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Abstract—Satellite Communication on the Move (SOTM) is
critical for operations requiring mobility. Conventional approach-
es employing parabolic reflector antennas exhibit limitations,
including sluggish mechanical scanning speeds and suboptimal
tracking efficiency, particularly for Low Earth Orbit (LEO)
satellites. In contrast, phased array antennas offer faster and
more accurate tracking but are still underutilized in practical
SOTM systems. A fundamental obstacle is ensuring precise beam
alignment between satellites and mobile terminals, it would
affects the tracking performance. However, many existing beam
alignment methods are computationally intensive and unsuitable
for real-time applications. This study introduces a computational-
ly efficient beam alignment algorithm capitalizing on the inherent
rank-restricted structure of our constructed beamspace matrix.
The alignment task is formulated as a non-convex maximization
problem, and a randomized matrix approximation is employed
to construct the beamspace. This enables the extraction of a
subspace likely to contain the optimal value. Particle Swarm
Optimization (PSO) is subsequently applied within this subspace
to iteratively refine the beam estimate. Numerical simulations
demonstrate that the proposed method improves beam search
accuracy by an order of magnitude and reduces computational
cost by over > 60% compared to existing approaches. This
advancement offers significant potential for enhancing SOTM
system performance in highly dynamic environments.

Index Terms—Satellite communication, SOTM, Beam align-
ment, PSO.

I. INTRODUCTION

ATELLITE communication is expected to play a pivotal
role in future 6G mobile networks, serving as a global
relay to enable high-speed, seamless, and ubiquitous broad-
band connectivity. Among its emerging applications, Satellite
Communication on the Move (SOTM) has gained increasing
significance by facilitating stable and reliable satellite links
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for mobile platforms—such as ships, aircraft, and ground
vehicles—in motion. The technology has attracted widespread
adoption due to its critical role in mission-critical scenarios,
including military operations, emergency response, maritime
communications, and bridging the digital divide in remote or
underserved regions.

However, the deployment of SOTM systems faces inherent
limitations when relying on mechanically steered parabolic
reflector antennas, particularly in Low Earth Orbit (LEO)
scenarios. The slow scanning speed and suboptimal tracking
efficiency of these antennas significantly limit system perfor-
mance [1], [2]. In contrast, electronically steered phased arrays
offer a promising solution by enabling agile beam steering
through phase shifters [3]. Despite their potential, practical
implementation remains challenged by unresolved issues in
beam alignment accuracy and dynamic tracking under high-
mobility conditions.

Establishing robust SOTM links critically depends on pre-
cise initial beam alignment [4], which is a prerequisite for
maintaining continuous connectivity under platform mobili-
ty. Conventional solutions rely on sensor fusion of Global
Navigation Satellite System (GNSS), compasses, and Inertial
Measurement Unit (IMU) for attitude estimation [5], but these
approaches suffer from cumulative errors in low-cost sensors,
often resulting in beam misalignment and signal degradation.

To address these limitations, several dominant methodolog-
ical paradigms have emerged, each targeting specific aspects
of the alignment problem with associated limitations. Classical
brute-force beam sweeping offers simplicity but incurs exces-
sive time and computational overhead. Hierarchical codebook
approaches reduce training complexity, yet they perform poor-
ly in dynamic environments [6]. High-resolution Direction-of-
Arrival (DOA) estimators (e.g., MUSIC [7]) provide high ac-
curacy at the expense of increased computational load. Hybrid
inertial-electronic tracking methods [8] improve robustness but
remain sensitive to sensor fusion stability. Stochastic opti-
mization techniques (e.g., Particle Swarm Optimization (PSO)
[9], [10]) effectively balance exploration and exploitation, yet
scale poorly in real-time systems. Despite their respective
advantages, all existing approaches exhibit fundamental trade-
offs among alignment accuracy, latency, and adaptability—
particularly in high-mobility SOTM scenarios where compu-
tational efficiency becomes critical.

Recently, an active phased array antenna specifically de-
signed for direct broadcast satellite (DBS) is developed to
improve the beam alignment efficiency [11]. This architecture
leverages advanced array processing to improve satellite signal
acquisition while reducing the number of active and control
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components. Concurrently, ref. [8] proposes a hybrid tracking
strategy that integrates inertial yaw rate sensor data with
electronic feedback from the antenna system, enabling high-
precision beam alignment.

We propose a computationally efficient beam alignmen-
t framework which uses the low-rank property of such
beamspace matrices. Specifically, the beam alignment process
is constructed as a novel problem with several non-convex con-
straints. To address such problem, we reconstruct a low-rank
beamspace matrix via randomized approximation techniques.
Then, an attention subspace that encapsulates the optimum
is obtained and PSO algorithm is employed to estimate the
target direction. Compared to conventional approaches, specif-
ically exhaustive beam search and canonical PSO, our method
achieves > 60% reduction in computational complexity and
an 8 speedup ratio over canonical methods, significantly
enhancing real-time performance in SOTM systems. The main
contributions are summarized as following:

1) We analyze the beam alignment process, and formulate
it as an innovative optimization problem. This formulation
addresses previously unresolved challenges in optimization
theory specific to dynamic satellite communication scenarios.

2) We develop an novel beam search method that leverages
randomized matrix approximation techniques. This approach
enables high-precision estimation of both azimuth and ele-
vation information for terminal beam search, while reducing
time complexity by several orders of magnitude compared to
state-of-the-art methods. To further optimize practical imple-
mentation, we introduce a computationally efficient sampled
length estimation algorithm that dynamically adapts to system
constraints.

3) Comprehensive computational complexity analysis of
our developed algorithm is provided, and it is supported
by extensive numerical simulations. The results demonstrate
that our method achieves high accuracy while maintaining
computational requirements that are suitable for real-time
operation, making it particularly well-suited for widespread
deployment in SOTM applications.

II. SYSTEM MODEL

This work focuses on the GEO satellite-to-SOTM com-
munication link. The GEO satellite operates at the standard
altitude of 35,786 km (see Fig. 1). The mobile SOTM terminal
employs a Uniform Planar Array (UPA) with dimensions
M, x M,. Following the model in [12], the channel matrix
H € CM=*My petween the GEO satellite and the satellite
terminal at instant time ¢ and frequency f is characterized by:

Lyp—1
H(t, f) = Y Grexplj2n(tv — fr)]Vi(au, B), (1)
1=0
where Ly, is the number of propagation paths. G; represents
the complex channel gain for the [y, path. The UPA’s array
response matrix V; for the l;, path, parameterized by the
azimuth angle and elevation angle, has its (m,n) element
defined as:
Vi(a, B) =

ejy[(mmfl) sin oy cos B+ (my—1) sin o sin 3] .

Y

2

Here, d is the inter-element spacing and )\ is the carrier
wavelength. The composite channel gain G; aggregates several
loss components [13]:

G = PLdll + PLdal + PLdpl + PLdsl' 3

Specifically, Pr,,,, is the free-space path loss, incorporating
shadow fading and clutter loss. Pr,,, is the Atmospheric
attenuation losses; Pp,, is the building penetration loss (where
applicable); Pr,,_ is the miscellaneous losses from unmodeled
factors.

Consequently, the received signal vector at the SOTM
terminal is:

y = wihs + win. 4)

In this expression, s is the transmitted signal symbol,
h = vec(H) € CM«Myx1 5 the vectorized channel, n is
the additive noise vector, w € CM=My <1 i the beamforming
vector.

ITII. EFFICIENT BEAM ALIGNMENT ALGORITHM

In this section, the original non-convex problem is reformu-
lated, and an efficient beam search algorithm is developed to
achieve high-precision beam direction estimation. In addition,
the computational complexity of the proposed approach is
thoroughly analyzed.

A. Problem Reformulation

The instantaneous received signal energy at the SOTM
terminal can be computed for any given beamforming vector
w (o, Bp) with unit norm (||w|| = 1), as follows:

Qo = llyl3 = yy"
= w(ao, Bo) "Raw(ao, o) + w(ao, Bo) " Raw(ao, Bo),
&)
where R; = hsshl and R, = E[nn’!] denote the signal
and noise covariance matrices, respectively.
It is evident that the received signal energy (), varies with
the beamforming vector w(«yg, 5y). This leads to the following
optimization problem for maximizing the received power:

maXHWHle—i—WHRQWHi, st. [w]=1. (6)
w

Following established beamforming theory [5], the ideal
receive vector that maximizes directional alignment with the
target satellite is expressed as w = vec(V(«, 3)). This for-
mulation enables precise beam steering toward the satellite’s
transmission direction. The parameters « and 3 in this ex-
pression correspond to the transformed azimuth and elevation
angles, respectively, describing the satellite’s relative position
in the terminal’s coordinate frame.

As observed, the estimation accuracy of « and [ directly
affects the initial beam alignment performance. However,
conventional methods such as classical DOA estimation or
exhaustive beam sweeping typically incur high computational
complexity.

Specifically, classical beam search method involves scan-
ning over all possible beam directions in the azimuth-elevation
domain (« € [0,27], 8 € [-7/2,7/2]) to identify the optimal
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beam pair. This process can be formulated as the following
optimization problem:

argmax F(q, )

(a,
F(a,p) = HWHle +wiRow ’ ,
o ae{ag | ag € [0,27]}, @
- Be{Bolboel0,5]},
[w(a,B)[| = 1.

In this context, F(a,3) € CM*N denotes the two-
dimensional discrete problem space matrix. Traditional beam
sweeping methods require extensive sampling to explore
F(«, 8) and locate its maximum value [14]. Moreover, both
the estimation accuracy and computational complexity are
closely related to the chosen sweeping interval.

Let the azimuth and elevation sweeping intervals be Ao =
27 /M and AB = 7/N, respectively. The size of the search
space becomes F € CMx*N _and the total number of beam
sweeping operations required is M x N.

This exhaustive search approach, although conceptually
straightforward, introduces significant overhead in terms of
time and computational resources, especially when high-
resolution beam alignment is required.

B. Efficient Beam Search

1) Low-Rank Problem Space Representation: To achieve
dimensionality reduction without compromising estimation
accuracy, our methodology employs a low-rank reconstruction
paradigm. We first define the azimuth and elevation scanning
vectors p; € RM and q; € RY through angular domain
discretization:

ps = [0,27/M, ..., 2n] € RM|
qs = [0,7/2N, ..., 7/2] € RV,

(8a)
(8b)

We then construct the compressed sub-vector qs(J71)
through uniform downsampling of the elevation vector qs,
selecting exactly |s/2] elements according to the following
representation:

qs(jl) S RS/ijl = [j17j27 "'ajS/?]' (9)

The index set J; C 1,2,...,M is generated through
uniform sampling. The sampling length s satisfies rank(F) <
s < min(M,N), where s is functionally dependent on
the matrix rank and can be approximated using established
methods [14].

We then perform a dual-vector traversal over p, and the
compressed elevation vector qs(7;), dynamically updating
the SOTM beam configuration during sampling. This pro-
cedure constructs the partial observation matrix Fy., =
F(ps,qs(J1)) € CMxe/2,

Column variance analysis of Fy, identifies the dominant
s column indices, denoted Z. Mirroring this approach, we
generate the complementary sub-matrix F,. by traversing the
reduced azimuth vector p; = ps(Z) against the full elevation
vector qs, while simultaneously adjusting beam alignment.
The column-space representation F, admits the theoretical
formulation:

F, = F(p1,q;s) € C*N. (10)

We compute row-wise variance metrics for the column-
submatrix F, € CMxs, identifying the index set [J> cor-
responding to the |s/2] most significant variance values.
Applying the established beam adjustment procedure to the
parameter pair ps and qs(72) yields a secondary partial
matrix F,.,o. Consequently, the row-submatrix F,. is derived
through the relationship:

F, = [Ffro§ FfroQ] = F(p57 ql)u q1 = [qs(jl); Cls(Jz)]
(11)
The theoretical intersection between the column-submatrix
F. and row-submatrix F, constitutes the core submatrix F',,
= F(p1,a1) = Fe(;,aq1) = Fy(p1 :,) € C**°. Leveraging
randomized matrix approximation techniques [14], [15], we
reconstruct the original M x N problem space matrix through
the factorized representation:

F=FWF, W= (F,)! =F.(;,q1)", (12)

where W is a weighting matrix computed using the Moore-
Penrose pseudo-inverse. The resulting P represents the recon-
structed low-rank approximation of F. As established in [15],
[16], the approximation error |[F — F| admits a theoretical
bound proportional to the sampling complexity parameter
(M + N)s — s

min(M,N) min(M,N)
S < |F-FWF[<(1+¢&) Y o2 (13)
i=s+1 i=s5+1

where o; is the iy, singular value of F; & € [0,1] is one
parameter related to s.

Therefore, it only required [(M + N)s — s?] samples to
construct the space matrix F by our method.

2) Evolutionary Search: Based on the above recovered
matrix F, we then obtain the attention subspace, which contain
the optimum [14]:

. 2 R 2 4 T A T
Of{al—ﬁ<x<a1+M,ﬁl—ﬁ<y<ﬂ+f}.

2N
. . (14)
Here, (G, 1) is the maximum of F. i.e.,
(41, B1) = arg max(F). (15)

The conventional PSO is subsequently applied to explore
the compact attention subspace O. For initialization, K par-
ticles are generated through uniform random sampling within
attention subspace. After T' generations, the algorithm yields

optimal azimuth-elevation angle estimates (&, 3) [17], [18].

C. Sampled Length Estimation

To facilitate the practical deployment of the proposed beam
search algorithm, it is crucial to estimate an appropriate
sampling length s for the problem space matrix F. In this
section, we develop a low-complexity estimation strategy that
accurately determines the optimal sampling length s. The
method proceeds in two iterative steps.

Step 1: Sub-matrix Construction. At each iteration i, we
set the current sampling length as s = s; (s; > 1), and
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Algorithm 1 Proposed Beam Search
Input: Matriz< size M,N, K, T

Output: &, 5.
: Ps,Qs, S = 84,1 =0,

1

2: While ZZO:lH_l Mg < i, do

3: Randomly sampling the ps, qs(J1,:)-

4: Constructing F ., = F(ps,qs(J1,:)), and select the Z;
via the column variance.

5: Constructing F,.; = F(ps(Z;),q) € C**¥, and selecting
the ‘7272'.

6: Constructing F .0 =
[;Ffro; Ffro2]'

7: F; according to eq. (12).

g F, = U,diag([p1, pa, -, its,]) Vi via SVD.

9: 5, =s; + 1.

10: End While.

11: Obtaining the O.

12: Applying the PSO algorithm based on K, O and T

13: Obtaining (&, B).

F(p,a(7%,)), Fe

construct two submatrices F.;, F,; based on the column and
row selection criteria detailed in Section III-B. Subsequently,
a low-rank approximation matrix is computed as:

Fi = Fe (Fui(:,q0) Fl, (16)

where (-) denotes the Moore-Penrose pseudoinverse, and q;

represents the selected column indices at the ¢-th iteration.
Step 2: Singular Value Residual Analysis. Next, we perform

singular value decomposition (SVD) on F;, which yields:

7/’L5i])ViI{7

where p; denotes the k-th singular value.

The sampling length s is then estimated by evaluating
the residual energy of the singular values. Specifically, the
estimated rank is determined once the following condition is

satisfied:
Sq
Z P < ;-

F; = U, diag ([, pa, - - (17)

(18)

If no such I; exists for the current s;, the sampling length
is incremented as s; = s; + 1, and the SVD step is repeated
with the updated submatrices. This iterative process continues
until the above stopping criterion in eq. (16) is met or the
maximum number of iterations ¢, 1S reached.

The reconstruction error between the final approximated
matrix Fmax and the original matrix F is theoretically bounded
as analyzed in eq. (13). The complete procedure is summarized
in Algorithm 1.

D. Complexity Analysis

This section presents the time complexity analysis of the
proposed efficient beam search algorithm. As outlined in
the algorithmic framework, the computational burden of the
proposed method primarily consists of two major components:
(1) beam direction optimization and (2) matrix operations.

First, the beam direction optimization process in the SOTM
system involves t1[(M + N)s — s? + TK] sequential adjust-
ments. Assuming each directional adjustment cycle requires
t1 seconds, the total execution time for this phase is given by:

Theam =t [(M + N)s — s> + TK] . (19)

Second, the algorithm incorporates several sophisticated
matrix computations, including singular value decomposition
(SVD), matrix inversion, and matrix multiplication. Among
these, the computational complexity is dominated by the
matrix multiplication operations, which collectively involve:

O (tmax (Ms* + sMN + 25°)) (20)

arithmetic operations.
Accordingly, the upper bound on the execution time for the
matrix computation stage can be expressed as:

Thnatrix = t2 * tmax (M52 +sMN + 253) s 2D

where to denotes the average time required for a single
multiplication operation.

Finally, combining both components, the overall time com-
plexity of the proposed algorithm is derived as:

t1 [(M + N)s — s° + TK] + totmax (Ms® + sMN + 25%) .

(22)

As analyzed, the complexity of multiplication process in our

method almost can be negligible, when comparing to the beam

search complexity. This analytical model provides a compre-

hensive characterization of the computational efficiency of the
proposed beam alignment strategy.

IV. SIMULATION RESULTS

In this section, we now provides comprehensive validations.
To establish rigorous performance baselines, we systematical-
ly benchmark our method against five state-of-the-art beam
alignment paradigms spanning classical to recent advances:
1) Stochastic optimizers (Canonical PSO [9]), 2) Subspace
estimators (MUSIC), 3) Exhaustive search, 4) Hierarchical
search [6], 5) Hybrid switching (BSA [19]). This selec-
tion covers all dominant signal processing strategies, from
computationally intensive high-precision methods to real-time
heuristics, providing exhaustive coverage of the SOTM beam
alignment design space.

A. Simulation Parameters

In the simulation setup, the target satellite is positioned
in geostationary orbit at a longitude of 134°E, while the
SOTM is located at 130°E and 30°N. The key simulation
parameters are summarized as follows: 1) The satellite-to-
terminal communication operates in the Ku-band at a carrier
frequency of 14.25, GHz; 2) The uniform planar array (UPA)
has an inter-element spacing of d = 0.5); 3) The effective
isotropic radiated power (EIRP) of the satellite is set to
50dBW; 4) The antenna gain-to-noise-temperature ratio (G/T)
of the SOTM terminal is specified as 2dB/K; 5) The array
dimensions are M, = M, = 16, resulting in a total of
M = 361 elements; 6) The search space is characterized by
parameters N = 91, K = 20, T = 20, and s = 6.
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Fig. 1: Recovered attention subspace.

B. Problem Space Reconstruction

We first assess the reconstruction accuracy of the problem
space matrix F generated by our algorithm, in comparison
to the ground-truth matrix F. Fig. 2(a) shows the original
matrix F, computed via exhaustive traversal over discretized
elevation and azimuth angles (horizontal and vertical axes,
respectively). Fig. 2(b) depicts the reconstructed matrix F
along with the attention subspace O identified by our method.
As illustrated, the proposed algorithm reconstructs F with high
fidelity, and the identified subspace O reliably encloses the
optimal solution to problem (7). Importantly, this reconstruc-
tion requires only [(M + N)s — s?] = 2676 beam search
operations, significantly fewer than the M N = 32851 required
for exhaustive search (i.e., [(M + N)s — s?] < M N).

C. Angle Estimation Accuracy

We evaluate the accuracy of elevation and azimuth angle
estimation achieved by our method against five state-of-the-
art techniques: Canonical PSO, MUSIC, Exhaustive Search,

Estimation Error-Searech Times

—0— Canonic PSO Method —o—BSA Method
—»— Exhaustive Search Method —0— Proposed Method
——MUSIC DOA Method Hierarchical Search Method

S8est

Estimgtion Error of Azimuth
o
o

104
2000 4000 6000 8000 10000 12000
The Number of Search Times
(a) Azimuth estimation performance
Estimation Error-Searech Times
o— 5 0
102 L

—— Exhaustive Search Method ——MUSIC DOA Method
—o— Proposed Method —o—BSA Method
—0— Canonic PSO Method Hierarchical Search Method

4000 6000 8000 10000 12000
The Number of Search Times

2000
(b) Elevation estimation performance

Fig. 2: Different algorithms estimation performance varies with the number
of beam searches times.

Hierarchical Search, and BSA [5], [7], [19]. Fig. 3(a) and
3(b) present the estimation errors as a function of the number
of beam searches, where the horizontal axis denotes beam
search count, and the vertical axis represents the angular error
(i.e., the deviation between the true and estimated angles). As
shown in the Fig. 3(a) and (b), our proposed method con-
sistently achieves the lowest estimation error across all beam
search budgets. Moreover, with increased beam search count,
the elevation and azimuth errors decrease rapidly, yielding a
final estimation accuracy improvement of 20%-40% over other
approaches.

D. Algorithm Scalability

To validate scalability, we examine the performance of
our method under varying UPA configurations. Fig. 4(a) and
4(b) show the angle estimation errors across different array
sizes, denoted by < M, M, >. The horizontal axis reflects
the number of array elements, while the vertical axis shows
the corresponding estimation error. As demonstrated, the pro-
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Fig. 3: Different algorithms estimation performance varies with the size of
UPA array antenna.

posed algorithm maintains robust accuracy across all tested
configurations (M,, M, € [16,32]), achieving up to a 10x
improvement in estimation precision compared to baseline
methods for larger arrays (e.g., M, = M, = 32).

E. Computational Efficiency

We further evaluate the computational efficiency of the
proposed algorithm through Monte Carlo simulations over
100 independent trials. Fig. 5 compares the CPU runtimes of
different beam alignment methods across UPA configurations
with M, € [16,32]. The results reveal two key observations:
First, the proposed method reduces computational overhead by
more than 60% compared to conventional approaches; Second,
it achieves an 8x speedup over PSO-based algorithms while
maintaining comparable estimation accuracy. These findings
highlight the algorithms effectiveness in high-dimensional
SOTM scenarios, where both computational efficiency and
robust angle estimation are critical.

0.3 —O— Proposed Method =—#— Exhaustive Search
. —O—BSA ==O— Canonic PSO
0.25 H —#— MUSIC DOA ~—— Hierarchical Search Method

o
N
:

o

=

ul
T

CPU RunningTime/s
o
-

0.05

0.03

20 25 30
Size of UPA Array M,

Fig. 4: CPU running time of different beam search methods across varying
SOTM terminal dimensions.

V. CONCLUSION

This work introduces a computationally efficient beam
alignment framework for SOTM systems that leverages the
low-dimensional geometry of beamspace energy matrices. We
recast the alignment objective as a constrained nonconvex
maximization problem. Our solution employs randomized ma-
trix approximation to construct a compressed representation
of the beamspace, enabling identification of a solution-dense
attention subspace. Within this reduced-dimensional space,
particle swarm optimization rapidly converges to the optimal
beam steering direction. Compared to conventional approach-
es, the proposed algorithm markedly improves alignment ac-
curacy while substantially reducing the required complexity,
making it well suited for real-time satellite communication.
This method holds significant promise for advancing SOTM
systems, particularly in mission-critical scenarios such as
military operations, where both precision and efficiency are
essential.
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