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Abstract—This paper presents a lightweight enhanced
YOLOv8 model called SF-YOLOv8 that significantly improves
computational efficiency while maintaining detection accuracy.
Three core innovations are introduced: (1) StarNet, a
star topology network that converts effective feature values
into low-dimensional nonlinear representations and infinitely
expands them into high-dimensional space, eliminating
redundant multilayer computations and substantially reducing
complexity compared to standard convolution operations;
(2) The C2f-Faster module, which enhances cross-scale
object perception through multi-scale hierarchical feature
fusion; (3) A lightweight shared convolutional detection head
(LSCD) enabling parameter reuse across detection scales via
adaptive feature fusion. Experimental results demonstrate
that the proposed model achieves a 59.2% reduction in
parameters, 48.2% lower computational load, and 56.7%
model size compression compared to the baseline YOLOv8
while retaining competitive detection accuracy. These systematic
architectural optimizations establish an optimal balance
between compactness and performance, providing an efficient
solution for deployment in resource-constrained scenarios.

Index Terms—Fatigue detection; YOLOv8; Lightweight
convolution; Deep learning; StarNet

I. INTRODUCTION

CUrrently, convolutional neural networks are constantly
optimized for target recognition and detection warning

with the rapid development of machine vision and
artificial intelligence algorithms. Yongsu[1] et al. designed
a heterogeneous convolutional fusion architecture based on
the fusion of multi-source vehicle behavioral parameters,
which contains a collaborative computing system of
a temporal feature extraction network and a transient
mode capture network, and the experimental platform
constructed demonstrated that it well achieves adaptive
fusion of multi-scale features and ensures high generalization
ability.Ahmed[2] et al. designed an innovative, intelligent
sensing technology, introducing a multimodal feature
capture engine and adaptive discrimination mechanism and
constructing a distributed feature learning network using a
hybrid cascade convolution algorithm, which significantly
improves the classification accuracy of the feature fusion
mechanism.Makhmudov[3] et al. demonstrated that the
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CNN far outperforms the traditional VGG16 model for
the recognition of fatigued driving facial micro-expressions
by invoking the hierarchical feature extraction mechanism,
which not only improves the overall recognition performance
by accurately capturing the sub-millimeter changes in
facial muscle movements, but also achieves a finer
differentiation of emotion categories, and the proposed
cascaded feature pyramid structural design better achieves
model lightweight.Ahmed[4]et al. proposed a dual-stream by
combining physiological signals such as EEG[5], EOG[6],
ECG[7], EMG and other spatiotemporal feature fusion
modules, combined with wavelet denoising and Fourier
transform. An enhanced fatigue detection system is proposed,
which shows high robustness under noise interference
conditions through comparative experiments.Shiplu[8]et al.
use an improved residual attention module to optimize
the traditional CNN-LSTM architecture based on the
development of IoT[9], and the constructed Adaptive Time
Weighted Pooling Layer effectively captures the gradual
process of fatigue state, and the detection sensitivity of
short-term fatigue is effectively improved.Mohit[10]et al.
proposed a driver drowsiness detection system, which
fuses VGG-FaceNet, FlowImageNet, and ResNet according
to different features of different parts and obtains the
accurate output of fatigue through an integrated algorithm,
with the accuracy rate reaching more than 80%. Liu
[11]et al. proposed a fatigue detection method for facial
expression analysis, which detects 24 key points based
on the key points of the face through multi-block local
binary patterns and the Adaboost classifier and improves
the detection accuracy by analyzing the video temporal
features.Tang[12]et al. developed a multi-granularity feature
fusion architecture based on dynamic channel sensing, which
constructs an intelligent computing engine consisting of
a cross-scale feature extraction network and an adaptive
channel optimization module, which achieves autonomous
focusing and redundancy suppression of the key feature
channels, leading to accuracy gains.

In contrast, the YOLO series [13] for fatigue driving target
detection transforms the problem into a single regression
problem [14], mapping from the image departure to the target
bounding box and the category probabilities. The researchers
further optimized the model complexity by introducing
a lightweight network structure while maintaining the
target detection accuracy, and these improvements make
the YOLO family of models more suitable for real-time
operation on edge devices in real scenarios. Zhu Feng et
al. [15] verified high accuracy for complex environments
by improving the Yolo3 algorithm combined with the
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Kalman filter [16] algorithm, based on the boosting
tree to achieve key point detection of the face and
multi-feature fusion for fatigue detection. Zhang et al. [17]
replaced the feature extraction network and network-wide
standard convolution of YOLOv4 with a lightweight neural
network, MobilenetV3, and depth-separable convolution and
experimentally demonstrated good performance results in
terms of accuracy under complex conditions. Zhaohui Li
[18] and others increase the number of convolutional
layers before and after the SSP structure [19] and add
cavity convolution in the PANet module [20], which
makes the model more accurate in detecting small targets.
Ran Dangsheng [21] and others introduced the SimAM
module [22] and DOConv [23] to construct feature mapping
and a lightweight feature enhancement module based on
the Yolov5 backbone model and melded DeepSort [24]
for continuous classification tracking, which verified the
lightweight deployment requirements of vehicle-mounted
terminals. Chen [25] et al. optimized the Backbone
of YOLOv5s with compact bases, and the Neck part
incorporated a hierarchical residual module, which enhanced
the model’s representation of multi-scale features, improved
detection accuracy, and reduced computational redundancy.
Ming Ma [26] proposed a new lightweight network
algorithm based on YOLOv7, combining MobileNet and
CBAM, significantly improving the detection speed. Zheng
Kaidong [27], and others fused DCNv2 [28] with BiFPN
to design a new variant model, which improves fatigue
detection efficiency by introducing a visual channel attention
mechanism.

In this paper, we propose a Yolov8 lightweight improved
fatigue driving recognition detection method, which mainly
makes the following improvement strategies: (1) the
introduction of the StarNet network structure [29] simplifies
the model backbone by using star arithmetic to achieve
the effective eigenvalues being converted to nonlinear
characteristics in the low-dimensional space and infinitely
expanding the high-dimensional space; (2) the feature
extraction enhancement module is added based on the
original model of the yolov8, which adopts the timely
enhancement of important feature extraction, and the
c2f-faster [30], a more lightweight module, for the extraction
of shallow unimportant features; (3) the lightweight shared
convolutional detection head LSCD is designed to effectively
reduce the number of parameters of the model and the
computational volume through multi-scale feature fusion.

II. RELATED WORK

A. YOLOv8n Model

In this paper, after a comparative study, Yolov8 is
chosen as the baseline model, which is developed from the
improvement of the Yolov5 model, providing five different
scales of N, S, M, L, and X to adapt to the complex scene,
and the overall architecture is mainly composed of three
parts: the backbone network, the neck structure, and the head
structure, as shown in Fig.1.

The enhanced backbone architecture builds upon the
YOLOv5s framework, implementing CSPDarknet53 to
bifurcate feature maps into parallel convolution and
identity pathways, effectively mitigating gradient vanishing

while reducing computational load. Depthwise separable
convolutions further decrease operations by 38% versus
standard counterparts. Replacing ReLU with SiLU activation
enhances nonlinear representation capabilities, particularly
for subtle fatigue indicators like eye micro-movements.
The neck structure combines PANet and FPN through
bi-directional feature integration: upward paths propagate
high-resolution details to semantic-rich layers. Meanwhile,
downward paths refine low-level features with contextual
awareness, achieving 14.2% AP improvement on small
targets. The detection head employs dynamic label
assignment, eliminating anchor dependency through
self-adaptive learning of dataset characteristics, which
improves mAP by 2.3% over static configurations.
Considering edge deployment constraints, YOLOv8n is the
baseline due to its optimal balance between accuracy and
inference speed, making it ideal for real-time vehicular
systems.

B. StarNet Module

In fatigue-driving detection models, the substantial
data volume and homogeneous detection environments
frequently lead to excessive model parameters, directly
increasing model complexity and storage requirements
while elevating computational resource consumption during
training and inference phases. To address these challenges,
this paper proposes a redesigned lightweight network
architecture that replaces the original backbone in YOLOv8
by introducing a star operation. This innovative approach
simplifies the backbone network structure by avoiding
complex feature fusion computations and eliminating
multi-branch structural designs. The optimized architecture
effectively reduces computational resource demands without
compromising model accuracy or requiring additional
computational complexity. The proposed methodology
demonstrates significant improvements in operational
efficiency while maintaining detection performance, offering
a practical solution for resource-constrained embedded
systems in vehicular applications.

StarNet introduces a novel star operation that
incorporates element-wise multiplication and kernel-based
transformations to enhance feature representation. This
operation enables efficient nonlinear mapping of input
features into higher-dimensional spaces while maintaining
low computational energy consumption and a compact
network structure. Unlike conventional machine learning
approaches, the star operation demonstrates superior
adaptability for designing complex yet computationally
efficient neural networks through its advanced nonlinear
transformation capabilities.StarNet employs a four-stage
hierarchical architecture containing multiple configurable
Star Blocks. The model’s capacity is systematically
controlled by adjusting the block quantity per stage,
enabling flexible scalability for diverse deployment
scenarios—integration with YOLOv8 Framework. The
implementation replaces YOLOv8’s original backbone by
integrating two critical modifications: Downsampling
Optimization: Substitutes standard convolutional
layers with an improved lightweight downsampling
module. Replacement: Replaces conventional ConvBN
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Fig. 1. Yolov8 network architecture

(Convolution-Batch Normalization) modules with
MobileNetV4ConvSmall components, enhancing feature
extraction efficiency while reducing computational overhead.
Each Star Block incorporates three sequential operations:
Depthwise Convolution (DW-Conv): Applied post-demo
block to capture spatial features. Feature Fusion: Achieved
through element-wise multiplication of transformed
featuresIndependent Convolution: Performs channel-specific
operations to amplify discriminative feature learningThis
multi-stage processing chain synergistically enhances
feature extraction efficacy while maintaining parameter
efficiency. The star operation’s kernel-driven transformations
enable sophisticated feature interactions without introducing
substantial computational complexity, effectively balancing
model performance and resource constraints.

In neural networks utilizing single-layer star operations,
element-wise multiplication operates as a mathematical
fusion mechanism, multiplying corresponding elements of
two arrays to integrate features across distinct subspaces.
Within convolutional neural networks (CNNs), weight
parameters are conventionally structured as four-dimensional
tensors, encoding a filter’s spatial dimensions (height
and width), input channel count, and output channel
count. Conversely, bias parameters are represented as
one-dimensional tensors (vectors), with each output channel
assigned a unique scalar bias value. During network
optimization, these biases can be computationally merged
into the weight tensor through an additive integration
process. This ensures that each filter’s learned weights
are directly concatenated with their corresponding bias

term, consolidating both parameters into a unified tensor

structure. For ease of illustration, denoted as W=
[
W
B

]
,

denotes the weight part, B denotes the bias term, and then
the input vector X is expanded into a moment containing a

constant term (usually 1), denoted as X=
[
X
1

]
. the fusion

of the two linearly transformed features is achieved, and
accordingly, the simplified star operation procedure is WT

1 X
* WT

2 X . Focusing first on the single-input single-output
fusion scenario, define W1, W2, and X ∈ R(d+1)×1, where
d is the number of input channels.It can be easily extended
to multiple output channels W1 and W2 ∈ R(d+1)×(d+1).

The star operation can be extended to rewrite as

ωT
1 x ∗ ωT

2 x =

(
d+1∑
i=1

ωi
1x

i

)
∗

d+1∑
j=1

ωj
2x

j


=

d+1∑
i=1

d+1∑
j=1

ωi
1ω

j
2x

ixj (1)

=
∑
(i,j)

α(i,j)x
ixj

Where the channels are indexed using i, j, are the
coefficients of each term:

α(i,j) =

{
ωi
1ω

j
2 if i = j,

ωi
1ω

j
2 + ωj

1ω
i
2 if i ̸= j.

(2)

Expanding Equation (1) yields:
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Fig. 2. Structure of StarNet network

α(1,1)x
(1) + · · ·+ α(d+1,d+1)x

(d+1) (3)

Where equation (3) totals (d+2)(d+1)
2 terms, It is

important to note that each term, except for α(d+1;)x
d+1x

term, exhibits a nonlinear association with, indicating
that they are independent and implicitly dimensional.
Thus, using the computationally efficient star operation to
perform computations in d-dimensional space, yet enabling
representations in (d+1)(d+2)

2 ≈ (consider d ≫ 2) implicitly
dimensional feature space, significantly amplifies the
feature dimensions without adding any other computational
overheads in the individual layers.

The star operation can expand a complex and compact
feature space to achieve infinite dimensions through
multi-layer stacking learning. According to the structure
of the single-layer star operation, multi-layer stacking
is performed next, and the expression obtained after
one asterisk operation is

∑d+1
i=1

∑d+1
j=1 ω

i
1ω

j
2x

ixj . where the

implicit feature space can be denoted as R

(
d√
2

)21

.Let Sn

denote the output of the nth iteration of the star operation.



S1 =

d+1∑
i=1

d+1∑
j=1

ωi
(1,1)ω

j
(1,2)x

ixj ∈ R

(
d√
2

)21

S2 = WT
2,1S1 ∗WT

2,2S1 ∈ R

(
d√
2

)22

S3 = WT
3,1S2 ∗WT

3,2S2 ∈ R

(
d√
2

)23

...

Sn = WT
n,1Sn−1 ∗WT

n,2Sn−1 ∈ R

(
d√
2

)2n

(4)

As illustrated by the equation above, the star operation
achieves high-dimensional nonlinear feature representation

distinctively from traditional methods. Traditional
approaches typically construct more complex learning
models by increasing the depth and width of the network
and expanding the number of layers and channels. In
contrast, the star operation combines kernel functions from
different channels pairwise. Multi-layer stacking attains the
benefits of an implied high-dimensional space within a more
compact network structure.

C. C2f-Faster module

YOLOv8 utilizes an advanced backbone and neck
architecture, with the C2f module as the key improvement.
This module comprises two convolutional layers (Conv1 and
Conv2) and multiple Bottleneck modules. Conv1 doubles the
number of channels in the input feature map, which is then
split into two parts: one is passed directly, while the other
undergoes processing through the Bottleneck module.

The Bottleneck module consists of multiple convolutional
layers and can be configured to include shortcut (residual)
connections. Finally, the concatenated feature maps are
compressed by Conv2 to generate output feature maps
with the desired number of channels. While the improved
module enhances feature extraction and object detection
performance, it faces the challenge of slow inference rates on
edge devices due to the large number of parameters involved
in the driver fatigue detection process.

This paper employs the FasterNet network model to
enhance the C2f module further, replacing the Bottleneck
module in C2f with the FasterNet module. The FasterNet
module is a backbone network constructed using the PConv
operator, as shown in Figure 3. The overall architecture
consists of four stages: embedding or merging layers
are positioned at the front, where the embedding layer
has a stride of 4, and three layers are placed at the
end for feature classification. In the middle, within the
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Fig. 3. FasterNet network architecture and Partial Convolution working principle

FasterNet block, the two PWConv layers follow the PConv
operator. Depth-separable convolution is applied to some
channels when inputting the feature map, while others remain
unchanged. This reduces computation to some extent and
performs feature normalization only in the middle, ensuring
diversity in feature values and low latency. Additionally, the
increased number of floating-point operations significantly
improves computational efficiency.

The core principle of the C2f-Faster module lies in
enhancing the rate of feature extraction through an improved
computational formula. In the C2f module, the convolution
operation is employed to extract feature values, and
the convolution process is simplified into the following
computational formula:

yi,j,k =
∑
m

∑
n

xi+m,j+n ∗ ωm,n,k + bk (5)

Eq:
• x is the input eigenvalue,
• ω is the convolution kernel weight,
• b is the bias term,
• y is the output feature value, and
• i, j, k denote feature map indexes respectively,
• m,n, l denote convolution kernel indexes.
The C2f-Faster module decomposes the convolution

module into two parts: depth convolution and point-by-point
convolution. After the depth convolution is performed on
each input channel separately, the point-by-point convolution
combines the outputs, and the computational formulas are
simplified compared to the C2f module as follows:

yi,j,k =
∑
m

∑
n

( ∑
i+m,j+n

xi+m,j+n ∗ ωm,n,k

)
∗ ωk + bk (6)

The computation of Pconv is more efficient than
conventional convolution operations, as it fully leverages
computational resources by exploiting the redundancy in

feature maps across different channels. This enables spatial
feature extraction for specific input channels without
compromising the ability to extract general features, thereby
reducing the total computational load. The number of
floating-point operations is as follows:

FLOPs = h× w × k2 × c2p (7)

Usually, the computation of a convolution operation is
proportional to the number of channels involved. For a
typical partition ratio r = φ

c = 1
4 , Pconv’s floating-point

operation is only 1/16 of that of a regular convolution,
with reduced memory accesses and reduced computational
latency. For the same partition ratio r = 1

4 , the memory
access is 1/4 of that of a regular convolution, and its memory
accesses are as follows:

h× w × 2cp + k2 × c2p ≈ h× w × 2cp (8)

Where h and w are the height and width of the feature
map, k is the convolution kernel size, and the number of
regular convolutional action channels.

As shown in Fig. 4, the C2f-Faster module enhances
the C2f architecture to improve the accuracy and speed of
target detection while maintaining a lightweight design to
ensure better suitability for a range of practical application
scenarios.

D. Lightweight LSCD detection head Module

YOLOv8 represents a significant improvement over
YOLOv5, particularly in the detection head, which the
current mainstream decoupled head structure has replaced.
This includes separating the classification and detection
heads and the transition from Anchor-Based to Anchor-Free
methods. However, the fatigue state is irregular in the
context of fatigue driving behavior detection, and the
combination of categories is not fixed. In such cases, the
different heads are not interconnected, and the information
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Fig. 4. Structure of the C2f-FasterNet network

Fig. 5. LSCD network structure diagram

cannot be effectively transmitted or associated, hindering
relevant data transfer. This disconnection significantly
increases the number of parameter calculations and results
in suboptimal detection performance. This paper proposes
an improved lightweight shared convolution detection head
based on group normalization and shared convolution. This
modification enhances detection efficiency and accuracy and
reduces the number of parameters and computations, leading
to a more effective model.

The network structure of the LSCD detection head is
illustrated in Fig. 5. The three input eigenvalues first
pass through three independent 1 × 1 convolution kernels,
which perform linear transformations on the channels.
Subsequently, group normalization is applied within each
group to unify the three-channel values into the intermediate
layer’s channels. At this stage, all valid eigenvalues are
aggregated into the shared convolution of the detection head,
facilitating the interaction of eigenvalues with the parameters
to be shared. The data then passes through a 3×3 convolution
kernel, where the group-normalized convolution operation
does not compromise the feature extraction capabilities. The
extracted feature values are forwarded to different shared

weight modules: the Conv_Box prediction convolution
module, which predicts the coordinates of the bounding
box, and the Conv_Cls classification convolution module,
which predicts the target category. The three modules share
the weights, reducing the parameters required for model
training. Additionally, the Scale module is appended to each
Conv_Box module to introduce scaling factors, which are
crucial for adapting to targets of different scales, thereby
improving detection accuracy across various fatigue-driving
eigenvalue sizes. The key advantage of the improved LSCD
detection head lies in its shared weights. Its lightweight
design, efficient convolutional channel transformation, and
finer-grained feature extraction minimize computational
redundancy while enhancing computational efficiency.

III. EXPERIMENT

A. Dataset

The datasets used in this study include the publicly
available YawDD (Yawning Detection Dataset) and CEW
(Closed Eyes in the Wild) datasets. YawDD was created
by the Distributed and Collaborative Virtual Environments
Research Laboratory (DCRL) in Ottawa, Canada, and
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Fig. 6. Selected images from the dataset

consists of two video datasets that capture the fatigue driving
performance of drivers with various facial features, including
different genders, ethnicities and attire, while driving in a
natural state. In this paper, the aforementioned dataset has
been annotated with classification labels, including "open
eye," "closed eye," "open mouth," and "closed mouth." The
annotations follow the VOC format, and the YOLO labels are
converted accordingly. Nine thousand three hundred images
were randomly selected from the dataset and divided into
training, testing, and validation sets with a ratio of 8:1:1.

B. Experimental settings

The operating system used for the experiments in this
paper is Win11, using Python 3.8, Cuda 11.8, and Pytorch
2.0.0 as the development environment and deep learning
framework, and the graphics card is NVIDIA GeForce
RTX 3090(24GB); the CPU is 15 vCPU Intel(R) Xeon(R)
Platinum 8362 CPU @ 2.80 GHz. YOLOv8n was used as
the baseline model; the input image size was 640×640, the
batch size was 32, the initial learning rate was 0.01, and 300
rounds of iterative training were performed.

C. Evaluation Metrics

In order to evaluate the effectiveness of the improved
network structure model in fatigue driving detection, the
commonly used evaluation metrics MAP (Mean Average
Precision), Precision, Recall, FLOPs, F1 Score, Intersection
over Union IoU, and Frames Per Second (FPS), which are
calculated as follows.

Precision and recall are the primary evaluation metrics
reflecting the fatigue detection model, indicating the
proportion of positive samples and the proportion of correctly
detected objects, which are calculated by the following
formulas:

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

TP denotes the number of actual positive cases, FP
represents the number of false positive cases, and FN
refers to false negative cases. High precision indicates that
the model generates fewer false alarms, while high recall
effectively detects the target object without missing it.

The harmonic mean of precision and recall, known as the
F1 score, reflects the model’s balance between precision
and recall. The higher the F1 score, the better the model’s
ability to balance detecting true positives and minimizing
false positives and false negatives. The calculation formula
is as follows:

F1 = 2× P ×R

P +R
(11)

The average accuracy of multi-category fatigue detection
is used to comprehensively assess the performance of the
model by calculating the accuracy at different IoU thresholds,
which is calculated as follows:

mAP =
1

N

N∑
i=1

APi (12)

AP =

∫ 1

0

P (r) dr (13)

IoU =
Area of Intersection

Area of Union
(14)

AP represents the average precision across different
categories, calculated based on the precision and recall of
each category. IoU reflects the degree of overlap between
two bounding boxes, with a higher IoU indicating greater
prediction accuracy.

D. Analysis of the detection results of the algorithm

In this paper, we propose a novel approach where,
using YOLOv8n as the baseline model, the StarNet star
operation is integrated into the network architecture of
the backbone model. The core component of the neck,
C2f, is enhanced using the FasterNet network architecture,
and a new lightweight shared convolution detection head,
LSCD, is designed. The final model is formed as the
YOLOv8n-StarNet-C2f-Faster-LSCD module. Experimental
results demonstrate that the proposed algorithm significantly
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TABLE I
COMPARATIVE EXPERIMENTAL RESULTS

structure P R mAP50 map50-95 ParamsMB Gflops Size

yolov8n 0.974 0.967 0.988 0.684 2.9 8.1 6

new 0.975 0.958 0.988 0.674 1.2 4.2 2.6

reduces the number of parameters, computational load, and
model size while maintaining the prediction accuracy for
fatigue driving behavior and ensuring the model’s high
reliability and generalization ability.

Experiments were conducted by training the YOLOv8n
and YOLOv8n-StarNet-C2f-Faster-LSCD network models
for 300 prediction rounds. The results showed a gradual
increase in the average accuracy of fatigue-driving behavior
prediction for both models, as illustrated in Fig. 7.
However, the new model’s average accuracy remained largely
unaffected by the changes in the trunk, neck, and detection
head design. During the validation process, the new model’s
DFL (distribution Focal Loss) showed a clear decreasing
trend, with a faster convergence rate than that of YOLOv8n
during the first 50 training rounds. After 50 rounds, as
training continued, the loss gradually stabilized, with the
new model achieving a lower loss than YOLOv8n, as
shown in Fig. 8. This indicates that the improvements in
the new model better align with the task requirements for
fatigue driving detection, effectively addressing the category
imbalance issue in the detection process and enhancing the
model’s generalization ability and accuracy.

Additionally, by comparing the training loss with the
validation loss, the data suggest that the loss in the validation
set converges more effectively than in the training set,
indicating that the new model performs better in predicting
the unknown detection dataset. This demonstrates the
model’s generalization ability and resilience to overfitting.

Comparing the results of YOLOv8n with the proposed
model in terms of efficiency and complexity features, as
shown in Table 1, it is evident that the detection accuracy
remains unaffected mainly during the training and prediction
process of the improved algorithm. The mAP@50-95
fluctuates within a range of only 0.01. Additionally, the
training parameters of the new model are reduced by
more than half, which can be attributed to the integration
of star operations into the backbone of the YOLOv8
model, enhancing the model’s ability to capture fine-grained
features when processing complex data. The number of
floating-point operations (FLOPs) is improved by 48% as
a result of replacing the conventional convolution network
with FasterNet and incorporating partial convolution. This
modification results in the FLOPs of PConv being lower
than regular Conv and higher than DWConv/GConv. The
design of PConv reduces redundant computations, thereby
improving the computational speed and efficiency of the
new model. Furthermore, the model size is reduced by
more than half, from 6MB in YOLOv8 to 2.6MB, due to
the lightweight improvements in the detection head. These
include the simplified backbone network design, GroupNorm
instead of BatchNorm, the shared convolution mechanism
that reuses convolution kernel parameters, and the reduction
of unnecessary parameters during training and prediction in

Fig. 7. mAP 0.5:0.95 comparison curve

Fig. 8. DFL loss comparison curve

the new model.

E. Improvement of backbone analysis

This section conducts a comparative experiment involving
various backbone improvements to evaluate the impact of
StarNet operation on the lightweight enhancement of the
YOLOv8 backbone network. Several effective, lightweight
models, with YOLOv8 as the baseline, have been proposed
recently and are selected for comparison. To ensure the
fairness and reliability of the experiments, all models are
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TABLE II
COMPARISON EXPERIMENT RESULTS OF BACKBONE NETWORK

structure P R mAP50 map50-95 ParamsMB Gflops Size

YOLOv8n 0.974 0.967 0.988 0.684 3.8 8.1 6

YOLOv8n + EfficientViT 0.973 0.961 0.987 0.678 4 9.4 8.4

YOLOv8n + Fasternet 0.971 0.966 0.988 0.679 5.7 22.5 8.2

YOLOv8n + Mobilenetv4 0.98 0.967 0.988 0.68 2.4 6.9 11.2

YOLOv8n + HGNetV2 0.972 0.968 0.989 0.681 2.4 6.9 4.8

YOLOv8n + GhostHGNetV2 0.976 0.972 0.988 0.681 2.3 6.8 4.7

YOLOnv8n + StarNet 0.977 0.969 0.987 0.674 2.2 6.5 4.5

trained and evaluated under identical conditions. The detailed
experimental results are presented in Table 2.

Based on the high-quality characteristics of the
aforementioned public datasets, the training and prediction
accuracy of the different backbone models generally remains
between 0.97 and 0.98, with no more than a 1% difference.
The mAP@50-95 fluctuates between 0.674 and 0.684,
showing no more than 1.5% variance. All of the improved
backbone models maintain high detection accuracy. Among
them, MobileNetV4 has the highest number of parameters,
leading to increased model complexity and a significant
burden on the inference and prediction process. FastENet and
EfficientViT require considerable computational resources
due to their large number of parameters, but their detection
accuracy does not show a notable improvement over the
baseline YOLOv8n. In contrast, HGNetV2 and the model
presented in this paper reduce the computational parameter
count, resulting in a 16% decrease in computational
load compared to the original model. The F1 curves for
YOLOv8n and the model in this paper are shown in
Fig. 9. In conclusion, the model proposed in this study
demonstrates superior prediction performance, simplifies
the network model’s complexity while ensuring higher
detection accuracy, maximizes the backbone network’s
detection capabilities, and increases feature extraction
efficiency. Furthermore, the model size is reduced by 25%,
achieving lightweight optimization without compromising
performance.

F. Ablation experiments

To evaluate the effectiveness of each improvement
module on the primary algorithmic model presented in this
paper, YOLOv8n is used as the baseline model. Ablation
experiments are conducted by incrementally adding or
removing various improvement strategies to assess the impact
of each module on the experimental performance. Eight
test configurations are carried out, starting with the original
YOLOv8n model and progressively incorporating the
StarNet, C2f-Faster, and LSCD modules. The experimental
results are presented in Table 3.

The experimental results demonstrate that the introduction
of each improvement module enhances the model’s
efficiency and complexity characteristics to varying degrees.
Experiment 2 introduces the StarNet operation to the
backbone network model, achieving high-dimensional
nonlinear mapping. This operation balances computational
complexity and performance, reducing the model’s parameter

Fig. 9. Comparison of F1 curves of YOLOv8n and
YOLOv8-Starnet

count from 2.9M to 2.1M and decreasing the computational
load by 20%. In Experiment 3, the Bottleneck module in
the C2f module is replaced with the FasterNet module.
Although accuracy is slightly reduced by only 1.3%, the
model’s computation is reduced by 22.2%, and its size is
reduced by 23.3%, demonstrating that C2f-Faster enhances
computational efficiency by optimizing depth-separated
convolutions for more efficient memory access. Experiment
4 introduces the LSCD module, which decreases the
accuracy and significantly reduces the number of parameters
and computational load, thus improving computational
efficiency. Experiment 6 verifies the combined effectiveness
of C2f-Faster and LSCD, resulting in a 0.2 percentage
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Fig. 10. Comparison of confusion matrices: YOLOv8n model (left) and the model in this paper (right).

point improvement in accuracy, compensating for the slight
accuracy loss incurred when used individually. Additionally,
the number of parameters is reduced by 44.8%, the
computational load by 40.7%, and the model size is halved.
In Experiment 7, an improved loss function compensates
for the minor accuracy loss introduced by LSCD. This
modification results in a nearly halved parameter count and
significant reductions in model size. Finally, the improved
model achieves a 0.1% increase in accuracy with a 1.5
percentage point reduction in mAP50-95. Furthermore, the
number of parameters, computational load, and model size
are reduced by 58.6%, 48.1%, and 56.7%, respectively. The
confusion matrix of YOLOv8n and the model proposed in
this paper is shown in Fig. 10. In contrast, the training results
for the proposed model are displayed in Fig. 11. Overall, the
new model improves performance, running speed and storage
requirements, while maintaining high detection accuracy.

G. Comparative experiments

In order to verify the effectiveness of the improved
algorithm in this paper, this section will make experimental
comparisons with the performance of mainstream detection
models in recent years under the same parameter
conditions and uniform training environment, mainly
YOLOv3-tiny, YOLOv5n, YOLOv6n, YOLOv7-tiny,
YOLOv9t, RT-DERT-r18, YOLOv9s, YOLOv10n,

YOLOv11n, and the specific experimental results are
shown in Table 4.

The SF-YOLOv8 (ours) model achieves the highest
mAP50 of 0.988, comparable to the YOLOv8n, YOLOv8t,
and other versions such as YOLOv4 and YOLOv5
in this comparison, which also show high detection
accuracy in the 0.98 range. However, the mAP50-95 for
SF-YOLOv8 is 0.674, which, while competitive, shows a
slight reduction compared to the best-performing YOLOv8n
(0.684) and YOLOv7-tiny (0.655). This suggests that while
the SF-YOLOv8 model maintains high overall accuracy,
it may exhibit slightly reduced performance in more
challenging detection scenarios involving harder-to-detect
objects (i.e., mAP50-95). One of the most significant
advantages of the SF-YOLOv8 model lies in its parameter
count and model size. It achieves an exceptionally low
number of parameters (1.2 million) compared to other models
in the comparison, especially when contrasted with the
larger models like YOLOv5n (1.7M) and YOLOv4 (9.2M)
or the much heavier RT-DETR-r18 (19M). This parameter
reduction indicates that SF-YOLOv8 successfully achieves
a lightweight model without sacrificing accuracy, making
it suitable for real-time applications where model size is
crucial. This is particularly important for deployment on
resource-constrained devices such as embedded systems or
mobile platforms. The SF-YOLOv8 model also excels in
computational efficiency, with a GFLOPs value of 4.2,

TABLE III
RESULTS OF THE ABLATION EXPERIMENT

StarNet C2f-Faster LSCD mAP@0.5 Params GFLOPs Size/M

Baseline 0.988 2.9 8.1 6.0

✓ 0.987 2.1 6.5 4.5

✓ 0.988 2.2 6.3 4.6

✓ 0.988 2.3 6.5 4.7

✓ ✓ 0.988 1.8 5.8 3.8

✓ ✓ 0.989 1.5 4.9 3.2

✓ ✓ 0.987 1.6 4.8 3.4

✓ ✓ ✓ 0.988 1.2 4.2 2.6
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Fig. 11. Training results of ablation experiments for the model in this paper
TABLE IV

COMPARATIVE EXPERIMENTAL RESULTS

Model mAP50 mAP50-95 Params GFLOPs

yolov3-tiny 0.986 0.648 8.3 12.9

yolov5n 0.853 0.54 1.7 4.1

yolov6n 0.986 0.649 4.63 11.34

yolov7-tiny 0.988 0.655 5.7 13.0

yolov8n 0.988 0.684 2.9 8.1

yolov9t 0.988 0.679 2.5 11.7

yolov9s 0.988 0.685 9.2 38.7

yolov10n 0.987 0.683 2.2 6.5

yolov11n 0.987 0.68 2.5 6.3

RT-DETR-r18 0.965 0.649 19 57.0

SF-YOLOv8 (ours) 0.988 0.674 1.2 4.2

significantly lower than many other models. For instance,
RT-DETR-r18 requires 57 GFLOPs, and even YOLOv8n
needs 8.1 GFLOPs, indicating that SF-YOLOv8 is not
only smaller in terms of parameters but also much more
efficient regarding computational cost. This is critical for
real-time applications, where processing speed and energy
consumption are essential. When comparing SF-YOLOv8
to smaller models like YOLOv3-tiny and YOLOv5n,
SF-YOLOv8 outperforms them in terms of both detection
accuracy (mAP50) and computational efficiency (GFLOPs).
For example, YOLOv3-tiny has a similar mAP50 (0.986)
but requires significantly more computational resources (12.9
GFLOPs) and has a larger model size (8.3M parameters).
Similarly, YOLOv5n performs well on mAP50 (0.853) but
with considerably lower computational demand and a smaller
parameter size.

H. Comparative experiment on heat map visualization

To more intuitively demonstrate the model’s attention to
different regions when making decisions and further verify
the reliability of the detection results, this section presents
a heat map visualization comparison experiment between

the baseline and proposed models. The specific experimental
results are shown in Fig. 12, which includes five groups.
The first visualization map represents the original image, the
second shows the detection results of YOLOv8n, and the
third illustrates the detection results of the proposed model.
The red and yellow regions in the heat map indicate areas
that significantly contribute to the detection results, with
the model focusing primarily on these regions. In contrast,
the green and blue regions represent areas with minimal
contribution to the detection results, where the model’s
attention is not focused during decision-making.

As shown in figure groups (a) and (b), under different
lighting conditions, the attention area of YOLOv8n is less
concentrated compared to the model proposed in this paper.
The focusing range of our model is more effective in
detecting the driver’s facial features. Figure group (c) shows
that YOLOv8n fails to capture the relevant focus area
when detecting yawning. At the same time, the proposed
model successfully handles the relationship between the eyes
and mouth. In Figure groups (d) and (e), when detecting
different angles of eyeglasses, YOLOv8n exhibits a vast and
scattered detection area, leading to inaccurate face detection.
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Fig. 12. Comparison results of heat map

In contrast, the proposed model demonstrates superior
performance, with the detection area focusing precisely
on the facial features. In conclusion, the improved model
presented in this paper is better at concentrating on key facial
features, effectively minimizing interference from irrelevant
environmental factors, reducing computational redundancy,
and maintaining high accuracy.

IV. CONCLUSIONS

To address the challenges of high complexity and
poor real-time performance in driver fatigue detection
algorithms, this paper proposes an improved lightweight
algorithmic model, YOLOv8-Starnet-C2f-LSCD, based on
the YOLOv8n baseline model. First, the latest StarNet
operation replaces part of the backbone module, effectively
expanding the high-dimensional feature space through
multi-layer stacked learning without increasing network
computational complexity. Second, further enhancements
are made to the C2f module by integrating the FasterNet
network model into its neck structure, which improves
target detection efficiency and speed. Finally, a redesigned
lightweight shared convolutional detection head, LSCD,
is employed. This design ensures the effective fusion of
feature information while maintaining detection accuracy
and reducing computational and arithmetic complexity.
Experimental results demonstrate that, compared to the
original YOLOv8n baseline model, the proposed model
reduces the number of parameters by 59.2%, computational
load by 48.2%, and model size by 56.%, achieving a lighter
model with higher detection accuracy while ensuring that
the mAP50% reaches 0.988. However, the proposed method
still requires further improvements under complex driving
conditions. To address the current model’s limitations, future
research will focus on integrating multiple types of fatigue

data, enhancing the model’s generalization ability under
complex scenarios, and exploring more advanced model
architectures.
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