
 

  
Abstract—The application and development of remote 

monitoring big data for heavy-duty diesel vehicles (HDDVs) is a 
critical technology and a key focus for the effective supervision 
of vehicle emissions and energy consumption in the 
transportation sector. However, the lack of rigorous accuracy 
verification for these remote monitoring data significantly 
impedes their practical application and wider development. To 
address this challenge, this research investigates accuracy 
verification methods for remote monitoring data concerning 
HDDVs emissions and energy consumption. By integrating 
correlation analysis, linear regression modeling, the 
Bland-Altman method, and factor accounting theory, we 
propose a comprehensive framework for verifying HDDVs 
remote monitoring data accuracy. This framework evaluates 
the data from three perspectives: correlation strength, 
consistency, and suitability for application (specifically, 
emission factor calculation). Results demonstrate that key 
parameters within the remote monitoring dataset—vehicle 
speed, fuel flow, intake flow, and NOx emission rate—exhibit a 
strong positive correlation and excellent consistency with 
corresponding reference measurements. The coefficient of 
determination (R²) exceeded 0.94 for all relevant comparisons. 
Furthermore, over 95.01% of data samples fell within the 95% 
consistency limits defined by the Bland-Altman method. 
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Crucially, emission factors calculated using the remote 
monitoring data deviated by less than ±10% from actual 
measurements, while fuel consumption factors showed 
deviations within ±5%. These findings establish a robust 
scientific basis for the regulation of in-use vehicles. 

 
Index Terms—Heavy-duty diesel vehicle, Remote monitoring, 

Exhaust emissions, Fuel consumption, Data accuracy 
verification 

I. INTRODUCTION 
eavy-duty diesel vehicles (HDDVs) constitute a major 
source of road transport emissions and energy 

consumption in China. This prominence stems largely from 
rapid economic development and expanding road freight 
demand over the past three decades [1-4]. Reports indicate 
HDDVs accounted for over 80% of total vehicular NOx 
emissions and exceeded 59% of the transportation sector’s 
carbon emissions in 2023 [5]. Such substantial pollutant 
loads and fuel consumption pose severe threats to 
environmental integrity, public health, and national energy 
security [6-7]. To address these challenges, China 
promulgated the Three-Year Action Plan for Winning the 
Blue Sky Defense Battle (2018), reinforcing its commitment 
to air quality improvement [8]. This plan explicitly mandated 
enhanced emission oversight of HDDVs. Concurrently, the 
Ministry of Ecology and Environment enacted 
GB17691-2018 "Limits and measurement methods for 
emissions from diesel fuelled heavy-duty vehicles (China 
VI)", which requires the installation of onboard terminals 
from the China VIb phase onward for real-time monitoring of 
emissions and fuel use throughout the vehicle lifecycle [9]. 
Further amplifying these efforts, the Ministry jointly issued 
the "Action Plan for the Battle Against Diesel Truck 
Pollution" in late 2018, specifically advocating for 
"promoting the construction of remote monitoring systems 
for HDDVs" [10]. Consequently, China's HDDV remote 
monitoring system was formally introduced 

Beijing stands among the earliest adopters of the HDDV 
remote monitoring system in China [11]. As of 2023, the 
system encompasses over 190,000 HDDVs in the Beijing 
region, involving more than 590 enterprises. Vehicle 
connectivity exceeds 60%, with an average daily online 
duration of approximately 7 hours. This infrastructure 
enables continuous data collection and oversight of 
connected vehicles, establishing a robust foundation for 
environmental regulators and manufacturers to monitor 
emissions, energy consumption, and operational status in 
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real-time [12-14]. Furthermore, the system facilitates the 
acquisition of substantial volumes of HDDV operational data, 
termed remote monitoring data. These data effectively 
support regional emissions inventories, energy consumption 
accounting, and the iterative refinement of automotive 
products [15-17]. Consequently, advancing the application 
and development of HDDV remote monitoring data has 
emerged as a significant research focus, particularly in 
vehicle energy efficiency, pollution control, carbon 
mitigation, and environmental protection. 

However, data acquisition and transmission are susceptible 
to multiple confounding factors, including sensor 
inaccuracies, signal conversion errors, data parsing 
inconsistencies, and potential data tampering [18-19]. These 
issues frequently introduce discrepancies between the 
monitoring data and reference measurements. Such 
discrepancies have generated significant dissatisfaction 
among data users and vehicle owners, undermining 
confidence in emission compliance policies and regulatory 
enforcement mechanisms reliant on remote monitoring data. 
Therefore, rigorous accuracy verification of remote 
monitoring data is a prerequisite for its reliable application 
and further development. 

Addressing this need, Sun et al. [20] employed a full-flow 
emission analyzer to collect reference NOx measurements for 
validation. Their comparative analysis demonstrated that 
remote monitoring system NOx data complied with China VI 
regulatory requirements. Similarly, Xiong et al. [21] utilized 
cross-correlation analysis to assess data accuracy, identifying 
inherent latency within the remote monitoring system. They 
successfully corrected this latency by introducing noise 
signals (-10 dB signal-to-noise ratio), achieving a coefficient 
of determination (R²) exceeding 0.9 between corrected 
remote data and reference vehicle measurements. Ren et al. 
[22] applied linear regression to evaluate correlations 
between remote monitoring data and Portable Emission 
Measurement System (PEMS) measurements. Their research 
confirmed strong correlations for parameters like vehicle 
speed, fuel flow rate, and intake flow, while noting 
discernible deviations in NOx emission data relative to 
PEMS measurements. Collectively, these studies underscore 
the critical importance and ongoing challenges of remote 
monitoring data validation. 

Current research predominantly focuses on correlational 
analyses between remote monitoring data and reference 
measurements, while largely overlooking critical accuracy 
verification regarding data consistency and practical 
application. This gap highlights a significant limitation in 
existing methodologies for validating HDDV remote 
monitoring data. While strong correlation may exist between 
measurement methods, such statistical association does not 
inherently demonstrate methodological equivalence or 
interchangeability [23]. Consequently, rigorous assessment 
of data consistency is essential. Furthermore, the core 
purpose of HDDV remote monitoring—effective supervision 
of emissions and energy consumption—depends 
fundamentally on the reliable application of these data. 
Robust data consistency serves as a prerequisite for 
trustworthy application outcomes. Therefore, advancing 
accuracy verification research specifically addressing data 

consistency and application validity holds substantial 
scientific and regulatory significance. 

To bridge this gap, this study integrates correlation 
analysis, linear regression modeling, Bland-Altman 
agreement assessment, and factor accounting theory to 
establish a comprehensive framework for HDDV remote 
monitoring data verification. We systematically evaluate data 
accuracy across three dimensions: correlation strength, 
statistical consistency, and applicability to emission/fuel 
consumption factor calculation. This approach delivers 
robust validation for this emerging big data source by directly 
addressing the critical limitations posed by the absence of 
consistency and application-layer verification in existing 
studies. 

II. MATERIALS & METHODS 

A. Real-road Data Acquisition 
To verify the remote monitoring data’s accuracy for 

HDDVs, the real road data acquisition test is conducted in 
this paper. The PEMS [24-25] is utilized to acquire HDDVs’ 
operational and emission data. This provides a robust data 
foundation for the accuracy verification of remote monitoring 
data. Fig. 1 presents the details of the real road data 
acquisition test conducted in this paper. A total of 100 
HDDVs are selected for the real road data acquisition test. 
These vehicles encompassed a diverse range of vehicle 
models, including tractors, trucks, buses, dumpers, and 
special vehicles, as illustrated in Fig. 1(a). These test vehicles 
are sourced from 18 different domestic and international 
manufacturers of HDDVs, covering all types of heavy 
commercial vehicles, as classified in Fig. 1(b). All test 
vehicles comply with China VI regulations, and each is 
equipped with an on-board terminal that met regulatory 
requirements. This terminal enables real-time retrieval of a 
vehicle’s OBD information and data streams, which are 
transmitted to remote monitoring system in accordance with 
the communication protocol. Thus facilitating the generation 
of remote monitoring data for HDDVs. The primary 
objective of this data is to enable real-time monitoring of fuel 
consumption and emissions for HDDVs, supporting the 
identification and tracing of vehicles exhibiting high fuel 
consumption and emissions. The remote monitoring data 
included critical parameters such as vehicle speed, fuel flow, 
intake flow, and NOx emission rates, as shown on the right 
side of Fig. 1(d). 

Furthermore, during real road data acquisition using 
PEMS, the driving conditions and loading parameters 
adhered to the stipulations of China VI regulations [25]. The 
driving conditions for the test vehicles consisted of 20% 
urban roads, 25% suburban roads, and 55% highways. Fig. 
1(e) presents the driving conditions of HDDVs during the test. 
The data acquired by the PEMS included vehicle speed, CO2 
emission rate, exhaust flow, and NOx emission rate, as 
depicted on the left side of Fig. 1(d). At the test’s conclusion, 
remote monitoring data for the same time intervals are 
concurrently collected, thereby preparing the dataset for 
subsequent accuracy verification of the remote monitoring 
data for HDDVs. 
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Fig. 1. Details of real road data acquisition test. 

 
Fig. 2. Flow chart of remote monitoring data’s accuracy verification method for HDDVs. 

B. Remote Monitoring Data’s Accuracy Verification Method 
Building on HDDVs’ data obtained from PEMS and the 

remote monitoring, research on remote monitoring data’s 
accuracy verification is carried out. Combining correlation 
analysis, linear regression fitting, the Bland-Altman method 
[26] and factor accounting theory, the accuracy verification 
method of HDDVs’ remote monitoring data is proposed, as 
illustrated in Fig. 2. Using PEMS data as a benchmark, the 
accuracy of the critical parameters within the remote 
monitoring data will be assessed. 

Initially, partial correlation analysis [27] and linear 
regression fitting methods are utilized to determine the 
correlation between remote monitoring data and PEMS data. 
The determination coefficients (R2), the fitted curve’s slope 

(a), the max intercept ratio (b/bmax), and the significance level 
(P) are calculated. Among the max intercept ratio (b/bmax) is 
the ratio of the fitted curve’s intercept to the remote 
monitoring data’s maximum value. These results can provide 
insights into the correlation and its statistical significance 
between the remote monitoring data and PEMS data. 
According to the requirements of China VI regulations [28], 
accurate remote monitoring data should meet the following 
criteria: R2 should approach 1, a should approach 1, and 
b/bmax should be as close to 0 as possible. Additionally, the P 
value less than 0.05 indicates a more significant correlation. 

Subsequently, the Bland-Altman method is utilized to 
perform a consistency check between the remote monitoring 
data and PEMS data. The means, differences, and 95% 
consistency bound (95% CB) are calculated. The results from 
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the Bland-Altman consistency check elucidate the accuracy 
of the remote monitoring data. Relevant studies have 
demonstrated that a higher sample proportion within the 95% 
CB signifies better consistency between the two datasets 
[29]. 

Finally, emission factors and fuel consumption factors are 
calculated using both remote monitoring data and PEMS data 
as independent data sources. The accuracy of the remote 
monitoring data is verified by comparing the differences in 
factors calculated from these two data sources. A smaller 
factor difference indicates greater accuracy of the remote 
monitoring data. This factor accounting methodology 
facilitates the verification of data accuracy in the application 
and development of remote monitoring big data. 

In addition, three methods, namely Kappa test [30], 
Intraclass correlation coefficient (ICC) [31] and Kendall 
cofficient of concordance (Kendall W) [32], were introduced 
again for the final test of remote monitoring data. The 
calculation results of the three methods are above 0.6, 
indicating good data consistency. The closer the calculation 
results of the three methods are to 1, the more accurate the 
remote monitoring data is. This can also provide validation 
for the calculation results of this method. In summary, 
through the correlation, consistency, and data application, a 
comprehensive accuracy verification study of the HDDVs’ 
remote monitoring data is achieved. This research provides a 

crucial foundation for the application and development of 
remote monitoring data. 

III. DATA VERIFICATION RESULTS ANALYSIS 
Based on the methodology proposed, research on remote 

monitoring data’s accuracy verification for HDDVs is carried 
out. Correlation analysis and consistency relation are 
performed for critical parameters such as vehicle speed, fuel 
flow, intake flow, and NOx emission rate. Subsequently, the 
accuracy of the emission factor and fuel consumption factor 
calculated from the remote monitoring data source is 
evaluated from data application perspective. 

A. Vehicle Speed 
Vehicle speed is one of the primary parameters in the 

HDDVs’ remote monitoring data. The vehicle speed is 
measured using on-board speed sensors. In this study, the 
accuracy of the remote monitoring’s vehicle speed is verified 
against the GPS vehicle speed from the PEMS dataset. 
Initially, all HDDVs’ vehicle speed data are compiled. 
Subsequently, the data are segmented into several vehicle 
speed samples with a time interval of 1 second. Finally, 
correlation analysis and consistency relation for the remote 
monitoring’ vehicle speed are calculated using the proposed 
method, and the results are shown in Fig. 3. 

 
Fig. 3. Accuracy verification results of remote monitoring’s vehicle speed. 

 

 
Fig. 4. Comparison of remote monitoring’s vehicle speed consistency relation of before and after processing. 
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Fig. 5. Accuracy verification results of remote monitoring’s fuel flow. 

The accuracy verification results of remote monitoring’s 
vehicle speed are illustrated in Fig. 3. The deep blue scatter 
points represent the vehicle speed samples. In Fig. 3(a), the 
red solid line represents the linear regression fit between the 
PEMS’s vehicle speed and the remote monitoring’s vehicle 
speed. In Fig. 3(b), the shaded area bounded by the light blue 
dashed lines represents the 95% CB of the vehicle speed 
differences. The red solid line in Fig. 3(b) represents the 
mean value of the vehicle speed differences. According to the 
correlation analysis results presented in Fig. 3(a), it was 
observed that, except for a few vehicle speed samples, there 
is a strong fit between the remote monitoring’s vehicle speed 
and the PEMS’s vehicle speed. Specifically, the R2 is found 
to be 0.9972; the a is 1.0017; the b/bmax is 0.0019; and the P 
value is less than 0.0001. The consistency results presented in 
Fig. 3(b) indicate that the majority of the vehicle speed 
samples fell within the 95% CB. Specifically, the 95% CB is 
determined to be [-2.6741, 2.8809] km/h, with 95.17% of the 
vehicle speed samples residing within these limits; the mean 
value of the vehicle speed differences is calculated to be 
0.1034 km/h. Additionally, Fig. 3(b) reveals a small number 
of vehicle speed samples (problematic points) that exhibited 
a trend of clustering along multiple straight lines. These 
problematic points have been highlighted with red circles, as 
shown in Fig. 4(a). This phenomenon is primarily attributed 
to the effects of the vehicle speed sensor itself and the 
electronic signal transmission process, which resulted in 
constant or missing values in the remote monitoring’s vehicle 
speed. Fig. 4(b) presents the consistency relation after the 
removal of these problematic points. Following the exclusion 
of problematic points, the processed sample count constituted 
99.12% of the original vehicle speed sample size, indicating 
that the proportion of problematic points is less than 1%. 
Overall, the impact of these problematic points on the remote 
monitoring’s vehicle speed is deemed minimal, and this 
analysis also provides guidance for subsequent preprocessing 
of remote monitoring data. In summary, there is a strong 
positive correlation and consistency between the remote 
monitoring’s vehicle speed and the PEMS’s vehicle speed. 
This finding confirms the accuracy of the remote 
monitoring’s vehicle speed, thereby providing solid support 
for monitoring the operational status of heavy-duty vehicle in 
the designated areas through the remote monitoring system. 

B. Fuel Flow 
Fuel flow is one of the primary parameters in the HDDVs’ 

remote monitoring data. Accurate remote monitoring’s fuel 
flow provides a valuable information for optimizing energy 
consumption and controlling transportation costs for fleet 
operators. In accordance with national standards, the PEMS’s 
fuel flow is calculated using the PEMS’s CO2 emission rate, 
as expressed in equation (1). This calculation results are then 
utilized to verify the accuracy of the remote monitoring’s fuel 
flow. Initially, the remote monitoring’s fuel flow and 
PEMS’s CO2 emission rate for all HDDVs are compiled, and 
the PEMS’s fuel flow is calculated using equation (1). 
Subsequently, the fuel flow is segmented into several 
samples at 1-second intervals. Finally, correlation analysis 
and consistency relation for the remote monitoring’s fuel 
flow are calculated using the proposed method, and the 
results are shown in Fig. 5. 

2 2fuel CO CO 3600Q Q K= ÷ ×                      (1) 

where Qfuel represents the fuel flow of heavy-duty vehicles, 
which is regarded as the PEMS’s fuel flow. QCO2 represents 
the CO2 emission rate from PEMS. KCO2 is the conversion 
factor, set to 2600 for diesel fuel vehicles. 

The accuracy verification results of remote monitoring’s 
fuel flow are illustrated in Fig. 5. The deep blue scatter points 
represent the fuel flow samples. In Fig. 5(a), the red solid line 
represents the linear regression fit between the PEMS’s fuel 
flow and the remote monitoring’s fuel flow. In Fig. 5(b), the 
shaded area bounded by the light blue dashed lines represents 
the 95% CB of the fuel flow differences. The red solid line in 
Fig. 5(b) represents the mean value of the fuel flow 
differences. According to the correlation analysis results 
presented in Fig. 5(a), it was observed that a significant 
positive correlation trend is observed in the distribution of the 
fuel flow samples. However, in comparison to the vehicle 
speed distribution depicted in Fig. 3(a), the distribution of the 
fuel flow samples is slightly more dispersed, with a small 
number of samples deviating from the fitted curve. Excluding 
these outliers, a strong fit is noted between the remote 
monitoring’s fuel flow and the PEMS’s fuel flow. 
Specifically, the R2 is reported as 0.9549; the a is 0.9988; the 
b/bmax is 0.0035; and the P value is less than 0.0001. As 
indicated in Fig. 5(b), the consistency analysis reveals that  
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Fig. 6. Accuracy verification results of remote monitoring’s intake flow. 

the majority of fuel flow samples fall within the 95% CB. The 
95% CB is determined to be [-5.0744, 4.4140] L/h, with 
95.31% of the fuel flow samples residing within these limits. 
The mean value of the fuel flow differences is calculated as 
-0.3302 L/h. Meanwhile, the presence of problematic points 
observed in the vehicle speed issues of the Fig. 3(b) is not 
evident in the fuel flow samples. In summary, there is a 
strong positive correlation and a high degree of consistency 
between the remote monitoring’s fuel flow and the PEMS’s 
fuel flow. This finding supports the assertion that the fuel 
flow data obtained from remote monitoring is accurate. 

C. Intake Flow 
Intake flow is one of the primary parameters in the 

HDDVs’ remote monitoring data. Accurate intake flow 
measurements provide a reliable basis for assessing the 
combustion status within the engine cylinders. In this paper, 
the PEMS’s intake flow of HDDVs is calculated using the 
exhaust flow and fuel flow obtained from PEMS, as 
described by equation (2). Subsequently, the calculated 
PEMS’s intake flow is utilized to verify the accuracy of the 
remote monitoring’s intake flow. Initially, the remote 
monitoring’s intake flow, PEMS’s exhaust flow, and fuel 
flow from all HDDVs are compiled. The PEMS’s intake flow 
is calculated using equation (2). The intake flow data are then 
segmented into several samples at 1-second intervals. Finally, 
the proposed method is utilized to calculate the correlation 
analysis and consistency relation of the remote monitoring’s 
intake flow, and the results are shown in Fig. 6. 

in out fuel dieselQ Q Q ρ= − ⋅                      (2) 
where Qin represents the PEMS’s intake flow. Qout 

represents the PEMS’s exhaust flow. Qfuel represents the 
PEMS’s fuel consumption. And ρdiesel is the density of the 
diesel fuel used by the heavy-duty vehicles. 

The accuracy verification results of remote monitoring’s 
intake flow are illustrated in Fig. 6. The deep blue scatter 
points represent the intake flow samples. In Fig. 6(a), the red 
solid line represents the linear regression fit between the 
PEMS’s intake flow and the remote monitoring’s intake flow. 
In Fig. 6(b), the shaded area bounded by the light blue dashed 
lines represents the 95% CB of the intake flow differences. 
The red solid line in Fig. 6(b) represents the mean value of 
the intake flow differences. According to the correlation 

analysis results presented in Fig. 6(a), it was observed that, 
except for a few intake flow samples, there is a strong fit 
between the remote monitoring’s intake flow and the 
PEMS’s intake flow. Specifically, the R2 is found to be 
0.9947; the a is 1.0540; the b/bmax is 0.0045; and the P value 
is less than 0.0001. The consistency relation illustrated in Fig. 
6(b) indicates that the majority of the intake flow samples fall 
within the 95% CB. Specifically, the 95% CB is determined 
to be [-91.6523, 23.7184] kg/h, with 95.01% of the intake 
flow samples residing within these limits, and the mean 
intake flow difference is calculated as -33.9669 kg/h. 
Furthermore, Fig. 6(b) reveals that the intake flow 
differences tend to be concentrated in the negative range. To 
quantify this trend, the linear regression fitting method is 
utilized to calculate the fitting curve for the intake flow 
difference sample data, represented by the black dotted line 
in Fig. 6(b). It is found that the intake flow differences 
decrease as the intake flow’s mean increases. Since the 
remote monitoring data is used as the minuend during the 
calculation of the intake flow differences, it can be concluded 
that, for the majority of samples, the remote monitoring’s 
intake flow is greater than that of PEMS. Moreover, with the 
increase of the intake flow’s mean, this degree of greater than 
gradually expanded. In summary, there is a strong positive 
correlation and good consistency degree between remote 
monitoring’s intake flow and the PEMS’s intake flow. This 
demonstrates the accuracy of the intake flow data obtained 
from the remote monitoring system, providing a valid basis 
for analyzing the combustion status of HDDVs’ engines 
through remote monitoring.NOx Emission Rate 

NOx emission rate is recognized as the most critical 
parameter in the HDDVs’ remote monitoring data. In the 
remote monitoring system, the NOx emission rate is 
measured using an upstream NOx sensor installed before the 
vehicle's diesel oxidation catalyst and a downstream nitrogen 
oxide sensor located at the end of the exhaust pipe. The 
parameters are categorized into upstream and downstream 
NOx emission rates. From the perspectives of environmental 
protection and carbon reduction, the downstream NOx 
emission rate is of primary concern to the public. This study 
employs PEMS data to verify the accuracy of the downstream 
NOx emission rate. First, all NOx emission rate data for 
heavy-duty vehicles are compiled. Subsequently, the NOx 
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emission rate data are segmented into several samples with a 
1-second interval. Finally, the proposed method is utilized to 
calculate the correlation and consistency relation for the 
remote monitoring’s NOx emission rate, and the results are 
shown in Fig. 7. 

The accuracy verification results of remote monitoring’s 
NOx emission rate are illustrated in Fig. 7. The deep blue 
scatter points represent the NOx emission rate samples. In 
Fig. 7(a), the red solid line represents the linear regression fit 
between the PEMS’s NOx emission rate and the remote 
monitoring’s NOx emission rate. In Fig. 7(b), the shaded area 
bounded by the light blue dashed lines represents the 95% CB 
of the NOx emission rate differences. The red solid line in Fig. 
7(b) represents the mean value of the NOx emission rate 
differences. According to the correlation analysis results 
presented in Fig. 7(a), it was observed that, the vast majority 
of the NOx emission rate sample points are distributed near 
the fitted curve, primarily concentrated within the [0, 1200] 
ppm range. A good fit is observed between the remote 
monitoring’s NOx emission rate and the PEMS’s NOx 
emission rate. Specifically, the R2 is found to be 0.9442; the a 
is 0.9116; the b/bmax is 0.0184; and the P value is less than 
0.0001. The consistency relation shown in Fig. 7(b) indicates 
that most NOx emission rate sample points fall within the 
95% CB. Specifically, the 95% CB is determined to be 

[-86.1145, 29.9999] ppm, with 95.01% of the NOx emission 
rate samples residing within these limits. 

The mean value of the NOx emission rate differences is 
calculated as -28.0573 ppm. Furthermore, Fig. 7(b) reveals 
that certain NOx emission rate samples (problematic points) 
exhibit a trend of aggregation along a linear pattern. This 
problematic region is highlighted with a dashed red circle in 
Fig. 7(b). To elucidate the underlying reasons, the original 
NOx emission rate data for a heavy-duty vehicle test is 
provided in Fig. 8. 

In Fig. 8, the cyan line represents vehicle speed, the solid 
red line represents the PEMS’s NOx emission rate, and the 
deep blue dashed line represents the remote monitoring’s 
NOx emission rate. It is observed that the remote monitoring 
data accurately reflects the variations in the actual 
measurements obtained from PEMS. During the latter half of 
the test (as indicated by the red dot line), the vehicle’s SCR 
system becomes operational, resulting in a reduction in NOx 
emission rates. Notably, during rapid acceleration, an 
increase in fuel injection leads to a sharp rise in NOx 
emissions, which depletes the ammonia stored in the SCR 
system, resulting in several peaks in the NOx emission rate. 
Following these peaks, the actual PEMS measurements 
approach zero, while the remote monitoring’s NOx emission 

 
Fig. 7. Accuracy verification results of remote monitoring’s NOx emission rate. 

 

 
Fig. 8. Original NOx emission rate data for a heavy-duty vehicle test. 
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Fig. 9. Emission and fuel consumption factor’s deviations. 

rate to fluctuate within the [0, 150] ppm range. This 
phenomenon accounts for the problematic points identified in 
Fig. 7(b). These observations are consistent with the findings 
reported in literature [22]. In summary, there is a strong 
positive correlation and consistency between remote 
monitoring’s NOx emission rate and PEMS’s NOx emission 
rate. This indicates that the NOx emission rates derived from 
remote monitoring data are accurate, supporting the 
application of critical parameters in the supervision of 
HDDVs’ remote monitoring systems. 

E. Factor Variance Analysis 
The application development of HDDVs’ remote 

monitoring data is the most important task. Among these 
applications, the most critical are the calculations of emission 
factors and fuel consumption factors. By calculating 
emission and fuel consumption factors under various vehicle 
operating conditions, this study verifies the accuracy of 
remote monitoring data from the aspects of data application. 
Initially, by referring to the interval division method in 
reference [33-34], the vehicle operating states are divided 
into 5 intervals, as shown in Table 1. Subsequently, emission 
factors and fuel consumption factors are calculated for both 
data sources within each interval. Finally, deviations are 
utilized to quantify the variance between the factors derived 
from the two data sources, as expressed in Equation (3). The 
results of this accuracy verification of remote monitoring 
data applications are illustrated in Fig. 9. 

Remote supervisionF PEMS PEMS| | 100%De F F F= − ÷ ×      (3) 

where DeF represents the factor deviation based on the two 
data sources. FPEMS represents the factor calculated from 
PEMS data. FRemote supervision represents the factor derived from 
remote monitoring data.  

TABLE 1.  
VEHICLE OPERATING STATES’ INTERVAL. 

Number Interval Vehicle driving state 
1 Brake acceleration < -0.15 m/s2 

2 Idle 
vehicle speed < 0.5 km/h and  
-0.15 m/s2 ≤ acceleration < 0.15 
m/s2 

3 Urban 0.5 km/h ≤ vehicle speed < 45 km/h 
and acceleration ≥ 0.15 m/s2 

4 Suburb 45 km/h ≤ vehicle speed < 70 km/h 
and acceleration ≥ 0.15 m/s2 

5 Highway vehicle speed ≥ 70 km/h  
and acceleration ≥ 0.15 m/s2 

The results of accuracy verification for emission and fuel 

consumption factors calculated based on remote monitoring 
data are illustrated in Fig. 9. The cyan bars represent factors 
derived from PEMS data, while the red bars represent factors 
derived from remote monitoring data. The dark blue line 
represents the deviations between the factors derived from 
the two data sources. Due to the limited mileage in the idle 
interval, “ppm” and “L/h” are employed as units for emission 
and fuel consumption factors. In Fig. 9(a), it is demonstrated 
that the overall deviation of emission factors based on remote 
monitoring data is below 10%. The minimum deviation 
occurs in the brake interval, recorded at 3.20%. The 
maximum deviations in the suburb and highway intervals are 
observed to range between 9% and 10%. This observation 
aligns with the trends presented in the original data shown in 
the red dot line region of Fig. 8. In both suburb and highway 
areas, the actual measurements from PEMS approach zero, 
while remote monitoring data fluctuate within the range of [0, 
150] ppm. This discrepancy accounts for the larger emission 
factors’ deviations observed in the suburb and highway 
intervals. Fig. 9(b) indicates that the overall deviation of fuel 
consumption factors based on remote monitoring data is 
below 5%. The minimum deviation is identified in the 
highway interval at 0.16%, whereas the maximum deviation 
occurs in the idle interval at 4.86%. In comparison to 
emission factors, the accuracy of fuel consumption factors is 
relatively higher, particularly in the urban, suburb, and 
highway intervals where data accuracy is notably improved. 
In summary, the deviations of emission factors are 
maintained below 10%, while those of fuel consumption 
factors are kept below 5%. The results verify remote 
monitoring data’s accuracy from the aspects of data 
application. 

F. Result Verification 
In this paper, three methods of Kappa test, ICC and 

Kendall W were used again for calculation. The calculation 
results are given in Table 2. 

TABLE 2.  
CALCULATION RESULT. 

 Kappa ICC Kendall W 
Vehicle speed 0.61 0.68 0.83 
Vehicle speed (processed) 0.72 0.85 0.96 
Fuel flow 0.75 0.77 0.95 
Intake flow 0.68 0.69 0.94 
NOx emission rate 0.72 0.76 0.92 
Emission / fuel consumption factor 0.71 0.74 0.91 
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According to the calculation results in Table 2, the results 
of Kappa, ICC and Kendall W of each parameter in the 
remote monitoring data are all higher than 0.6. The calculated 
results of some parameters are higher than 0.9. In addition, 
the calculated result of the speed after processing is obviously 
better than that before processing. These results are basically 
consistent with the calculation results of the method 
presented in this paper. According to the calculation results 
of the three methods in Table 2, it can be seen that the remote 
monitoring data has a good consistency with the real road 
PEMS data, and the data has a certain accuracy, which can 
provide a solid foundation for engineering application 
development. 

IV. CONCLUSION  
This study proposes a comprehensive framework for 

validating HDDVs remote monitoring data, assessing 
accuracy across three critical dimensions: statistical 
correlation, measurement consistency, and application 
reliability. Our methodology establishes a robust foundation 
for advancing telematics-based emission supervision, with 
key findings detailed below: 

(1) The parameters of vehicle speed, fuel flow, intake flow, 
and NOx emission rates from remote monitoring data exhibit 
a strong positive correlation and good consistency with actual 
PEMS data. Specifically, R2 exceeding 0.94; and the sample 
proportion within the 95% CB exceeds 95.01% for all 
parameters. Among these, the vehicle speed shows the 
highest R2 value, while the fuel flow shows the greatest 
sample proportion within the 95% CB. The R2 value and the 
sample proportion within the 95% CB for the NOx emission 
rate are the lowest among all parameters. 

(2) The accuracy of remote monitoring data is further 
verified from data application perspective by calculating 
emission and fuel consumption factors. The results indicate 
that the deviation of emission factors based on remote 
monitoring data from actual measurements remains within 
10%, with the largest deviations occurring in suburb and 
highway intervals. The deviation of fuel consumption factors 
based on remote monitoring data from actual measurements 
is within 5%, with the greatest deviation observed in the idle 
interval. 

(3) The remote monitoring data exhibits the following 
characteristics: (i) A small proportion of vehicle speed data 
presents constant or missing values, amounting to less than 
1%. (ii) Most intake flow values are greater than actual 
measurements, and this discrepancy increases as the intake 
flow’s mean increases. (iii) Certain NOx emission rate 
samples show a trend of aggregation along a linear pattern. 
The reason is that the NOx emission rates collected by remote 
monitoring in suburb and highway interval (where SCR 
systems begin operation) are still fluctuating in a small range. 
The above characteristics can provide guidance for the 
pre-processing of remote monitoring data’s application and 
development. 

(4) In addition, three methods, including Kappa test, ICC 
and Kendall W, were introduced in this paper to verify the 
calculation results of the proposed method. The calculation 
results of all parameters of remote monitoring data are above 
0.6, which indicates that the data has good consistency. 
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