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Abstract—Debris flows and landslides are geological hazards
that pose a significant threat to life and property. To reduce
the impact of these disasters and improve management
efficiency, there is an urgent need to establish flexible and
effective post-disaster management methods. High-precision
aerial images offer significant advantages in this field, as
their mobility and high resolution provide more detailed
terrain information compared to traditional satellite images,
especially in post-disaster emergency response scenarios. This
paper proposes a systematic solution to detect and classify
geohazard areas in high-precision aerial images. The approach
uses the Attention-Pyramid U-Net (APU-Net) for aerial image
segmentation, enabling accurate localization and identification
of geohazard areas. For APU-Net, in the encoder part, the
Atrous Spatial Pyramid Pooling (ASPP) is added in parallel
to the encoder module of each layer and then connected
in series with the Squeeze and Excitation (SE) module. In
the decoder part, the Convolutional Block Attention Module
(CBAM) is introduced after each upsampling. The APU-Net
model is used to segment aerial images and extract key
features. These features are then used to classify debris flow
and landslide events. The experimental results show that the
proposed method achieves an accuracy of 85.44% for the
detection of geohazard areas and an accuracy of 76.13%
for the classification of debris flows and landslides under
complex terrain conditions. These results demonstrate that the
proposed method provides robust technical support for disaster
management by effectively detecting and classifying debris flows
and landslides in high-precision aerial images.

Index Terms—Debris flow, Landslide, Detection, APU-Net,
Classification.

I. INTRODUCTION

DEBRIS flows and landslides are common geological
hazards in mountainous areas, characterized by five

key features: sudden onset, tendency to occur in clusters,
potential to trigger secondary disasters, seasonal patterns, and
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extreme destructive potential. These events typically arise
from a combination of factors, such as terrain conditions,
heavy rainfall, vegetation cover, climate fluctuations, and
human activities. The interaction of these influences leads
to varying spatial distributions of hazard-prone zones across
different regions. Once triggered, such disasters often result
in severe consequences, including significant loss of life and
widespread damage to infrastructure [1-4].

Though both are mountain geohazards, debris
flows and landslides operate under entirely different
mechanical principles. Debris flows behave like violent,
sediment-charged floods—often triggered by intense rainfall
or sudden snowmelt—carrying over 40% solid content by
volume [5,6]. They erupt abruptly, racing downhill at speeds
surpassing 5 m/s, funneling massive volumes of debris
(exceeding 10,000 m³) through narrow channels before
spilling chaotically onto alluvial fans. Landslides, on the
other hand, involve the gradual sliding of intact soil or
rock masses along defined failure planes, creeping at rates
of less than a meter per day. Both pose severe threats to
ecosystems, infrastructure, and communities, though their
destructive mechanisms diverge sharply [7].

The unpredictable behavior and often catastrophic
consequences of geohazards demand highly reliable
monitoring systems for both emergency response and
damage assessment. This need becomes especially acute
in mountainous regions, where difficult terrain and
complex geology make traditional field surveys particularly
challenging. Modern remote sensing approaches have
emerged as practical alternatives that overcome these
obstacles.

Traditional geohazard monitoring methods suffer from
three key weaknesses: (1) infrequent data collection, (2)
insufficient detail in spatial coverage, and (3) logistical
difficulties in rough terrain. High-resolution aerial imaging
addresses these shortcomings by providing centimeter-scale
detail and adaptable deployment options, allowing
comprehensive terrain analysis even in hard-to-reach
areas. These capabilities make it especially useful for
disaster response scenarios where speed and accuracy are
critical.

Cutting-edge monitoring solutions combining computer
vision and machine learning are transforming how
we assess disasters. For instance, image-based flood
monitoring systems employ real-time water level
estimation through specialized image processing modules,
significantly enhancing early warning capabilities [8]. Recent
advancements include UAV-based aerial photogrammetry
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for infrastructure assessment [9], edge detection algorithms
(Canny, Sobel) for critical structure monitoring [10],
and AI-powered landslide tracking systems utilizing 4G
networks [11]. Furthermore, the fusion of satellite imagery
with predisposing factors has enabled predictive modeling
through deep learning architectures like Deep Belief
Networks [12], while edge computing solutions (e.g., K210
processors) have facilitated real-time hazard recognition
[13].

Contemporary monitoring systems increasingly rely on
sophisticated image classification architectures to achieve
operational precision. In disaster response scenarios, these
algorithms prove particularly valuable for differentiating
hazard types and quantifying damage severity - capabilities
that extend beyond geological emergencies to diverse
industrial applications. Recent innovations demonstrate this
cross-domain potential: Li’s team engineered a bespoke
CNN variant that simultaneously extracts and classifies
features in pulmonary tissue patches, eliminating manual
preprocessing through automated neural processing [14].
Long’s comparative analysis of chest X-ray classification
revealed data augmentation’s critical role in boosting
pneumonia detection accuracy across multiple CNN
configurations [15]. At the intersection of environmental
monitoring and machine vision, Kumar’s group fused
satellite telemetry with convolutional features through an
innovative CNN-ANN hybrid architecture [16]. Network
security applications also benefit from these advances,
as shown by Wang’s parallel RNN-CNN framework that
deciphers encrypted traffic patterns directly from raw TLS
data streams [17]. The automotive sector has seen similar
progress, with Shoaib’s enhanced Faster R-CNN model
overcoming persistent challenges in detecting obscured
objects during autonomous navigation [18]. Even waste
management systems are evolving through intelligent
classification, evidenced by Hasan’s prototype smart
receptacle integrating multi-sensor inputs with real-time
material sorting algorithms [19]. These cross-domain
advancements in computer vision underscore an urgent
need for specialized solutions in geohazard differentiation
- particularly in distinguishing morphologically similar
yet mechanistically distinct events like debris flows and
landslides.

This diagnostic challenge manifests acutely in
mountainous terrain, where debris flow patterns and
landslide morphology frequently coexist but demand
divergent mitigation strategies. Current methodological
approaches have coalesced around four paradigms: (i)
traditional feature-classifier pipelines requiring manual
geomorphometric parameterization, (ii) end-to-end CNN
architectures automating feature learning, (iii) transfer
learning frameworks adapting pretrained vision models,
and (iv) segmentation-driven classifiers enabling pixel-level
terrain parsing. Each paradigm carries distinct operational
trade-offs - for instance, while CNNs excel in automated
feature extraction, their performance degrades significantly
when confronted with scale variance inherent to natural
landslide environments. Precision demands in disaster
scenarios increasingly favor segmentation-based approaches,
which mitigate scale sensitivity through localized feature
analysis. Early implementations achieved 70% landslide

detection accuracy using SVM-classified segments in
controlled forest environments [20], though struggled with
complex terrain heterogeneity. Subsequent innovations
introduced hybrid methodologies, exemplified by Keyport’s
fusion of K-means clustering with object-based image
analysis [21], and Du’s systematic benchmarking establishing
GCN and DeepLab v3 as optimal for landslide semantic
parsing (54.2% mIoU) [22]. Nevertheless, as Martha’s
adaptive parameter selection framework revealed [23],
fundamental challenges persist in balancing segmentation
granularity with computational efficiency across diverse
geomorphological contexts.

Recent advancements in deep learning have solidified
U-Net’s position as a benchmark architecture across multiple
imaging domains. Its proven efficacy spans biomedical
diagnostics (demonstrated in tumor boundary delineation
by Song et al. [24] and cellular structure analysis by
Ibtehaz et al. [25]), environmental surveillance (as applied
to deforestation tracking by Malik et al. [27]), and remote
sensing applications (particularly in land-use classification
as shown by Shamsolmoali et al. [26]). Despite these
widespread successes, the architecture’s potential remains
underexplored for critical geomorphological analyses -
particularly in debris flow characterization and landslide
pattern recognition. U-Net’s inherent advantages, including
hierarchical feature learning, depth scalability without
degradation risks, and precise localization capabilities,
position it as an ideal candidate for these geohazard imaging
challenges. Harnessing these capabilities could revolutionize
our capacity to predict and manage slope instability events
through computational image analysis.

Building on this technological gap, we introduce APU-Net
- an Attention-Pyramid U-Net architecture specifically
optimized for geohazard imagery. Our encoder enhancement
integrates complementary attention mechanisms: CBAM
for spatial-channel feature refinement and SE blocks for
channel-wise feature recalibration. The CBAM component
operates through sequential channel and spatial attention
gates, dynamically emphasizing tectonically significant
features while suppressing geological noise. Concurrently,
the SE modules employ global context squeezing and
excitation to amplify critical channel responses, effectively
filtering redundant spectral information. For decoder
optimization, we implement an ASPP-enhanced pyramid
structure that combats context fragmentation through parallel
atrous convolutions. This multi-scale approach preserves
feature resolution while expanding the effective receptive
field to encompass crucial geomorphological patterns. Our
research makes three substantive contributions to geohazard
analysis:

1. We propose a new APU-Net segmentation framework
that integrates ASPP and SE modules in parallel within
the encoder. This design improves the ability of the
model to capture multiscale contextual features, significantly
increasing accuracy in detecting geohazards under complex
terrain conditions.

2. The decoder is improved by adding CBAM model after
each upsampling step. By combining spatial and channel
attention, the model better highlights important regions and
structural boundaries, leading to more precise segmentation
results.
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Fig. 1. Flowchart of the hybrid deep learning model-based method for debris flow and landslide detection and classification in high-precision aerial
images

3. An end-to-end geohazard analysis pipeline is developed,
which first segments aerial images using the proposed
APU-Net, then classifies debris flow and landslide areas
based on extracted features. Experiments show that
this approach achieves high accuracy and robustness in
both segmentation and classification, providing reliable
technical support for post-disaster emergency response using
high-resolution aerial imagery.

The rest of this paper is organized as follows. Section II
introduces the APU-Net model. Section III describes
the details of the experiments. Section IV presents the
experimental results and discusses them. Finally, Section V
lists the conclusions of this study.

II. METHODOLOGY

The methodology begins with pre-processing the images
through enhancement and normalization to improve their
quality and ensure consistency across the dataset. This step
is essential for preparing the images for accurate analysis.
Following preprocessing, the APU-Net network is used
for segmentation. The APU-Net model uses its advanced
architecture to segment images and produce detailed
segmentation masks that highlight the areas of interest. Once
the segmentation masks are obtained, feature extraction is
performed to derive meaningful features from the segmented
images. These features capture important attributes that are
relevant for further analysis. After extraction, a feature
selection process is conducted to refine the dataset by
identifying and retaining only the most significant features,
which enhances the performance of the classification model.
Finally, the selected features are utilized in classification
tasks to accurately identify and categorize geohazards.
This methodical approach, encompassing preprocessing,
segmentation, feature extraction, and selection, ensures a
robust and precise analysis, leading to effective disaster
assessment and response. The overall process flowchart of
the proposed method is shown in Fig 1.

A. Data augmentation and normalization

To enhance the dataset for subsequent work, various
data augmentation techniques were applied. These included
rotation, translation, scaling, and flipping. By performing

these geometric transformations on the original images, new
training samples were generated, thereby improving the
generalization ability and robustness of the model.

These transformations effectively expanded the dataset by
creating new samples from the original images, which in turn
enhanced the model’s ability to generalize. By incorporating
variations in orientation, position, size, and symmetry, the
model became more robust in recognizing objects under
diverse conditions. This augmentation process played a key
role in improving the accuracy and resilience of the model
when faced with real-world data.

There are several methods available for data normalization,
including min-max scaling, Z-score standardization, and
mean normalization. For the purposes of this study, the
dataset is normalized using the Z-score standardization
method. This approach is chosen due to its simplicity and
ease of computation, as well as its ability to effectively
normalize data regardless of the scale or presence of
extremely large or small values. The Z-score standardization
formula utilized is as follows:

z =
x− µ

σ
(1)

where x represents the data mean, µ represents the standard
deviation, and z represents the standardized score.

The U-Net is a convolutional neural network architecture
originally designed for medical image segmentation tasks
[28]. The design of U-Net is particularly suitable for
tasks requiring precise localization, and it has demonstrated
outstanding performance across various image segmentation
tasks [29].

The APU-Net segmentation model proposed in this paper
has an overall network architecture similar to the U-Net
segmentation model, which mainly includes encoder, jump
connection and decoder parts. On the basis of retaining the
basic structure of the U-Net network, in the encoder part,
CBAM is added in parallel to the encoding module of each
layer, and then connected in series with the SE module. In
the decoder part, the ASPP module is introduced after each
upsampling to perform multi-scale perception of the feature
map and improve the segmentation accuracy. The structure
of APU-Net is shown in Fig 2.
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Fig. 2. (a)The Structure of Attention-Pyramid U-Net. (b)The Structure of ASPP. (c)The Structure of CBAM

B. Geohazard area segmentation

1) Atrous Spatial Pyramid Pooling: The development
of Spatial Pyramid Pooling (SPP) [30] marked a critical
advancement in handling variable-resolution inputs for
convolutional networks. Prior architectures constrained
input dimensions through destructive resizing operations,
introducing geometric distortions that compromised feature
learning. SPP’s breakthrough lay in its hierarchical pooling
strategy, which aggregates multi-scale spatial information
through progressively coarser grid partitions. This pyramid
representation maintains aspect ratio fidelity while producing
fixed-length descriptors, particularly beneficial for analyzing
geohazard imagery where preservation of topographic
relationships proves essential.

Building upon SPP’s foundation, Atrous Spatial Pyramid
Pooling (ASPP) [31] introduced dilated convolution kernels
to expand receptive fields without sacrificing resolution.
Our implementation employs three parallel dilation rates
(r=6,12,18) combined with global context features, creating
a multi-scale feature synthesis expressed through:

Y1 = Concat (image(X), H1,1(X), H6,3(X)) (2)

Y2 = Concat (H12,3(X), H18,3(X)) (3)

Y = Y1 ⊕ Y2 (4)

where Hr,n(X) represents the dilated convolution
operation with a dilation rate of r and a kernel size of n×n on
X; image(X) represents the image-level features extracted
from X using global average pooling.

The structure of ASPP is illustrated in Fig 2(b).
The input image undergoes 1×1 convolution, pooling
pyramid operation (three 3×3 dilated convolutions), and
dilated pooling layer operation (pooling, 1×1 convolution,
and upsampling). The results are then concatenated. The

pooling pyramid uses dilated convolutions with dilation
rates of 6, 12, and 18 to capture features at different
receptive fields, enabling multi-scale feature extraction.
Incorporating ASPP into the encoder-decoder architecture
enhances feature extraction, thereby efficiently capturing
multi-scale information.

2) The Convolutional Block Attention Module: The
Convolutional Block Attention Module (CBAM) [32] is a
hybrid attention mechanism that combines spatial attention
and channel attention mechanisms. Its structure is shown in
Fig 2(d). Given an input feature map F of size C×W ×H ,
F ′′ represents the output of CBAM. The symbol ⊙ denotes
the multiplication of elements in a way that is equivocal, cM
represents the extraction operation of features of attention in
the spatial dimension, and sM indicates the attention feature
extraction operation in the channel dimension.

F ′ = Mc(F )⊗ F (5)

F ′′ = Ms(F
′)⊗ F ′ (6)

F ∈ RH×W×C , Mc ∈ R1×1×C , Ms ∈ RH×W×1 (7)

CBAM is a hybrid attention mechanism that enhances
feature representation by combining spatial attention and
channel attention mechanisms. Specifically, the channel
attention mechanism first weights the channel dimension
of the input feature map to focus on important channels,
followed by the spatial attention mechanism that weights the
spatial dimension within each channel to highlight important
regions in the image. Using this approach, CBAM adaptively
selects crucial channels and spatial areas, thus improving the
feature representation ability of the model.

3) Squeeze-and-Excitation: The SE module is an
attention mechanism designed to enhance channel feature
representation in convolutional neural networks (CNNs). It
explicitly models the interdependencies between channels
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and dynamically adjusts the importance of each channel,
thereby improving the network’s feature representation
capability. The SE module consists of two main stages:
squeeze and excitation. The structure of SE is illustrated in
Fig 2(c).

In the Squeeze stage, the SE module performs a global
average pooling operation to compress spatial information
from each channel into a scalar. Specifically, for a given
input feature map X ∈ RH×W×C (where H is the height,
W is the width, and C is the number of channels), global
average pooling computes the average value of each channel
to generate a descriptor for each channel.

In the Excitation stage, the SE module learns the inter
dependencies between channels by using fully connected
layers, generating attention weights for each channel. First,
the compressed descriptor z ∈ RC is mapped to a smaller
intermediate dimension using a fully connected layer, and
then it is restored to the original channel dimensions using
another fully connected layer.

The SE module first compresses the spatial information,
then the excitation stage learns the interdependencies
between channels to generate attention weights, and finally,
the recalibration step adjusts each channel’s importance.
This process allows the network to automatically adjust the
attention given to different channels, improving its ability
to respond to important features and improving the overall
representation of the features [33].

C. Geohazard classification

Feature selection is crucial to obtaining comprehensive
information on debris flows and landslides. To ensure that the
classification model can accurately capture relevant patterns,
we have selected the following key features, as shown in
the table. This process not only reduces the dimensionality
of the dataset and minimizes the risk of overfitting but
also eliminates redundant data, thereby improving both the
model’s performance and interpretability.

TABLE I
FEATURE CATEGORIES AND NAMES

ID Feature Category Feature Name

1 Geometric Feature Area
2 Geometric Feature Length
3 Geometric Feature Aspect Ratio
4 Texture Feature Contrast
5 Texture Feature Dissimilarity
6 Texture Feature Homogeneity
7 Texture Feature Energy
8 Color Feature Color Histogram
9 Color Feature Gradient Color Feature Mean

10 Color Feature Gradient Color Feature Standard
Deviation

11 Grayscale Feature Grayscale Mean
12 Grayscale Feature Grayscale Standard Deviation

Our feature engineering strategy employs an iterative
refinement process combining backward elimination with
SHAP value analysis. This dual approach maintains
methodological transparency while establishing an empirical
basis for feature importance quantification. The SHAP
framework’s game-theoretic foundation proves particularly
valuable for disentangling complex feature interactions in
geohazard prediction tasks, where multivariate dependencies

often obscure individual parameter contributions. Through
successive iteration cycles, we systematically evaluate
each feature’s marginal utility under controlled ablation
conditions, ensuring the final feature set captures essential
discriminative patterns without redundancy.

In this study, we used several machine learning
models, including K-nearest neighbors (KNN), support
vector machine (SVM), random forest, naive Bayes and
decision tree classifiers, to classify geohazards using the
selected features. These models were chosen for their
distinct advantages and complementary strengths in handling
different aspects of classification tasks. Using these features,
we were able to leverage the unique capabilities of each
model to enhance classification performance and gain deeper
insights into geohazard characteristics.

The decision to select these models was driven by their
proven performance in similar classification tasks and their
ability to handle diverse data characteristics. Naive Bayes,
with its foundation in probability theory, is efficient for
large datasets and performs well even with relatively small
amounts of data, making it suitable for situations with limited
training samples. The decision tree model, on the other hand,
is highly interpretable, allowing for a clear understanding of
the decision-making process, which is valuable in identifying
the key factors contributing to geohazard classifications. By
using a combination of these models, we aimed to leverage
their strengths to achieve accurate and reliable geohazard
classification results.

III. EXPERIMENTS

A. Data describtion

The dataset employed in this study builds upon the
work of Zeng et al. [34], who assembled an extensive
collection of data on landslide and debris flow disasters
within Sichuan and its neighboring areas. This dataset
incorporates a wide array of data sources, interpretation
techniques, and comprehensive documentation of disaster
events, with a particular emphasis on regions impacted by
significant seismic activity and coastal areas. It includes
107 high-resolution images that capture typical landslide
and debris flow disasters, each meticulously annotated to
facilitate the analysis and classification of these geohazards.

The dataset is derived from aerial orthophotography data
collected from both unmanned aerial vehicles (UAVs) and
manned aircraft, focusing on landslide and debris flow
disasters that have occurred in Sichuan province since
2008. The data was meticulously organized, standardized,
and then subjected to visual interpretation and annotation
using ArcGIS software. This comprehensive dataset is
invaluable for advancing research in geohazard classification
and management, as it provides high-resolution imagery
and detailed annotations that enhance the accuracy and
effectiveness of disaster analysis, mitigation strategies, and
response planning.

Due to the limited size of the original dataset,
image augmentation techniques were employed to prevent
suboptimal model training results caused by insufficient data.
These techniques included rotation, scaling, and flipping,
which diversified the original images and generated more
training samples. Through these augmentation methods,
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the original 107 images were expanded to 500 images,
effectively increasing the dataset size.

B. Evaluation metrics

The Dice coefficient, also known as the Sørensen–Dice
coefficient, is a statistical tool used to measure the similarity
between two samples. In the context of image segmentation,
it is employed to compare the predicted segmentation results
with the actual data. The value of the Dice coefficient ranges
from 0 to 1, with 1 indicating a perfect segmentation. The
calculation formula is:

DiceCoefficient =
2× |X ∩ Y |
|X|+ |Y |

(8)

where X represents the predicted segmentation results, while
Y denotes the actual ground truth data.

The Intersection over Union (IoU) is another metric for
assessing segmentation accuracy. It calculates the ratio of
the overlapping area to the combined area of the predicted
and actual segmentations. The IoU value ranges from 0 to
1, with 1 indicating a perfect segmentation. The formula for
IoU is:

IoU =
|X ∩ Y |
|X ∪ Y |

(9)

The definitions of X and Y are the same as those used
for the Dice coefficient.

Recall: In image segmentation, this typically refers to the
model’s ability to correctly identify positive classes. Higher
recall indicates fewer missed positive instances. The formula
for recall is:

Recall =
TP

TP + FN
(10)

where TP represents True Positives and FN represents False
Negatives.

Precision: This metric evaluates the model’s ability to
correctly identify negative cases. A higher precision indicates
a lower rate of misclassifying negative cases as positive. The
calculation formula is as follows:

Precision =
TN

TN + FP
(11)

where TN represents True Negatives and FP represents
False Positives.

The False Rejection Rate (FRR) is a metric used to assess
the accuracy of a model, especially in classification and
recognition tasks. It measures the proportion of instances
where the model incorrectly rejects a valid positive case. In
the context of image segmentation or classification, it refers
to the rate at which positive instances are misclassified as
negatives. The formula for calculating the False Rejection
Rate is:

FRR =
FN

FN + TP
(12)

where FN represents False Negatives and TP represents
True Positives.

C. Implementation details

In the U-Net architecture, the number of convolutional
layers, the size of convolutional kernels, and the choice
of activation functions are critical hyperparameters in
model design. Conducting ablation experiments, such as
varying convolutional kernel sizes, activation functions, and
the number of convolutional layers, facilitates a deeper
understanding of their impact on model performance.
Through ablation experiments, it is possible to systematically
evaluate the contribution of each component to the model’s
performance, thereby providing robust guidance for model
design and optimization.

A smaller number of convolutional layers may result
in the model’s inability to capture sufficient hierarchical
features, yet it offers faster training speed, fewer parameters,
and is suitable for simple tasks or small datasets.
Conversely, increasing the number of convolutional layers
enables the capture of more complex hierarchical features
but demands more computational resources, making it
suitable for complex tasks or large datasets. The size of
convolutional kernels influences the local or global capture
of feature information, where smaller kernels preserve
spatial resolution and larger kernels provide a broader
contextual understanding. Activation functions like ReLU
facilitate rapid training and robustness against noise, whereas
LeakyReLU can mitigate the issue of dying ReLU.

By comprehensively considering these parameters, it
becomes possible to balance the model’s performance and
efficiency, thus guiding model design and optimization
effectively. To attain the optimal combination of
hyperparameters, the network structure of the APU-Net is
configured as follows:

TABLE II
EXPERIMENTAL PARAMETER SETTINGS

ID
Number of

Convolutional
Layers

Convolutional
Kernel Size Activation Function

1 2 3×3 ReLU
2 3 3×3 ReLU
3 4 3×3 ReLU
4 2 5×5 ReLU
5 3 5×5 ReLU
6 4 5×5 ReLU
7 2 3×3 LeakyReLU
8 3 3×3 LeakyReLU
9 4 3×3 LeakyReLU
10 2 5×5 LeakyReLU
11 3 5×5 LeakyReLU
12 4 5×5 LeakyReLU

Following the ablation experiments with APU-Net, the
next step involves selecting the best-performing model based
on its evaluation metrics. This model will be used for
feature extraction, allowing us to capture the most relevant
features from the data. Once features are extracted, we
will proceed with a systematic feature selection process to
identify the most influential variables that contribute to model
performance. This step ensures that only the most pertinent
features are retained, enhancing the efficiency and accuracy
of subsequent classification tasks. Finally, we will apply
various classification algorithms to the selected features to
classify geohazards effectively. This comprehensive approach
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Fig. 3. Experimental results of image segmentation using different models

aims to refine the model’s performance and achieve robust
and reliable classification outcomes.

IV. RESULTS

A. Results of geohazard area segmentaion

The Table III presents the results of the geohazard area
segmentation ablation experiments, utilizing the original
images and their masks as inputs:

TABLE III
SEGMENTATION EXPERIMENTAL RESULTS

ID Acc Dice IoU R P

1 0.7732 0.5733 0.4556 0.5248 0.9194
2 0.7864 0.5478 0.4473 0.4916 0.9347
3 0.7913 0.6244 0.4937 0.5680 0.9296
4 0.8105 0.6568 0.5277 0.5787 0.9493
5 0.8096 0.6192 0.5011 0.5518 0.9416
6 0.8099 0.6189 0.5038 0.5482 0.9436
7 0.7908 0.5801 0.4510 0.5053 0.9355
8 0.7919 0.6005 0.4781 0.5266 0.9366
9 0.7752 0.6121 0.4840 0.5756 0.9082

10 0.8062 0.6371 0.5009 0.5481 0.9539
11 0.8034 0.6255 0.5102 0.5516 0.9440
12 0.7898 0.6042 0.4881 0.5716 0.9128

Based on the table, it can be observed that when
increasing the depth from 2 layers to 4 layers, almost all
performance metrics of the model improve. This indicate
that increasing the number of layers helps the model
learn more complex features. However, as the depth of
the network increases, the complexity of the model also
increases, leading to an exponential increase in the number of
relevant parameters within the model. This approach incurs
significant consumption of computer memory and training
time. Considering these factors collectively, a depth of 4
layers is deemed appropriate.

Models using a 5×5 convolutional kernel (experiments 4,
5, 6) outperform those using a 3×3 convolutional kernel

Fig. 4. The frequency of occurrence of features in each classification model

in terms of Dice coefficient and IoU. In experiments 7
to 12, models utilizing LeakyReLU instead of ReLU did
not show significant performance improvements or declines
across most metrics. This suggests that variation in activation
functions is not the primary determinant of performance.

Through these ablative experiments, it can be concluded
that increasing the appropriate number of convolutional
layers and utilizing larger convolutional kernel sizes can
enhance the model’s performance, while the variation in
activation functions has minimal impact on the results.

We used the APU-Net model with a depth of 4, a 5×5
convolution kernel, and ReLU as the activation function,
comparing it with several traditional segmentation methods.
The comparison is shown in Fig 3.

The comparative evaluation demonstrates APU-Net’s
superior segmentation capability, achieving the highest
accuracy at 0.8544 and Dice coefficient at 0.7768. While
CBAM-SE-U-Net shows competitive precision at 0.8806 and
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Fig. 5. Experimental results of image classification using different models

TABLE IV
SEGMENTATION PERFORMANCE COMPARISON OF DIFFERENT MODELS

Model Acc Dice IoU R P

Deeplabv3 0.8192 0.6641 0.5184 0.5654 0.8312
FCN 0.7879 0.5625 0.4738 0.5518 0.6856

U-Net 0.8235 0.7110 0.5502 0.6361 0.8408
CBAM-SE-U-Net 0.8503 0.7531 0.5818 0.6798 0.8806

ASPP-U-Net 0.8469 0.7501 0.6067 0.6868 0.8605
APU-Net 0.8544 0.7768 0.6022 0.7155 0.8721

ASPP-U-Net leads in IoU at 0.6067, APU-Net maintains
the most balanced performance profile. The 7.15% recall
advantage over baseline U-Net particularly highlights its
improved detection of subtle geohazard features. The visual
analysis in Figure 3 confirms these quantitative findings,
with APU-Net producing segmentation boundaries that most
accurately preserve the complex topographical signatures
characteristic of landslide margins, while other models
exhibit oversmoothing or fragmentation artifacts. This
performance advantage stems from APU-Net’s optimized
architecture combining appropriate depth, receptive field
size, and efficient feature aggregation.

B. Results of geohazard classification

We conducted classification experiments using Decision
Tree, Random Forest, KNN, Bayesian, and SVM. The SHAP
values from 12 iterations were averaged, and features with
values above the average were statistically analyzed, as

shown in Fig 4. The results indicate that Features 1, 2, 4,
5, and 6 exhibited high occurrence frequencies across all
classification models, as indicated by the deep red coloration,
suggesting their high importance in the feature selection
process. Feature 3 followed with a slightly lower frequency.
The remaining features demonstrated the lowest frequencies,
appearing predominantly in dark blue across the models,
indicating their limited contribution to the classification task.

These results are consistent with the basic
geomorphological relationship. The advantages of texture
contrast reflect the significant alternating light and dark
characteristics caused by surface structure rupture in debris
flow and landslide images. This high-contrast texture pattern
is a typical characterization of geological disaster bodies.
The selection of geometric features reveals the important
role of morphological features such as aspect ratio and area,
which is in line with the special geometric morphological
characteristics generated during debris flow and landslide
movements. The low significance of grayscale features
indicates that pure brightness information has limited
discrimination power in geological disaster recognition.

In each iteration, we conduct classification experiments.
Specifically, after removing one feature, the remaining
features are used as input to the classification. The results
classification is shown in Fig 5.

We selected the feature subsets from the eighth and ninth
iterations as optimal candidates based on their performance
in the sequential backward feature selection process guided
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by SHAP values. These subsets demonstrated a strong
balance between model performance and feature simplicity
in the classification of debris flow and landslide events.

From the figure, it can be seen that the model performance
did not decrease significantly from the first to the seventh
iterations. For instance, the weighted F1 score of the Random
Forest classifier dropped sharply from 0.8493 in the second
iteration to 0.8040 in the third, suggesting that redundant
features introduced noise and weakened generalization.
Similarly, the recall rate of KNN increased from 0.63577
in the first iteration to a peak of 0.6757 in the eighth, further
indicating that earlier feature sets likely contained interfering
or irrelevant variables.

Although the sixth and seventh iterations showed relatively
high average accuracy, their recall and F1 score performance
was not good. In comparison, the eighth and ninth iterations
achieved good model performance while reducing the
number of features: the eighth iteration enabled KNN to
achieve optimal accuracy (0.8375), recall (0.6757), and FR
rate (0.1566); while the ninth iteration achieved the highest
weighted F1 score for Random Forest (0.84908), and the
Bayesian classifier also reached its highest F1 score (0.8006).

From the tenth to twelfth iterations, model performance
declined significantly as features were reduced. When the
number of features decreased to the level of the tenth
iteration, all core metrics deteriorated substantially. For
example, the weighted F1 score of Random Forest dropped
from 0.8490 in the ninth iteration to 0.7850, KNN’s recall
decreased from 0.6757 in the eighth iteration to 0.4697, and
the average FR rate exceeded 0.2783 by the twelfth iteration.
These declines reflect the loss of critical discriminatory
features.

It should be noted that between the ninth and tenth
iterations, the average weighted F1 score across all models
decreased sharply from 0.8036 to 0.7689, a decrease of 4.3%.
This nonlinear decrease indicates the existence of a critical
threshold in feature selection. The features of the eighth and
ninth iterations lie precisely at the edge of this threshold,
achieving maximum performance enhancement.

To further analyze the ROC curves of the eighth and ninth
iterations, we focus on the AUC values as a key indicator of
model discrimination. In Iteration 8, Random Forest’s AUC
value is the highest at 0.914, indicating their strong ability to
distinguish between debris flow and landslide events. KNN
also performs well with an AUC of 0.898, while SVM and
Decision Tree have slightly lower but still decent AUCs of
0.872 and 0.870 respectively.

In Iteration 9, Random Forest’s AUC value remains the
highest at 0.922, solidifying its position as a top performer.
Naive Bayes maintains a good level with an AUC of 0.905,
and KNN has a slight decrease to 0.879. SVM and Decision
Tree see minor drops in their AUCs to 0.870 and 0.874
respectively.

By comparing the two iterations, we observe that the
Random Forest model consistently demonstrates strong
performance, with its AUC increasing from Iteration 8 to
9. For Naive Bayes, the AUC remains relatively stable,
indicating robustness across these iterations.

A curve closer to the top-left corner of the plot indicates
better performance. In both iterations, Random Forest’s
position is closer to the top-left corner, indicating its better

Fig. 6. ROC Curves of Models in the 8th Iteration

Fig. 7. ROC Curves of Models in the 9th Iteration

performance. From the heatmap, it can be seen that in
the Random Forest model iteration experiments, Geometric
Feature and Texture Feature appear more frequently, while
Color Feature and Grayscale Feature appear less frequently.
The features of the ninth iteration are length, aspect ratio,
homogeneity, and energy, which is also consistent with the
pattern shown in the heatmap. This indicates that Geometric
Feature and Texture Feature play a more critical role
in distinguishing debris flows from landslides, providing
valuable guidance for feature engineering in future geohazard
classification tasks.

This study systematically identifies critical patterns in
machine learning-based geological hazard image recognition
through feature selection and model comparisons. The
significant advantages shown by random forests show that
they have both characteristic robustness and classification
stability. This ability to balance feature streamlining and
model effectiveness makes it a preferred model for intelligent
identification of geological disasters. This study provides an
important basis for optimizing the characteristic engineering
of the geological disaster monitoring system. In the future,
the combination of deep learning and SHAP interpretation
methods will be further explored to improve the accuracy of
disaster recognition in complex geomorphological scenarios.
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V. CONCLUSION

In conclusion, this study addresses the critical need
for effective post-disaster management of debris flow
and landslide, two of the most unpredictable and
destructive geohazards in mountainous regions. Given
the challenges posed by their uneven distribution and
complex characteristics, this research proposes a systematic
approach that leverages APU-Net for precise segmentation
of high-resolution aerial images. The study demonstrates
that this model can accurately identify and localize
geohazard areas, achieving a segmentation accuracy of
85.44% and a classification accuracy of 76.13% in complex
terrain conditions. These results validate the robustness
and reliability of the proposed method and demonstrate its
practical application in the field of disaster management.
By effectively segmenting and classifying debris flow
and landslide images, this approach provides essential
technical support for enhancing the efficiency and accuracy
of geohazard monitoring and response efforts, ultimately
contributing to more effective disaster risk mitigation
strategies.
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