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Abstract—When optimizing the location selection and
capacity configuration of electric vehicle charging stations, in
order to effectively balance user demand and minimize total
construction and operation costs, a location and capacity
optimization model for electric vehicle charging stations is
constructed with the goal of minimizing the sum of
construction cost, maintenance cost, and network loss cost. The
model is constrained by charging demand, power flow, branch
apparent power, and node voltage to ensure the rationality of
charging station layout and the stability of power grid
operation. Meanwhile, a chaotic non-uniform mutation
artificial hummingbird algorithm (CAHA) is proposed to solve
the optimization model and improve its performance. Finally,
the verification on the test function shows the superiority of the
CAHA algorithm, and when it is used to solve the optimization
problem of charging station location and capacity, it can obtain
better location and capacity configuration scheme, thereby
reducing overall costs.

Index Terms—Electric vehicle charging station, chaos
non-uniform variation, artificial hummingbird algorithm,
location selection and capacity configuration.

[.INTRODUCTION

W ITH The popularity of electric vehicles, the demand

for charging is also increasing. As an important
supporting facility for electric vehicles, the location and
capacity of charging stations directly affect the charging
experience and efficiency of electric vehicle users. Through
scientific and reasonable location and capacity planning of
charging stations, the resource allocation of charging
stations can be optimized, the charging efficiency and
service quality can be improved, and the construction and
operation costs can be reduced, thus promoting the rapid
development of the electric vehicle industry. Foreign
researchers have carried out a lot of research. on the location
and capacity of electric vehicle charging stations. The

Manuscript received February 9, 2025; revised July 26, 2025. This work
was supported was supported by National Natural Science Foundation of
China under Grant 32001415, General Project of Liaoning Provincial
Department of Science and Technology under Grant 2023-MS-212,
General Project of Liaoning Province Education Department under Grant
LJKZ0683 and LJKMZ20221035, Doctoral Start-up Foundation of
Liaoning Province under Grant 2019-BS-207 and Natural Science
Foundation Funding Scheme of Liaoning Province under Grant
2019-KF-03-01.

Qingyun Yuan is an associate professor of School of Information and
Electrical Engineering, Shenyang Agricultural University, Shenyang
110866, China (e-mail: yqy8 29@]126.com).

Yaohui Zhang is a postgraduate student of School of Information and
Electrical Engineering, Shenyang Agricultural University, Shenyang
110866, China (e-mail: 849629249@qq.com).

Dongming Zhao is a postgraduate student of School of Information and
Electrical Engineering, Shenyang Agricultural University, Shenyang
110866, China (e-mail: 591632405@qq.com).

Zishen Wang is a postgraduate student of School of Information and
Electrical Engineering, Shenyang Agricultural University, Shenyang
110866, China (e-mail: 1582087708@qq.com).

Liu Tan is an associate professor of School of Information and
Electrical Engineering, Shenyang Agricultural University, Shenyang
110866, China (corresponding author to provide phone: 18842361062;
e-mail: liutan 0822@126.com).

conventional methods include linear programming, queuing
theory, simulation and GIS spatial analysis. For example,
Upchurch et al. propose a capacity-constrained river closure
model to study the location of electric vehicle charging
stations, and validate the effectiveness of the method using a
specific case [1]. This method introduces the capacity limit,
which can better deal with the complex relationship between
the number of serviceable vehicles at the charging station
and the actual demand, and provide some ideas for
subsequent research. Bayram analyzed the charging load
problem of electric vehicles, studied the impact of different
charging loads on the power grid, and constructed a constant
capacity model of electric vehicle charging piles related to
the architecture and charging station network to achieve the
most reasonable power distribution [2]. Based on the actual
data and considering multiple characteristic quantities,
Namdeo and Jung constructed a multi-stage hierarchical
analysis model to solve the location problem of electric
vehicle charging facilities [3]-[4]. Taking into account the
environmental factors, population density, and traffic flow,
the optimal location of electric vehicle charging facilities
should be preferred when dealing with high traffic flow,
high population density, and well-developed infrastructure.
In order to improve the efficiency of charging station layout
and planning, traditional solution algorithms have been
improved. For example, Professor Li added the construction
cost of electric vehicle public charging station and the travel
cost of users to construct a location model for electric
vehicle charging station. The improved genetic algorithm is
used to solve the model, which can better search for the
global optimal solution, avoid falling into local optimum,
and improve the overall performance of the model [6].
Domestic research on the location and capacity of electric
vehicle charging stations mostly focuses on modeling,
prediction, and optimization algorithms. For example, Su
Peng uses an electric vehicle growth prediction model to
predict the number of electric vehicles, and then studied the
location and capacity planning of electric vehicle charging
stations [7]. The research results provide economic analysis
for the construction planning of charging stations, helping
decision makers achieve optimal configuration under limited
resources and maximize the efficiency of charging facilities.
In order to comprehensively consider the actual user
demand and potential cost fluctuations, Huang Mengchao
analyzes the uncertainty of user demand, transforms the
original uncertainty problem into a deterministic problem,
and finds the optimal solution under the worst case [8]. In
addition, Liu et al. combines node demand, transit demand
and service radius to construct a location model of electric
vehicle charging facilities [9]. Pan Long constructs a
charging facility planning model with the highest user
satisfaction as the objective function to analyze the user
choice behavior [10]. Based on the charging intentions of
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electric vehicle users, Ma Weixing et al. establish a
dual-objective optimization scheduling model for charging
and discharging of electric vehicles to reduce charging costs
and ensure the state of charge (SOC) [11]. Hou Yan-¢ et al.
establish a mixed integer linear programming model, which
takes into account the variation of vehicle energy
consumption with load [12]. Under the premise of limited
capacity of electric vehicle charging station, Hu Dandan et
al. study the planning problem of electric vehicle charging
facilities under the condition of random charging time and
traffic flow, and solve the problem using greedy algorithm
and dogleg path trust region method [13]. In addition, Xu
Zuqin analyzes the related factors affecting the
charging load and uses Monte Carlo simulation method to
simulate the charging load of the vehicle. This method can
ensure the rationality of charging station planning
However, in order to improve the efficiency of solving the
location and capacity model, it is necessary to study solving
algorithms. For example, Zhang Juan et al. propose an
optimization algorithm that combines fuzzy hierarchy
and immune genetic algorithm when studying the layout
of electric vehicle charging stations[15]. The results show
that the combination algorithm can quickly find the
optimal charging station location. Zhang Pengwei et al.
construct an electric vehicle path optimization model based
on multiple distribution centers and solve it by the scatter
search algorithm. The results show that the algorithm has
certain advantages in efficiency and accuracy [16]. In
addition to these optimization algorithms, the artificial
bee-bird algorithm, as an emerging optimization algorithm,
has also received extensive attention and research from the
academic community. For example, Li Zhen proposes a
multi-strategy improved  artificial bee-bird  algorithm
(IAHA) to enhance the search efficiency and solution
quality of the algorithm [17]. In addition, Liu Qikai
proposed a new artificial bee-bird algorithm for solving
discrete optimization problems [18]. The algorithm has been
applied to the flow shop scheduling problem, and the results
show that it has faster convergence speed and higher
accuracy. It can be seen that the advantages of artificial
bee-bird algorithm in practical application provide some
ideas for its application in the research of electric vehicle
charging pile location and capacity.

In summary, most of the current research on the location
and sizing of electric vehicle charging stations is to
construct the corresponding optimization model, and then
solve the model through optimization algorithm. However,
due to the numerous factors affecting the location and
capacity of charging stations. If these factors are not fully
considered, the rationality of the location and capacity
model will be greatly reduced. In addition, the algorithm
performance of solving the model will also affect the
efficiency of the entire location selection and capacity
strategy. Therefore, based on the comprehensive analysis of
multiple factors that affect the location and capacity of
charging stations, in order to simplify the calculation and
analysis, the location and capacity model is constructed
under certain assumptions. Considering the advantages of
artificial hummingbird algorithm in solving complex
optimization problems, a chaotic non-uniform mutation
artificial hummingbird algorithm is proposed by introducing

[14].

chaotic mechanism and using non-uniform search strategy
to improve the artificial hummingbird algorithm. The
algorithm is used to solve the location and capacity model of
charging stations, thereby achieving effective configuration
of charging stations with minimal cost.

IL.LESTABLISHMENT OF OPTIMIZATION MODEL FOR LOCATION
AND CAPACITY OF ELECTRIC VEHICLE CHARGING PILE

The location and capacity of electric vehicle charging
stations involves many influencing factors, which
collectively determine the construction location, scale and
service scope of charging stations. Therefore, this section
first analyzes these influencing factors and then provides the
corresponding location and capacity model of charging
station.

A. Analysis of Influencing Factors of Location Selection
And Capacity

The main factors influencing the location selection and
capacity of electric vehicle charging station are as follows:

(1) In order to meet the charging needs of users, it is
necessary to conduct in-depth analysis of the number and
growth trend of target user groups and electric vehicles.

(2) Economic factors also play an important role in the
location selection of charging stations, involving return on
investment, land costs, electricity, and operating costs.

(3) The importance of grid factors is reflected in the
integration of power supply capacity, smart grid technology,
and renewable energy to ensure the normal operation of
charging piles and reduce their burden on the power grid.

The above analysis of the influencing factors not only
provides the necessary input data and constraints for model
establishment, but also provides a basis for constraints and
objective functions, enabling the established model to
effectively reflect the actual situation and lay a solid
foundation for the location selection and capacity
determination of charging stations. The following will
elaborate on how to use these factors to construct a charging
station location and capacity model.

B. Construction of Location Selection And Capacity Model

The main purpose of selecting the location and capacity
of electric vehicle charging stations is to optimize their
location and capacity for minimizing the cost. Therefore,
this paper proposes a method combining model and
optimization algorithm to calculate the optimal number and
location of charging stations, in order to achieve the goal of
minimizing total cost. Due to the many factors that affect
the location and capacity model of charging stations, in
order to facilitate the analysis and calculation, when
constructing the model, the assumptions are given as
follows:

(1) The user 's charging demand is evenly distributed in
space, which means that the user 's charging demand is
distributed in different regions, rather than concentrated in a
specific location.

(2) The geographic information data used is accurate,
including maps and road network information, to calculate
the coverage area of charging stations and the distance
traveled by users.

(3) The capacity of the charging station can meet the
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user's charging needs. The user's driving and charging
behavior is relatively stable and not affected by external
factors. The network connection is also stable and reliable,
which ensures that the communication between charging
stations is not disturbed by external factors.

(4) Accurate charging demand enables accurate prediction
of charging demand.

Based on the above assumptions, the objective function
for the location and capacity problem is first given, followed
by the corresponding constraints.

C. Objective Function

When selecting the charging station location scheme, in
order to maximize the economic benefits, on the basis of
considering the construction and operation cost, the
maintenance cost and the network loss cost, the minimum
sum of these three costs is taken as the objective function.

(1) Construction and operation cost of charging station

The construction and operation cost of charging station
include land leasing, infrastructure  construction,
procurement and installation of charging pile equipment,
power access cost, construction cost, operation and
management cost, monitoring safety equipment cost and
other costs. By minimizing the construction cost, a more
cost-effective location scheme can be selected to maximize
the benefits within a limited budget. The construction and

operation cost  jcan be expressed as follows:

_ 1+ o) 0 2
a2 N
1
)+ oL+ ) W
where o is the discount rate , is the number of
operating years , is the fixed investment cost , is the
number of charging piles in the charging station , is the

sum of charging stations , is the coefficient of cost
equivalent investment of distribution transformer and
transmission line related equipment , is the unit price of
charging pile, _, ( + )is the operating cost.

(2) Maintenance cost of charging station

The maintenance cost of charging station refers to the
cost of maintenance, upkeep, and operation of charging
station, including the maintenance cost of charging
equipment, power consumption cost, personnel management
cost, monitoring system maintenance cost, insurance cost
and so on. The maintenance cost , of a charging station
is usually affected by geographical location and equipment
quality, which can be expressed as follows:
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where is the conversion coefficient of labor and

equipment operation and maintenance cost , is the
number of charging demand points within the service range
of charging station 7 ,the spatial distance from charging

demand point to charging station, is the average number
of electric vehicles that need to be charged every day at the
charging demand point ,p is the charging price ,k is the value
of user travel time ,v is the average speed of electric
vehicles , is the urban travel time cost coefficient , is
the waiting time expectation of the electric vehicle
queuing , is the number of charging piles for a site, =
=— s the

is the charging service intensity ,

number of electric vehicles arriving at the charging station
per unit time ,the number of electric vehicles at the
demand point , is the charging probability of electric

vehicle , is the charging period of electric vehicles, = L

is the average service rate of the charging pile ,  is the
service time of the charging pile, and is the probability
that the charging pile is all idle.

(3) Network loss cost

Network loss cost is an important consideration in the
study of location selection and capacity of electric vehicle
charging stations. The network loss cost 3 is usually
related to factors such as low voltage cost and electricity
price, which can be expressed as follows:

1 2 + 2
3TP 1 = ( (=) —)+
- 2
(/) 3)
where is the total number of nodes, is branch
admittance, is the active and reactive power flowing

is the
head-end voltage of the branch, is a set of nodes
connecting nodes, ()is the real part, for the unit price
of charging. , ~, = and represent the voltage
amplitude, voltage upper and lower limits and rated voltage
of the node, respectively, and Y represents the cost of unit
voltage offset.

The objective function is to minimize the sum of charging
station construction cost, charging pile maintenance cost,
and user's driving cost from demand point to charging
station. Therefore, the objective function can be expressed
as follows:

from the head end of the branch are respectively,

Min = [ 1+ 2+ 3] “4)

D. Constraint

When selecting the charging station location scheme, it is
necessary to consider constraints such as power flow, branch
apparent power, node voltage, number of charging piles in
the station, and number of charging stations to ensure the
rationality and feasibility of the location selection plan.
These constraints are described as follows:

(1) Power flow constraints

The power flow constraint ensures that the layout and
scale of charging stations can meet the charging demand of
electric vehicles without negatively affecting the normal
operation of the power grid. Therefore, the relationships
must be satisfied as follows:
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=1
( , 1. D )
where is the branch susceptance, and are
the active power of the power generation and charging
station load of the power grid node, respectively.  and
are the reactive power of the power generation and charging
station load of the power grid node, respectively.
(2) Branch apparent power constraint
By designing the apparent power of the branch reasonably,
a good interaction between the charging station and the
power grid can be achieved. Therefore, the conditions need
to be met as follows:

— |24 2
| I= ' | (1, ] (6)
where is the maximum apparent power of the
branch is the active power in the branch , and

is the reactive power of the branch
(3) Node voltage constraints
Considering the node voltage constraint can ensure the
stability of the power grid, improve the power quality and
investment efficiency, enhance the charging efficiency, and
optimize the allocation of power grid resources. Therefore,
the conditions need to be met as follows:
= = (1, ] (7
where is the lower limit of the node voltage, and
is the upper limit of the node voltage.
(4) Constraints on the number of charging piles in the
station
In the study of the location and capacity of electric
vehicle charging stations, considering the number of
charging stations can ensure the efficiency, economy, and
user satisfaction of charging services. Therefore, the
conditions need to be met as follows:
. S = , ®)
where and are the maximum number
and the minimum number of charging piles in the station,
respectively.
(5) The number constraint of charging stations
The number of charging stations can effectively —match
demand, control costs, optimize space, balance loads,
improve service quality, ensure compliance with policy
requirements and reduce environmental impacts, so as to
establish an efficient, economical and sustainable charging
facility network. Therefore, the following relationships need
to be met:

= )

where is the total number of electric vehicles.

E. Optimization Model

From the above objective function and constraints, the
model of EV charging station location and capacity
optimization can be obtained as follows:

Min :min[ 1 ( N ) + 2( N N )
+ 3 (P.

i Qs )]

s.t.:Egs. (5)-(9) (10)

It can be seen from Equation (10) that MinF is the
objective function. Here, and s ,are selected as
decision variables. By optimizing and determining these
variables, the total cost of the system can be minimized,
thereby improving the economic benefits of the charging
station.

III.THE SOLUTION OF CHARGING STATION LOCATION AND
CAPACITY OPTIMIZATION MODEL

Equation (10) is a complex optimization problem
involving multiple variables and constraints. Researchers
usually use intelligent optimization algorithms to solve this
problem. Artificial hummingbird algorithm is an intelligent
optimization algorithm that simulates the foraging behavior
of hummingbirds in nature. It combines the flight skills with
intelligent foraging strategy of hummingbirds, which can be
used to solve the location and capacity problem of electric
vehicle charging stations. However, the computational
complexity and sensitivity of parameter settings in the
conventional artificial bee-bird algorithm affect the
efficiency of practical applications. Therefore, by
introducing chaos theory and non-uniform mutation strategy
into the artificial hummingbird algorithm, a chaotic
non-uniform mutation artificial hummingbird algorithm is
proposed to enhance the global search ability and
convergence performance of the algorithm, and to solve the
problem in Equation (10).

A. Chaotic Non-uniform Mutation Artificial Hummingbird
Algorithm and Its Verification

The Artificial Hummingbird Algorithm (AHA) is a
biologically inspired optimization algorithm designed to
simulate the information exchange and cooperative behavior
of bees when searching for food. In order to obtain a larger
initial population and avoid premature local optima, chaotic
initialization and non-uniform mutation strategies are
introduced into the traditional Artificial Hummingbird
Algorithm, forming a chaotic non-uniform artificial
Hummingbird algorithm (CAHA). This improvement makes
the CAHA algorithm to more effectively balance the
relationship between global search and local search,
improving the overall performance of the algorithm. The
solving process of this algorithm is shown in Fig 1, which
shows the operation and optimization strategies of CAHA
algorithm at different stages, further elucidating its potential
and advantages in complex optimization problems. Through
these improvements, CAHA algorithm can not only provide
efficient solutions in a wider range of application scenarios,
but also show stronger robustness and flexibility in the face
of dynamic environmental changes and complex constraints.
This enables the CAHA algorithm to effectively optimize
the decision-making process in practical applications such
as EV charging station location selection, logistics
scheduling, resource allocation, etc., promoting the research
and development in related fields.
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Fig. 1 The solving process of CAHA algorithm

It can be seen from Fig. 1 that the specific solving steps
of the algorithm are described as follows:

Step 1: Initialize the parameters of CAHA algorithm,
including flight coefficient and migration coefficient,
maximum number of iterations and population size.

Step 2: The Tent chaos initialization of Equation (11) is
used to strengthen the species diversity of the initial
population, and the fitness value of the population is
calculated.

— 0<

IN

(11)

" 11% < =1

where ¢ is a control parameter, and is iteratively

generated by using the Tent mapping formula to generate a
series of values.

Step 3: Conduct guided foraging, territorial foraging, and

migratory foraging operations on the initialized population.

Step 4: The hummingbird will give up the current food
source and update the food source when the candidate
solution generated during the guided foraging or territorial
foraging phase is better.

Step 5: The crossover operator is introduced to cross the
top one-third of the population's optimal fitness and
calculate its fitness.When the fitness of the new individual is
better than that of the original individual,replace the original
individual to give it a certain probability of escaping rom the
local optimal solution.In some cases, crossover operations
can be combined to generate new solutions.This
operation is usually to determine the crossover of parent
individuals by an effective selection mechanism.Assuming
that there are two parent solutions Xiand Xz,the crossover
operation is expressed as follows:

= +l- ) (12)

where  is a random number, the value range is [0,1].

Step 6: The mutation operator is introduced to reduce the
disadvantage of population diversity reduction in the later
stage of iteration. The mutation step, assuming that there is a
solution X and ' after the mutation solution, the mutation
can be expressed as follows:

‘= + .(U-L)-C (13)

where is the mutation rate, which is usually a
gradually decreasing value from 1 to 0. U and L are the
upper and lower bounds of the search space, respectively. C
is a random number that can be generated by chaotic
mapping or other random methods to ensure it falls within
the range of [0,1].

Step 7: Satisfy the maximum number of iterations, output
the result, and the iteration ends.

B. Performance Verification of the Algorithm

In order to verify the superiority and feasibility of the
proposed CAHA algorithm compared with the traditional
AHA algorithm and PSO algorithm,four classic CEC23 sets
of test functions,Sphere,Ackley,Griwank and Rastrigin,are
used for verification.The images of these functions are
shown in Fig.2.

The target values of the four test functions of the CEC23
group are 0,the maximum number of iterations of the set
function is 100,the population size is 30,and the dimension
of the test function is 30.Each function is subjected to 30
independent experiments, and the average value and
standard deviation in the experiment are recorded to
evaluate the effect of the algorithm.Additional information
about the test function is shown in Table 1.

TABLE I

INFORMATION TABLE OF TEST FUNCTIONS

Function Test function Search range Opti
type mum
=) 0
Sphere ()= 2 [-100,100]
=1
0
1
Ackley ()=—20 (-02[- 2) [-32,32]
=1
0
2
Griwank = —= — -600,600
riwanl ) 000 _ (\/_)+l [-600,600]
0
Rastrigin ()=10 + [?2-10 (2 )] [-5.12,5.12]

Volume 33, Issue 8, August 2025, Pages 3300-3310



Engineering Letters

Sphere
7000 T T
——PSsO
——AHA
6000 CAHA| |
5000
PSO
4, 4000 -
@
g
= 3000 |- AHA
CAHA
2000
1000
0 ! : n n :
0O 10 20 30 40 50 60 70 8 90 100
iteration times
4100 100 (a)Sphere
9 Ackley
her ‘
(a) Sphere —
——AHA
—— CAHA
20
15 g PSO
2
10 h AHA CAHA
5
0
20 1 K
0 — \ . . . . A .
o 10 20 30 40 50 60 70 80 90 100
iteration times
(b)Ackley

(b) Ackley 2

Griewank

o—— L y__ L
0 10 20 30 40 50 60
iteration times

¢) Griwank i
© (c)Griwank
Rastrigin

60

50

0 10 20
iteration times
(d) Rastrigin .
Fig.2 Test function image (d)Rastrigin

functions

The PSO, AHA and CAHA algorithms are used to
iteratively solve the four test functions in Table 2. The curve
of fitness value with the number of iterations is shown in
Fig. 3.
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It can be seen from Fig.3 that the CAHA algorithm in
the Sphere function can achieve the optimal fitness value
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by 35 iterations,while the PSO algorithm and AHA
algorithm require 65 and 70 iterations respectively to
achieve the optimal itness value.In the Ackley function,the
CAHA algorithm can achieve the optimal fitness value by
20 iterations,while the PSO algorithm and the AHA
algorithm need 27 and 65 iterations respectively to achieve
the optimal fitness value,with fitness values of 0.5 and
1.3.In the Griwank function,the CAHA algorithm can
achieve the optimal fitness value, with a fitness value of 0
after 15 iterations,while the PSO algorithm and the AHA
algorithm need 25 and 85 iterations respectively to achieve
the optimal fitness value,with fitness value 0f0.2 and 1.In
the function, the CAHA algorithm can achieve the optimal
fitness value, with a fitness value of 0 after 12
iterations,while the PSO algorithm and the AHA algorithm
need 46 and 97 iterations respectively to reach the optimal
fitness value,with the fitness value of 1 and 2.It can be
seen that the CAHA algorithm has the best iterative speed
and optimization ability.In order to further quantitatively
compare the performance of the algorithm,30 independent
optimizations are performed for each algorithm.The average
and standard deviation of each algorithm are  shown in
Table 2.The calculation formulas for the average and
standard deviation are as follows:

==L (14)

where is the average value, is the number of
optimizations, and is the result of the n-th optimization.

= =22 (15)

where s the standard deviation.
TABLE II
ERFORMANCE COMPARISON OF TEST FUNCTIONS
f . PSO AHA CAHA
unctio
n types
S S S

9.15%x1  9.40x%1 1.50x1  5.70%1 0 0
Sphere  0° 05 0-140 0140

3.20x1  520x1 4451 0 445%x1 0
Ackley (1 0! 0716 016
Griwa 7.70x1  7.10x1 0 0 0 0

03 03
nk
Rastrig (5).65><1 (1) 651 0 0 0 0

m

It can be seen from Table 2 that in the test of unimodal
function Sphere and Griwank, the standard deviation of
CAHA algorithm is 0, indicating that the stability and
consistency of the algorithm are very high. In this case, the
average value of CAHA algorithm is close to the theoretical
optimal value, which further verifies its better optimization
ability. In the test of multi-peak function Rastrigin and
Ackley, the CAHA algorithm also performs well. The
average value also reaches the theoretical optimal value, and
the standard deviation is 0, indicating that the results of each
optimization are consistent, which proves the reliability of
the algorithm. This shows that despite facing multiple
extreme points, the CAHA algorithm can still effectively
optimize and quickly jump out of the local optimal solution.

In summary, whether in the optimization of unimodal
function or multimodal function, CAHA algorithm shows
strong search ability and high stability, and has good
adaptability to different types of functions. These
characteristics make the CAHA algorithm have wide
application potential in optimization problems. Furthermore,
it will be used to solve the location and capacity problem of
subsequent electric vehicle charging stations.

C. Example Verification

F irstly,the location information of 49 demand points and
32 alternative points is determined,and the charging demand
of each demand point and the construction cost of charging
station are provided. At the same time,the unknown
parameters of the charging station location and capacity
optimization model are determined.Then,the artificial
hummingbird algorithm of chaotic non-uniform mutation
is applied to solve the specific location and capacity model.

This paper designs a small-scale case,the road distribution
map of the urban planning area and the distribution network
structure map of the planning area are shown in Figs.4-5.

H L ES DR

Fig. 4 Geographic map of road distribution in a planning area of a northern

city

23124]2526(27/2829]30|31/3233

—
()
w
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=)
2
>
o
[
(—]

11]12]13]14]15]16]17]18

19[20)21|22

Fig. 5 Distribution network structure diagram in the planning area

Fig. 4 shows the geographical map of road distribution in
a planning area of a northern city, the range of its abscissa
and ordinate determines the number of demand points in the
area is 49.Fig.5 represents 33 key positions in the power
grid model,with a replacement point set every other node to
determine that the number of alternative points is 32.
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TABLE III

INFORMATION OF DEMAND POINTS

generated by the rand function, ranging from 0 to 200. The
information of demand points and alternative points
randomly generated by rand and pdist2 functions is shown

Number in Table 3 and Table 4.
Demand point  abscissa ordinate of elec TABLE IV
number (km) (km) . .
tric vehi INFORMATION OF ALTERNATIVE POINTS
cles Alternate point number N abscissa (km) ordinate (km) load (MW)
1 0.93 0.74 154 1 6.91 1.10 0.10
2 1.43 1.90 170 2 3.74 4.04 0.09
3 1.09 1.95 167 3 2.08 3.24 0.12
4 4.39 0.84 118 4 4.89 1.39 0.06
5 0.55 6.87 113 5 6.88 4.60 0.06
6 6.17 5.59 163 6 3.82 4.85 0.20
7 542 5.87 117 7 7.31 1.72 0.20
8 6.94 5.20 103 8 1.48 4.16 0.06
9 3.69 4.13 156 9 0.83 791 0.06
10 491 2.61 188 10 2.23 3.92 0.05
11 6.68 5.29 167 11 2.97 5.56 0.06
12 4.04 0.94 119 12 3.16 3.29 0.06
13 2.12 1.18 137 13 234 0.28 0.12
14 7.32 0.16 146 14 5.20 2.34 0.06
15 0.27 7.71 198 15 0.69 6.41 0.06
16 245 7.76 116 16 3.02 2.77 0.06
17 7.30 0.99 186 17 2.21 0.67 0.09
18 2.74 3.74 164 18 1.75 1.25 0.09
19 2.32 5.25 138 19 0.79 2.93 0.09
20 0.91 232 119 20 445 5.92 0.09
21 6.87 6.04 143 21 1.00 1.25 0.09
22 1.02 4.46 148 22 1.16 6.44 0.09
23 2.49 3.42 112 23 0.00 6.54 0.42
24 6.73 2.14 159 24 2.13 1.52 0.42
25 3.75 6.03 123 25 4.13 0.99 0.06
26 4.61 7.19 138 26 6.53 6.57 0.06
27 4.37 5.83 158 27 0.32 5.10 0.06
28 5.24 3.25 125 28 6.79 0.13 0.12
29 0.22 7.51 129 29 0.98 7.17 0.20
30 3.96 2.04 162 30 6.25 4.12 0.15
31 0.24 427 127 31 6.00 6.00 0.21
32 6.20 7.64 182 32 6.88 2.00 0.06
33 2.55 2.14 198
34 6.35 2.00 173 In addition, other parameters values are shown in Table 5,
35 1.85 742 134 including discount rate ( o), operating life ( ), fixed
36 436 0.55 158 investment cost (), equivalent investment coefficient of
37 7.03 240 H distribution transformer and transmission line related
38 0.36 473 191 equipment cost ( @ ), unit price of charging pile ( €),
39 040 1.63 188 conversion coefficient of labor and equipment operation and
40 0.15 5.09 182 maintenance cost (Y), charging price (p), average speed of
41 5.11 6.39 126 electric vehicle (Vv), urban travel time cost coefficient (),
42 4.49 4.01 159 charging probability of electric vehicle (P), charging time
43 0.86 5.21 102 period of electric vehicle (), and service time of charging
44 5.97 6.37 143 pile ( ).These parameters play a crucial role in the
45 4.63 1.87 131 construction and optimization process of the model, which
46 053 481 116 not only affect the calculation of the overall cost, but also
47 0.52 0.90 118 directly affect the effectiveness of the location and
48 1.02 4.13 142 configuration strategy of the charging station.Through the
49 5.92 6.70 109 reasonable setting and optimization of these parameters, it

The coordinates of 49 demand points and 32 candidate
points are randomly generated by the rand function. The
charging demand of each demand point is a random integer

can more accurately reflect the economic situation and user
needs in the actual operation, and then provide a scientific
basis for the planning and construction of electric vehicle
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charging infrastructure. As the EV market continues to
evolve, it is increasingly important to understand and adjust
these parameters to ensure the efficiency and sustainability
of the charging network.

TABLE V

VALUES OF OTHER PARAMETERS
Character name

Taking val
Parameters aking values

Ty Discount rate 008

n Years of operation
year

20 years

Cg Fixed investment 300 million ¥
cost

@ Cost equivalent
investment
coefficient of
distribution
transformer and
transmission line
related equipment

& Charging pile unit
price

2 million ¥

10 Ten thousand ¥

V Labor, equipment
operation and
maintenance cost
conversion
coefficient
Charging price

0.1

0.8%/(kw/h)
User travel time 17%h

value

The average speed of
electric vehicles
Urban travel time
cost coefficient
Charging probability
of electric vehicle
Electric vehicle
charging period

t The service time of
charging pile

==

<

20km/h

17¥%/h

T ™

0.05
4h

~

12h

From the above parameters, a specific location and
capacity model of electric vehicle charging piles can be
obtained for subsequent optimization and solution.

D. Solution Results and Analysis

For the determined location and capacity model,the
chaotic non-uniform mutation artificial hummingbird
algorithm is used to solve it.To verify the superiority of the
algorithm,the particle swarm optimization algorithm and the
conventional artificial hummingbird algorithm are used to
solve the model.The curve of the total cost changing with
the number of iterations is shown in Fig.6.

From Fig.6,it can be seen that the convergence speed and
global optimization ability of CAHA are better than PSO
and AHA.This is mainly due to the non-uniform mutation of
the chaotic non-uniform mutation artificial hummingbird
algorithm,which can adjust the mutation range according to
the current search phase and improve its adaptability to the
problem.By incorporating complex constraints into the
objective function,the model scale can be reduced and the
solving speed is the fastest.

From the minimum total cost in Fig.6,the corresponding
charging station location results of each algorithm can be
obtained,as shown in Figs.7-9.
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Fig. 6 The change of total cost with the number of iterations
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Fig. 7 Charging station location results obtained by PSO algorithm
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Fig. 8 Charging station location results obtained by AHA algorithm
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In Figs. 7-9, the units of the horizontal and vertical axes
are both kilometers, and the area range is determined by the
horizontal and vertical coordinates, which facilitates the
accurate selection and analysis of the coordinates of the
demand points and alternative points. In the figure, the small
blue circle represents the installation points of five EV
charging stations, which are located in the central area of
demand points and alternative points to maximize the
charger needs of users. The small red mark represents 49
demand points, which represent the actual charging demand
location of electric vehicle users, distributed throughout the
region, reflecting the distribution characteristics of users.
The small green markers represent 32 alternative points that
are potential sites for charging stations, offering flexible
options to respond to different needs and conditions. As can
be seen from Figs.7-9, the charging station positioning
results obtained by the CAHA algorithm show that the
distribution of demand points and alternative points around
the installation point is more uniform than that obtained by
the PSO (particle swarm optimization) algorithm and the
AHA (ant colony algorithm) algorithm. This uniform
distribution means that charging stations are able to cover
user needs more effectively and reduce the average distance
of users to charging stations, thereby improving the
accessibility and convenience of charging services.
Therefore, the positioning result obtained by using CAHA
algorithm is considered to be the most reasonable and
effective choice. From this, the specific costs corresponding
to each algorithm can be found as shown in Table 6.

TABLE VI
COST COMPARISON OF EACH ALGORITHM
Aleorithm L CAOC/ UCTC/ DOC/ CcC/
g 10,000 ¥  10,000¥  10,000¥ 10,000¥
PSO 13,12,30  183.64 112.90 310.17 606.71
,11,2
AHA 1131,122,32 182.95 11521 307.78 605.29
CAHA 13,12,33  182.87 109.10 308.51 600.48
,11,2
Where L represents the location, CAOC represents the

construction and operation cost,UCTC represents the user charging
time cost, DOC represents the distribution operation cost, CC
represents the comprehensive cost.

According to Table 6, the comprehensive total cost obtained by
CAHA algorithm is the lowest, reaching 60.48 million yuan. This
significant cost advantage is mainly due to the innovative
design of the chaotic heterogeneous artificial hummingbird
algorithm. By introducing chaotic mapping technology, the
algorithm enhances the global search ability and reduces the risk of
falling into the local optimal solution. In traditional algorithms, the
trap of local optimal solution often leads to low search efficiency,
but the design of CAHA algorithm effectively avoids this problem.
In addition, CAHA algorithm adopts flexible mutation strategy,
which can dynamically adjust the search strategy according to the
feedback in the search process, so as to achieve a good balance
between global search and local search. The flexibility of this
strategy enables the algorithm not only to converge quickly, but
also to perform well in the quality of the results. Experiments
show that CAHA algorithm is superior to PSO algorithm and AHA
algorithm in terms of convergence speed and result quality,
showing its advantages in solving complex optimization problems.
In this specific area, all three algorithms set the locations of 5
charging stations, which indicates that CAHA algorithm can
achieve the lowest total cost under this condition. This result not

only reflects the effectiveness of the CAHA algorithm in
optimizing the location of EV charging stations, but also shows
that the strategy can significantly reduce the total cost of the
system, thereby improving the overall economic benefits. By
optimizing the layout of charging stations, the CAHA algorithm
can improve the accessibility and efficiency of charging services,
providing EV users with a more convenient charging experience
and promoting the widespread use and sustainable development of
EV.

IV.CONCLUSION AND PROSPECT

A. Conclusion

This study aims to address the optimization for location
and capacity of electric vehicle charging stations. By
constructing an efficient optimization model, the total
construction and operation costs of charging stations can be
minimized to meet the charging needs of users. Firstly, a
model is established that minimizes comprehensive cost,
including construction cost, maintenance cost and network
loss cost. The model involves multiple constraints such as
power flow, branch apparent power, and node voltage to
ensure the scientific and feasible layout of charging stations.
And an improved chaotic non-uniform mutation artificial
bee bird algorithm (CAHA) is proposed for solving the
model. The comparative experiments results show that the
CAHA algorithm performs particularly well in terms of
convergence speed and result accuracy, and can achieve the
lowest comprehensive cost. Finally, the effectiveness of the
proposed algorithm is verified through solving a practical
case, and the charging station location scheme and charging
resource allocation effect after solution are demonstrated,
ensuring the effective implementation of user charging
demand.

B. Outlook

Although some progress has been made in the research on
the location selection and capacity determination of electric
vehicle charging stations, there are still some limitations. In
future related research, the following technical methods can
be discussed in depth. Multiple objective functions such as
environmental impact and wuser satisfaction can be
considered for optimization to achieve more comprehensive
decision support, ensuring that environmental protection and
social benefits are taken into account while pursuing
economic benefits. In addition, the intelligent algorithm
needs to be constantly improving to enhance its convergence
speed and adaptability in solving complex problems.
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