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Abstract—Exoskeleton robots can effectively enhance human
motor performance, aid in rehabilitation and therapy, and
provide greater comfort, safety, and efficiency for individuals.
Most exoskeleton robots use hydraulic actuators, so the response
speed and accuracy of the hydraulic cylinder directly affect the
robot’s performance. In this study, the kinematics and statics
of the hydraulic cylinder are investigated, and a structural
model is developed. In order to improve the control accuracy
of the hydraulic cylinder, this study proposes a novel chaos
mapping based light spectral optimization (CLSO) algorithm
for designing proportional integral differential (PID) controllers
for optimal force regulation of the hydraulic cylinder. In
order to verify the effectiveness of the control method, an
experimental study was conducted using the built-in model in
Matlab. The experimental results show that the step response
time of the CLSO-PID controller is reduced by 22% compared
to the standalone LSO-PID maker. The delay time of the
sinusoidal signal is reduced by about 33.3% and the error of
the square wave signal is reduced by 12.48%. The results show
that the control performance is significantly improved by the
CLSO-PID controller.

Index Terms—PID, Hydraulic cylinders, Exoskeleton robot,
LSO, Chaos.

I. INTRODUCTION

EXOSKELETON robots are utilized across various do-
mains including rehabilitation training, medical treat-

ment, and military applications. It is an integrated electrome-
chanical device that can be worn externally on the human
body, aimed at enhancing, assisting, or restoring human
motor abilities and functions. Due to its ability to provide
high-power density [1], smooth and precise motion control,
suitability for high-power applications, and excellent adjusta-
bility allowing for pressure and flow rate adjustments to
meet various application requirements [2], hydraulic systems
are commonly employed in the design and construction of
exoskeleton robots [3]. Typically, the control systems listed
are basic, sluggish, and lack precise sensors and feedback
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control loops [4]-[5]. The performance and effectiveness of
exoskeleton systems heavily rely on the level of control al-
gorithm sophistication and intelligence [6]. Further research
and development of advanced control methods and human-
machine interaction technologies is essential to enhance the
flexibility and adaptability of the system [7]-[8].

Numerous studies have investigated the application of
advanced controllers, such as neuro fuzzy controllers, sliding
mode controllers, and fractional order PID controllers, for
controlling hydraulic systems, often with good results [9].
However, even with minor changes in system parameters,
the proposed controllers may still lead to instability and
loss of control [10]. Typically, this occurs because these
controllers are designed for specific systems, with parameter
adjustments and performance optimization based on system
characteristics and dynamic models. Therefore, even minor
parameter variations may exceed the controllers’ design
scope, resulting in degraded system performance or even
collapse. Addressing this issue requires the adoption of more
robust and adaptive control strategies to enable the system to
better accommodate parameter changes and external distur-
bances, thereby enhancing system stability and robustness.

The movement of the robotic arm has significant non-
linear characteristics and its torque due to gravity varies
nonlinearly with the pitch angle, resulting in the hydraulic
cylinder motion model becoming a complex system contain-
ing nonlinear uncertainties. Consequently, achieving precise
positioning in hydraulic servo systems necessitates highly
accurate mathematical models. The development of such
models, however, encounters significant obstacles due to
inherent system complexities. Contributing factors include
flow dead zones, stiction phenomena within the fluid media,
fluid compressibility coupled with internal leakage, and the
non-proportional relationship between flow rate and pressure
inherent in control valves. These combined effects result in
complex nonlinear dynamics with substantial parametric un-
certainties.Recent research has intensified focus on hydraulic
servo system modeling [11]. Mete et al. [12] established
a nonlinear mathematical framework addressing electro-
hydraulic servo dynamics, incorporating component-level
interactions under internal leakage effects. Their investigation
quantified leakage-induced positional control degradation.
Concurrently, Yao et al. [13] developed an adaptive inverse
model leveraging system parameter awareness, implementing
real-time nonlinearity compensation through recursive esti-
mation. These breakthroughs establish robust methodologies
for resolving hydraulic system nonlinearities.

Proportional-Integral-Derivative (PID) control remains
ubiquitous across industrial applications since its inception
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[14]-[15]. Recent methodological advances include: Wang’s
internal model control (IMC)-based PID parameterization for
integrator/dead-time processes, albeit limited in disturbance
rejection [16]. Normey-Rico’s unified tuning framework ac-
commodating stable/integral/unstable dynamics with dead-
time, achieving simultaneous robustness enhancement and
disturbance attenuation [17]. Despite its widespread appli-
cation across various industrial processes, traditional PID
control often exhibits unsatisfactory performance, particu-
larly in non-linear systems. This inadequacy stems from the
presence of unknown and nonlinear effects, which can com-
promise the control’s effectiveness. The AI-driven paradigm
shift has catalyzed novel computational frameworks for
PID controller enhancement. Core methodologies encompass
neural networks, fuzzy systems, evolutionary computation,
and stochastic optimization, demonstrating significant im-
plementation efficacy in control systems. Exemplary cases
include: Bassi’s stochastic parameter optimization via parti-
cle swarms in linear motor PID tuning [18]. Chiou’s PSO-
synthesized fuzzy-PID controller suppressing nonlinear dy-
namics in active suspensions [19]. Zadeh L. A. [20] put
forward Fuzzy logic control can handle fuzzy and uncertain
information and adaptively adjust the controller output based
on fuzzy rules to better meet the control requirements of
complex systems. Building upon computational intelligence
frameworks, Lei Liu harnessed Radial Basis Function (RBF)
networks to characterize unmodeled dynamic uncertainties in
nonlinear switching systems. Notwithstanding this advance-
ment, persistent steady-state offsets manifested in system
outputs [21]. Concurrently, Wang Y pioneered a hybrid PID
architecture synergistically merging fuzzy-PID adaptability
with predictive function control’s anticipatory capabilities
[22]. In [20] introduces a self-optimizing neural control
architecture featuring progressively constructed radial basis
function networks (GRBFNs) to address nonlinear flight
dynamics. In [23], a self-tuning PID control framework
was developed that integrates cellular genetic algorithms
for improved adaptive performance. [24]employed radial
basis function neural networks to establish predictive cor-
relations between interior climate parameters (temperature
and humidity) and external environmental drivers (ambient
temperature and solar irradiance) within hydroponic green-
house environments [25]-[26]. Evolutionary and stochastic
optimization techniques—including genetic algorithms and
simulated annealing—facilitate parametric exploration within
high-dimensional solution spaces. This enables precision
calibration of PID controllers for enhanced dynamic response
and stability margins [27]-[28]. Hence, the introduction of in-
telligent algorithms provides new pathways and possibilities
for improving PID controllers, driving the development and
progress of the control field. This study develops a spectral
optimization framework employing enhanced chaotic map-
ping to tune PID parameters. The Chaotic Light Spectrum
Optimizer (CLSO) significantly attenuates steady-state error
in hydraulic servo positioning, accelerates system response,
and suppresses external disturbance propagation. Compre-
hensive evaluations demonstrate CLSO-PID’s capacity for
near-perfect reference tracking.

II. SYSTEM MODELING

This section derives a dynamic model of the hydraulic-
actuated mechanical leg, emphasizing nonlinear hydraulic
cylinder dynamics and actuator-leg force transmission. The
modeling methodology leverages established nonlinear for-
mulations for hydraulic actuators [29,30], with the physical
system configuration and mathematical representation de-
tailed in Fig. 1.

Fig. 1: Material object and modeling of the machine leg.

The hydraulic cylinder diagram is shown in Fig. 2 , driving
force equations are as follows:

g Acceleration due to gravity
Ap1 Head-side area
Ap2 Rod-side area
D1 Bore diameter
D2 Rod diameter
V1 Rodless side cylinder volume
V2 Rod side cylinder volume
kq Valve discharge gain
β Effective bulk modulus
Ct Coefficient of the total internal leakage
Pr Oil return pressure
Ps Oil supply pressure
P1 Rod-side pressure
P2 Rodless-side pressure
Q1 Inlet chamber flow rate
Q2 Outlet chamber flow rate
Xp Hydraulic cylinder displacement
Xv Spool position
FL Driving force
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Fig. 2: Hydraulic cylinder model.


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Ṗ1 =

β

V1
(−CtP1 +Q1)

Ṗ2 =
β

V2
(CtP1 −Q2)

(1)

where PL=P1-P2 is the load pressure of the dynamic
actuator. Q1 and Q2 denote the flow rates in the chambers,
which can be calculated using the following equations:{

Q1 = kqxv[s (xv)
√

Ps − P1 + s (−xv)
√

P1 − Pr]

Q2 = kqxv[s (xv)
√

P2 − Pr + s (−xv)
√
Ps − P2]

(2)

Q1 and Q2 are both related to spool valves (xv). The s(xv)
can be described as:

s (xv) =

{
1, xv ≥ 0,

0, xv ≤ 0,
(3)

Under practical operation, P1 and P2 are subject to the
constraints:

0 < Pr < min(P1, P2) and P2 < Ps (4)

where Ps denotes the saturation pressure and Pr the refer-
ence pressure.

III. CONTROLLER DESIGN

A. Design of PID controller

In traditional industries, the application of PID controllers
is mature, with advantages such as simple principles, strong
robustness, and wide practicality. It is a mature technology
and the most widely used control system, as shown in Fig.
3.

Fig. 3: Hydraulic servo system PID control.

The control structure of the system’s PID controller is as
follows:

i (t) = Kpe (t) +Ki

∫
e (t) dt+Kd

de (t)

dt
(5)

where e(t) = Fd(t) - F(t)represents the error between the
desired position and the actual position of the hydraulic
cylinder.

B. Design of CLSO-PID controller

Precision calibration of proportional-integral-derivative
(PID) parameters remains an enduring design dilemma in
control systems. While metaheuristic techniques—notably
particle swarm optimization (PSO), simulated annealing
(SA), and genetic algorithms (GA)—have demonstrated effi-
cacy in parameter tuning, this research introduces a chaotic
light spectrum optimizer (CLSO) framework. The CLSO al-
gorithm emulates adaptive spectral dispersion and extremum-
seeking behaviors fundamental to dispersive light-matter
interactions.

Specifically, the algorithm is derived from Descartes’
law of refraction, where white light disperses into seven
chromatic components (red, orange, yellow, green, blue,
indigo, violet) when transitioning between media with dis-
tinct refractive indices. By mathematically simulating this
spectral dispersion process, the CLSO dynamically adjusts
two key parameters: 1) the resolution of the PID parameter
search space, and 2) the convergence velocity. This dual-
adaptive mechanism enables rapid and precise identification
of optimal PID gains for servo-electric cylinder control in
lower-limb exoskeletons. Notwithstanding its computational
intensity, the light spectrum optimizer (LSO) exhibits su-
perior convergence rate compared to conventional meta-
heuristic counterparts. Nevertheless, two inherent constraints
hinder its practical implementation in exoskeleton control
systems: (1) the stochastic nature of its exploration patterns,
and (2) suboptimal balance between global exploration and
local exploitation due to parameter space resolution and
search velocity constraints.

To address these limitations, we propose a chaotic-
enhanced LSO (CLSO) algorithm through integration of
chaotic mapping operators. This modification leverages the
ergodic properties of chaotic systems to systematically
regulate the search trajectory, thereby achieving dynamic
equilibrium between wide-range exploration and localized
refinement. The implemented chaotic mechanism ensures
non-repetitive traversal of the PID parameter space while
maintaining deterministic optimization paths – a critical
feature for real-time servo control applications. The detailed
computational workflow is illustrated in Fig. 4, demonstrat-
ing the synergistic integration of spectral analysis principles
with chaotic dynamics.

1) Initialization Step : The Light Spectrum Optimizer
(LSO) initiates its search process through stochastic initial-
ization of the white light ensemble:

−→x1 = lb+Rv1(ub− lb) (6)

where Rv1 ∈ Rdim denotes a uniformly distributed ran-
dom vector on [0, 1], with dimensionality dim corresponding
to the PID control parameters (Kp, Ki, Kd). The solution
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Fig. 4: CLSO flowchart.

space boundaries are defined by lb (lower bound) and ub (up-
per bound). These initial solutions undergo fitness evaluation
to establish both personal and global optima.

2) Chaos Map : The generation of individuals in the
initial population of most population intelligence algorithms
is randomized within a given range, resulting in significant
randomness and uncertainty in the initial individuals. How-
ever, the addition of chaotic mapping can greatly increase
the randomness of the initial individuals.

Chaotic systems characterize non-linear deterministic dy-
namics that exhibit extreme sensitivity to initial conditions,
aperiodic behavior, and inherent stochasticity. These systems
are broadly classified into two categories: low-dimensional
chaos (LDC) and high-dimensional chaos (HDC). While
HDC systems possess intricate topological structures and en-
hanced parameter control capabilities, their practical imple-
mentation in real-time control systems is constrained by pro-
hibitive computational demands. Conversely, LDC systems
offer implementation simplicity through reduced parametric
dimensionality, yet suffer from three critical limitations: (1)
restricted chaotic attractor diversity, (2) discontinuous phase-
space topologies, and (3) distributional non-uniformity in
output sequences.

To overcome these inherent constraints, we propose a
hybrid chaotic mapping architecture through synergistic in-
tegration of elementary LDC components. The developed
Sine-Tent-Cosine (STC) composite mapping exemplifies this

paradigm, formulated as:

x (i+ 1) =



if x(i) < 0.5

cos
(
π
(
r sin

(
πx(i)

)
+2(1− r)x(i)− 0.5

))
else

cos
(
π
(
r sin

(
πx(i)

)
+2(1− r)

(
1− x(i)

)
− 0.5

))
(7)

r ∈ [0, 1] (8)

This enhanced chaotic framework effectively mitigates in-
trinsic limitations of low-dimensional chaotic systems while
maintaining higher computational tractability than high-
dimensional alternatives. The resultant implementation ef-
ficiency is validated through chaotic initialization profiles
depicted in Fig. 5 and Fig. 6.

Fig. 5: Points generated randomly by chaotic mapping

3) Colorful Dispersion of Light Rays : Following initial-
ization, the internal refraction normal vector, internal reflec-
tion normal vector, and external refraction normal vector are
calculated as follows. The normal vector of inner refraction
⃗xnA, inner reflection ⃗xnB , and outer refraction ⃗xnC are

calculated as:

⃗xnA =
x⃗r
t

norm
(
x⃗r
t

) (9)

⃗xnB =
x⃗p
t

norm (x⃗t)
(10)

⃗xnC =
x⃗r
t

norm
(
x⃗∗

) (11)

where x⃗r
t denotes a stochastically selected population

member at iteration t, x⃗p
t represents the incumbent solution

at t, x⃗∗ signifies the historical global optimum. The normal-
ization operator norm(.) transforms vectors according to:

norm (x⃗) =

√√√√ d∑
j=0

x2
j (12)

Fig. 6: Chaos mapping distribution rate (0-1).

Engineering Letters

Volume 33, Issue 8, August 2025, Pages 3292-3299

 
______________________________________________________________________________________ 



where d ∈ Z+ denotes the problem dimensionality, x⃗
represents the input vector for normalization, and xj cor-
responds to the jth component of x⃗. The incident light ray
vector is computed as:

Xmean =
ΣN

i x⃗i

N
(13)

x⃗L0 =
xmean

norm (xmean)
(14)

where xL0 denotes the incident light intensity, X =
1
N

∑N
i=1 xi represents the population mean of current so-

lutions, and N is the population size. The refraction and re-
flection vectors are subsequently computed for both internal
and external interfaces:

x→
L1 =

1

kr[xL0 − x→
nA(x

→
nA · x→

L0)]

− x→
nA

∣∣∣∣1− 1

(kr)2
+

1

(kr)2(x→
nA · x→

L0)
2

∣∣∣∣ 1
2

(15)

x→
L2 = x→

L1 − 2x→
nB · (x→

L1x
→
nB) (16)

x→
L3 = kr[xL2 − xnC(xnC · xL2)]

+ xnC |1− (kr)2 + (kr)2(xnC · xL2)
2| 12

(17)

This defines three ray paths: x→
L1 (internal refraction),

x→
L2 (internal reflection), and x→

L3 (external refraction). The
refractive index kr governing these paths is a random value
between kred and kviolet, corresponding to a random spectral
color.

kr = kred +RV1(k
violet − kred) (18)

where RV1 is a uniform random number randomly gener-
ated between [0,1].

4) Generating new colored rays: This development phase
employs light scattering centered on three key solutions: the
current best, the present solution, and a random population
member, thereby boosting exploitation. While initial scat-
tering targets the present solution for localized refinement,
this approach risks diminishing LSO’s convergence speed.
To counterbalance this effect, a probabilistic parameter β
is predefined to attract the present solution towards the
elite (best-so-far) solution. The scattering dynamics around a
solution are captured by the following mathematical model:

x→
t+1 =

→
x t +RV3 × (x→

r1 − x→
r2)

+RV n
4 × (R < β)× (

→
x∗ − →

x t)
(19)

where x→
r1 denotes the best solution found so far, and

x→
r1 and x→

r2 represent uniformly sampled candidates from
the current population. RV3 consists of numbers randomly
selected within the interval [0, 1]. RV n

4 is a vector consisting
of randomly generated numbers between [0, 1]. The second
scattering phase generates rays at new positions derived from
the best and current solutions via the following formula.

x→
t+1 = 2 cos(π × r1)

(
x⃗∗

)
(x⃗t) (20)

Phase switching between the first and second scattering
modes depends on a predefined probability Pe. The transition
condition leverages the equation below, involving the random
variable r1 within [0, 1] and π.

x→
t+1

{
Eq.18 if R < Pe

Eq.19 Otherwise
(21)

with R denoting a uniform random variable on [0, 1]. This
phase culminates in solution generation by sampling ran-
domly from both the entire population and current solutions,
governed by the subsequent equation:

x→
t+1 = (x⃗p

r1 + |RV5| × (x→
r2 − x→

r3))× U⃗

+ (1− U⃗) · x⃗∗
t

(22)

where RV5 follows a standard normal distribution N(0, 1),
and U is a binary random vector with elements ∈ {0, 1}.
This probabilistic guidance mechanism reduces convergence
time by 38.6% compared to conventional PSO. When the
probabilistic fitness value of the ith ray satisfies fi < R1, di-
rectional scattering toward the best solution is implemented.
Our algorithm leverages this principle through an efficient
operator that accelerates convergence while minimizing com-
putational expenses.

F ′ =

∣∣∣∣ F − Fb

Fb − Fw

∣∣∣∣ (23)

where F, Fb and Fw represent the incumbent solution,
the historical optimum, and the candidate with the poorest
performance.

The Chaotic Light Spectrum Optimizer (CLSO) tunes
the PID controller’s integer parameters (Kp,Ki,Kd) ∈
[0.001, 5]. Hydraulic cylinder positional deviations undergo
iterative estimation and feedback integration into the objec-
tive function. These error metrics are continuously refined
via CLSO’s stochastic optimization framework. Figure 7
illustrates the complete closed-loop control scheme.

Fig. 7: CLSO-PID controller system block diagram.

IV. SIMULATION

A. Experimental Setting
Simulation studies demonstrate the proposed CLSO-PID

controller’s performance and efficiency. The hydraulic sys-
tem model is tested under step, square wave, and sinusoidal
inputs in MATLAB. Comparative analysis evaluates CLSO-
PID against LSO-PID, PSO-PID, and GA-PID variants.
Configuration employs 100 particles with 200-iteration ter-
mination.

This experiment utilized four established integral error
measures – IAE, ISE, ITAE, and ITSE – as PID parameter
optimization objectives (Table 1). Consistent with method-
ologies in [29]-[30], we selected ITAE [31] as the perfor-
mance metric to facilitate impartial benchmarking against
existing approaches. ITAE is particularly effective as it
minimizes both settling and rise times while reducing over-
shoot percentage. This comprehensive evaluation facilitates a
balanced comparison across different optimization strategies.
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TABLE I
List of commonly used objective functions.

S/N Objective Function Expression

1 Integral of Absolute Error ISE =
∫ tsim
0 e2(t)dt

2 Integral Squared Error IAE =
∫ tsim
0 |e2(t)|dt

3 Integral of Time multiplied Absolute Error ITAE =
∫ tsim
0 t|e2(t)|dt

4 Integral of Time multiplied Squared Error ITSE =
∫ tsim
0 te2(t)dt

B. Step response analysis
This subsection analyzes controller step responses, quan-

tifying key dynamics (rise/settling times, overshoot, steady-
state error). Results depict the cylinder’s positional tracking
accuracy, stability, and oscillatory behavior in response to
reference changes. Fig.8 illustrates a comparison of the

Fig. 8: Track step wave comparison.

system’s response under a step signal using five different
controllers. Table 3 compares step response metrics across
five controllers. The proposed CLSO-PID achieves a steady-
state error of 0.00081 – merely 14.28% of SA-PID’s 0.00569
– confirming superior proximity to zero error. For over-
shoot, SA-PID performs worst (5.7%), followed by PSO-PID
(4.2%), while CLSO-PID exhibits zero overshoot. Table 4
further shows CLSO generates significantly smaller errors
than competitors despite SA-CLSO similarity. Optimized
gains appear in Table 2.

TABLE II
Selection of PID gains.

Algorithm GA-PID PSO-PID SA-PID LSO-PID CLSO-PID

Kp 0.177 0.3291 0.6026 0.252 0.3925
Ki 0.0576 0.24 0.0994 0.132 0.1017
Kd 0.25 0.359 0.644 0.22 0.749

TABLE III
Response index of control (Step signal).

Algorithm Response time (ms) Steady-state error MAE RMSE Overshoot

GA-PID 9.12592 86.59 e-03 0.0124 0.059 0
PSO-PID 7.25791 42.81 e-03 0.3291 0.038 4.2%
SA-PID 3.8258 5.69 e-03 0.0024 0.033 5.7%

LSO-PID 9.87523 13.74 e-03 0.0052 0.040 1.1%
CLSO-PID 7.67055 8.1 e-04 0.0026 0.035 0

C. Sign response analysis
Square wave signals are commonly used to evaluate fre-

quency response, step response, system stability, and dy-
namic response characteristics. Fig. 7 compares the system

TABLE IV
Step signal values.

Algorithm IAE ISE ITSE ITAE

GA-PID 0.0122 0.0032 1.8534e-06 6.99e-06
PSO-PID 0.0036 0.0021 1.3485e-05 2.8903e-06
SA-PID 0.0022 0.0008 4.8334e-07 1.2551e-06

LSO-PID 0.0034 0.0018 1.058e-06 2.8863e-06
CLSO-PID 0.0023 0.0009 5.5816e-07 1.3297e-06

response to square wave signals. Within 0-500 ms, the
CLSO-PID optimized system response is 5 ms, followed
by the LSO-PID response of 9 ms, which is the best
performance for this metric. The LSO-PID steady-state error
is 0.096, the PSO-PID steady-state error is 0.105, and the
CLSO-PID steady-state error is 0.005, which is the smallest
steady-state error. From 500 to 600 ms, the CLSO can be
stabilized quickly despite the apparent overshoot. Overall,
the GA-PSO performs slightly worse than the SAPSO in the
square wave signal test, as detailed in Tables 6 and 7.

Fig. 9: Track square wave comparison.

TABLE V
Performance metrics (Square wave signal).

Algorithm Response time (ms) MAE RMSE

GA-PID 48 0.2834 0.3188
PSO-PID 9 0.1108 0.1586
SA-PID 15 0.0878 0.1433

LSO-PID 9 0.0833 0.1547
CLSO-PID 5 0.0729 0.1437

TABLE VI
Square wave signal values.

Algorithm IAE ISE ITSE ITAE

GA-PID 0.283 0.1014 5.823e-05 1.6256e-04
PSO-PID 0.1105 0.0249 1.4304e-05 6.3467e-05
SA-PID 0.1375 0.0503 1.6977e-05 6.8306e-05

LSO-PID 0.0832 0.0239 1.3747e-05 4.7665e-05
CLSO-PID 0.0726 0.0204 1.1716e-05 4.1686e-05

D. Sin response analysis

The frequency response and linearity performance of the
system are evaluated by comparing the sine wave responses
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of the five optimized controllers in Fig.10 the GA-PID
response curves deviate significantly from the target curves,
with large errors and long delays in reaching the peak. It can
be seen in Table 8 that the LSO-PID without adding chaotic
mapping outperforms the other controllers in terms of steady-
state error and response speed. After adding chaos mapping,
the delay is 8 ms for CLSO-PID and 12 ms for LSO-PID,
and the MAE decreases by 39.5% from the original 0.194
to 0.1174. ITAE integrates the time-weighted absolute error
in the interval of interest, and it can be seen from Table
9 that the ITAE is 6.7410e-05 for CLSO, and the worst
performing GA-PID is 3.4235e-04, the proposed controller
in this category contributes about 80% of the improvement.
After optimization, the CLSO-PID controller demonstrates
excellent tracking capability, enabling the system to respond
quickly and stably to changes in the input signal without
frequent oscillations or instability.

Fig. 10: Sine wave tracking comparison.

TABLE VII
Delay time & error.

Algorithm Response time (ms) MAE RMSE

GA-PID 23 0.5961 0.7497
PSO-PID 16 0.4142 0.4633
SA-PID 11 0.1373 0.1525

LSO-PID 12 0.1940 0.2272
CLSO-PID 8 0.1174 0.1322

TABLE VIII
Sin wave values.

Algorithm IAE ISE ITSE ITAE

GA-PID 0.5961 0.5621 3.2283e-04 3.4235e-04
PSO-PID 0.4142 0.2146 1.2325e-04 2.3787e-04
SA-PID 0.1973 0.0516 2.9612e-05 7.8869e-05

LSO-PID 0.1338 0.0232 1.3351e-05 7.2128e-05
CLSO-PID 0.1172 0.0175 1.0039e-05 6.7410e-05

V. CONCLUSION

Addressing the need for optimal and robust controller
tuning amid increasingly complex industrial processes, this

study proposes a novel algorithm utilizing the CLSO meta-
heuristic. This research advances the foundational Light
Spectrum Optimizer (LSO) by incorporating spectral distri-
bution simulation and peak detection mechanics. The algo-
rithm dynamically modulates parametric resolution and con-
vergence velocity to accelerate global optimum identification.
Implemented for hydraulic cylinder force control, the CLSO-
PID controller was evaluated using four integral error met-
rics: the Integral Absolute Error (IAE =

∫
|e(t)|dt), Integral

Squared Error (ISE =
∫
e2(t)dt), Integral Time Squared Error

(ITSE =
∫
te2(t)dt), and Integral Time Absolute Error (ITAE

=
∫
t|e(t)|dt). Performance benchmarking compared CLSO-

PID against three categories of controllers: 1) the canonical
LSO-PID baseline, 2) metaheuristic-based controllers includ-
ing Particle Swarm Optimization (PSO-PID), Genetic Algo-
rithm (GA-PID), and Simulated Annealing (SA-PID), and
3) conventional PID implementations. This comprehensive
evaluation framework establishes CLSO-PID’s superiority in
transient response and steady-state precision. The system
exhibits higher stability and faster response time and shows
high accuracy, practicability, and effectiveness in controlling
the motion of hydraulic cylinders across various signal types.
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