracy of the data, and laying
a solid foundation for subsequent analysis.

(3)The feature selection achieves excellent outcomes. Fea-
ture selection by Random Forest optimizes the model: By
leveraging the Random Forest algorithm for feature selec-
tion, a combination of 31 optimal features is determined.
Compared with the input of all features, the MSE is re-
duced by 2.59%. This process reduces redundant information
and retains key physiological indicators such as age and
hemoglobin, enhancing the model’s generalization ability
and enabling the model to more efficiently extract useful
information from high-dimensional data.

(4)The model architecture is rationally designed. The
RFA-CNN model organically combines the Random Forest
(RF) and the Convolutional Neural Network (CNN), giving
full play to both advantages. The optimal hyperparameters
of the model are obtained through grid search with five-fold
cross-validation, resulting in better model performance. The
local patterns are extracted through a three-layer convolu-
tional and pooling structure. By integrating with the feature

importance evaluation of the Random Forest, the prediction
accuracy and robustness are significantly improved. Ablation
experiments show that removing any convolutional block
or dropout layer will substantially decline model perfor-
mance, verifying the crucial roles of convolutional blocks
and dropout layers in the model architecture.
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