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Abstract—Diffuse large B-cell lymphoma (DLBCL) is a
prevalent and heterogeneous type of blood cancer classified
under the non-Hodgkin lymphoma subtype. Early diagnosis sig-
nificantly improves patient survival, and a deeper understand-
ing of DLBCL’s statistical characteristics can assist physicians
in improving treatment outcomes. Several studies have shown
that mixture survival modeling effectively captures survival data
heterogeneity and identifies diverse survival patterns. Therefore,
this study aims to propose a new mixture model combining
log-logistic and log-normal distributions to analyze DLBCL
survival data. The model was optimized using the expectation-
maximization algorithm to estimate parameters via maximum
likelihood. Model accuracy was then evaluated using mean
squared error (MSE) comparisons and Kolmogorov-Smirnov
(K-S) test. The results showed that the proposed mixture model,
combining log-normal and log-logistic distributions, effectively
represented survival data for DLBCL patients in Indonesia. In
addition, it provided the best fit based on MSE and statistical
significance. This application demonstrated the model’s suit-
ability for analyzing heterogeneous datasets in DLBCL cases,
providing a foundation for further studies on its generalization
to broader patient survival data in Indonesia.

Index Terms—expectation-maximization algorithm, mixture
models, survival, diffuse large b-cell lymphoma.

I. INTRODUCTION

NON-HODGKIN lymphoma is a cancer that develops in
the human lymphatic system, accounting for approxi-

mately 553, 000 new cases and 250, 475 deaths in 2022 [1].
According to the American Cancer Society, approximately
80, 550 new cases and 20, 180 related deaths were reported in
the United States in 2022 [2]. Diffuse large B-cell lymphoma
(DLBCL) has been reported to be the most prevalent form,
representing approximately 25% to 30% of all cases world-
wide [3]. DLBCL refers to an aggressive form of lymphoma
marked by substantial variability in clinical presentation
and prognosis. Despite achieving a 5-year survival rate of
60% to 70% with the first-line standard treatment involving
rituximab combined with cyclophosphamide, doxorubicin,
vincristine, and prednisone (R-CHOP), 40% to 50% of
patients experience relapse or develop resistance following
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therapy [4]. This indicates that, although improvements in
treatment have been made, the survival rate of patients with
DLBCL remains relatively low, showing the ongoing need
for more effective therapies.

According to previous studies, overall survival (OS) is
a clinical indicator for measuring the duration of survival
among individuals diagnosed with cancer. From a statistical
perspective, OS is considered an important indicator for
evaluating the effectiveness of treatment provided. A valuable
prognostic instrument in medical practice, the International
Prognostic Index (IPI) was developed during the CHOP era
to identify 4 distinct risk groups. However, the inclusion of
rituximab in the treatment has limited its effectiveness in dis-
tinguishing between these groups. Improved scoring models,
such as R-IPI [5] and NCCN-IPI [6], have been created to
assist in predicting the patient’s prognosis. Although these
2 scoring systems provide greater prognostic, both are still
not fully effective in identifying very high-risk subgroups
of patients [7]. Consequently, developing an assessment tool
that can address all variations and levels of risk in patients
with DLBCL is still a challenge.

Survival analysis is a statistical method used to analyze
data where the outcome variable represents the time until
a specific event takes place [8]. The evaluation of survival
periods or failure intervals is a significant focus in numer-
ous fields, especially in health sciences. Historically, sur-
vival analysis was usually represented using nonparametric
methods or classical parametric models, such as Gamma,
Exponential, and Weibull distributions [9], [10], [11], [12],
[13]. When data deviates from a predetermined distribution,
applying the classical model becomes inappropriate. Data
that has more than 1 distribution is called heterogeneous
survival data.

Classical parametric models with a single distribution are
often inadequate to model heterogeneous survival data since
the assumption of population homogeneity is unrealistic.
Therefore, the current study proposes the use of a mixture
model of 2 parametric distributions (identical or different)
that allows the grouping of subpopulations with varying
survival characteristics. This provides a more accurate de-
scription of the data. Mixture models can accommodate
survival distributions that have complex hazard rate patterns,
such as non-monotonicity, which often cannot be described
by a single parametric distribution. The combination of 2
distributions allows a more flexible approach to modeling
various survival patterns. In the context of medical survival
data, a subpopulation can represent groups of patients with
good and poor prognosis. Mixture models are more flexible
than standard parametric models and can fit heterogeneous
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survival data. The models produce Kaplan-Meier curves that
remain high over time, which is common in immunotherapy
trials. This potentially leads to more accurate estimates of
median survival time compared to standard models [14].

Several studies have implemented mixture modeling ap-
proaches to analyze survival data. De Angelis et al. [15]
proposed a parametric mixture model for the relative survival
rates of colon cancer patients using data from a Finnish
population-based cancer registry. In a Bayesian context,
Marı́n et al. [16] introduced a mixture Weibull with an
unspecified number of components to analyze heterogeneous
survival data, including cases with right censoring, using the
birth-death Markov chain Monte Carlo method. Erişoğlu and
Erol [17] applied a mixture model combining the exponential
and geometric distributions, enhanced with the Expectation-
Maximization algorithm, to analyze heterogeneous survival
data. In addition, the method can provide a more accurate
estimate of overall survival compared to the standard model
in patients with relapsed/refractory DLBCL [18].

Studies have shown that therapeutic vaccines have differ-
ent effects on lung cancer patient populations with short-
term and long-term survival and can increase the propor-
tion of patients with longer survival [19]. In addition, the
mixture parametric model is more suitable for detecting the
effectiveness of immunotherapy compared to the standard
model [20]. This suggests that modeling with 2 mixture
distributions can serve as an alternative approach to defining
2 groups of patients with different intrinsic mortality rates.
Meanwhile, some studies have shown slightly different re-
sults [21], [22], [23]. For instance, a study on survival in
patients diagnosed with Hodgkin Lymphoma who received
autologous hematopoietic stem cell transplantation (HSCT)
showed that the non-mixture model gave better results than
the mixture model when using distributions from the GMW
(Generalized Modified Weibull) family [21].

Several studies have also shown that the mixture model
can be considered in analyzing heterogeneous survival data.
The current study explores the use of a 2-distribution mixture
model in developing a novel survival time framework to
estimate overall survival in DLBCL patients. In addition,
mixture and standard parametric models were compared to
determine the best for predicting the OS of patients based
on their respective mean squares error (MSE) values and
statistical significance. The remaining part of this study is
structured as follows. Section 2 outlines the dataset and
the statistical methods used, while Section 3 shows the
mixture model and estimation in survival analysis. Section 4
represents real data application in DLBCL along with the
discussion, and Section 5 provides the conclusion of the
study.

II. MATERIALS AND METHODS

A. Data

A total of 387 patients diagnosed with DLBCL between
2012 and 2020 were first identified in medical record data,
which contained detailed clinical information about the char-
acteristics of DLBCL at primary diagnosis. These included
Ann Arbor staging, performance status, lactate dehydroge-
nase serum, extranodal site, and type of therapy (CHOP/R-
CHOP). Patients were divided into risk groups according to

TABLE I: The features of the theoretical distributions used
in the study.

Model Parameters Probability Density
Function

Survival
Function

Exponential λ f (t) = λe−λt S (t) = e−λt

Gamma α, β f (t) =
1

Γ(α)βα tα−1e
− t

β ,
Γ (α) =∫∞
0

tα−1e−tdt

No closed form

Weibull λ, γ f (t) =
λγtγ−1e−λtγ

S (t) = e−λtγ

Log-
normal

µ, σ f (t) =
1√
2πσt

e
− 1

2σ2 [ln t−µ]2
S (t) = 1 −
Φ
(
ln t−µ

σ

)
Log-
logistic

α, β f (t) =
β
α ( t

α )β−1(
1+( t

α )β
)2 S (t) =

1

1+( t
α )β

TABLE II: Goodness-of-fit measures for the five distribution
models.

Exponential Gamma Weibull Log-normal Log-logistic
A-D 4.5285 1.5724 2.0224 1.0567 0.6876

their IPI, with 1 point given for each factor. In this study,
225 patients were included. The reason for exclusion in the
detailed data review was that the medical records considered
in this study were incomplete or could not be identified
(n = 164, 42.6%). This study used DLBCL medical record
data which had ethical approval from the Medical and Health
Study Ethics Committee (MHREC) Faculty of Medicine,
Public Health, and Nursing, Universitas Gadjah Mada, Ref.
No.: KE/FK/1356/EC/2023.

B. Statistical Analysis

This section explained the fundamental concepts of sur-
vival analysis. Survival time data captured the duration until
a specific event occurred, such as failure, death, response,
or disease progression. Let T represent the survival time,
and the survival function, S(t), was defined as the prob-
ability of an individual surviving beyond time t, namely.,
S(t) = P (T > t). A summary of the probability density
and survival functions used in this study was presented in
TABLE I.

III. MIXTURE MODEL ESTIMATION IN SURVIVAL
ANALYSIS

A. Model Description

In this section, a mixture model was introduced, which
consisted of 2 identical distributions in survival analysis,
along with a mixture of 2 distinct distributions applied
to the survival analysis of DLBCL patients. To apply a
theoretical probability distribution function to the survival
time data, the R statistical software was used. The quality
of the fitted distributions was evaluated using Goodness-of-
Fit test statistics. In addition, the null hypothesis assumed
that the data follow the proposed distribution. A distribution
was deemed appropriate for the data when the discrepancy
between the data and the fitted distribution was below a
predefined threshold (critical value). The distribution with
the lowest statistical value was considered the best fit.
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Based on TABLE II, the distribution with the lower
Anderson-Darling value was log-logistic with a statistical
value of 0.6876. Therefore, the log-logistic distribution was
the closest to the actual data based on the given Anderson-
Darling (A-D) goodness-of-fit statistics. This was followed
by the log-normal and gamma distributions. Consequently,
it was important to consider 2 or 3 of these distributions to
describe the characteristics of observed data. In this study,
only 2 mixture distributions were considered, namely log-
logistic and log-normal.

Based on the A-D statistic test, the survival time prob-
abilities were best modeled by the log-logistic and log-
normal distributions, with the probability density and survival
function, were as follows.

1) Log-logistic: f (t;α, β) =
α
β (

t
β )

α−1

(1+( t
β )

α
)
2 , S (t;α, β) =

1

1+( t
β )

α , h (t;α, β) =
α
β (

t
β )

α−1

1+( t
β )

α , where t > 0, α > 0,

β > 0.
2) Log-normal: f (t;µ, σ) = 1√

2πσt
e−

1
2σ2 [ln t−µ]2 ,

S (t;µ, σ) = 1 − Φ
(

ln t−µ
σ

)
, h (t;µ, σ) =

ϕ( ln t−µ
σ )

σt[1−Φ( ln t−µ
σ )]

, where t > 0.

To represent a heterogeneous survival data set, a combination
of 2 distinct distributions was used, namely Log-logistic and
Log-normal. For identical distribution pairs, the equations
could be written as

fLlogis−Llogis (t) = π1fLlogis (t) + π2fLlogis (t)

fLnorm−Lnorm (t) = π1fLnorm (t) + π2fLnorm (t) .

Non-identical distribution pairs, such as Log-logistic and
Log-normal, were as follows.

fLlogis−Lnorm (t) = π1fLlogis (t) + π2fLnorm (t) ,

where π1, π2 were the mixing weights and π1 + π2 = 1,
0 < π1, π2 < 1 for each mixture distribution model.

To determine when a specific distribution was more suit-
able, the goodness-of-fit test was applied using the MSE. The
MSE value was defined as

MSE =

∑n
i=1 [F (ti)− Fe (ti)]

2

n
,

where F (t) was the cumulative distribution function pro-
posed to model heterogeneous survival data sets and Fe (t)
was the empirical distribution, the most suitable distribution
was the one with the smallest MSE value.

The goodness-of-fit was also evaluated using the
Kolmogorov-Smirnov (K-S) test to assess how well the
proposed model fitted the data, as conducted in previous
studies that compared several mixture models using the K-
S test statistic [23], [24]. Meanwhile, the best model was
the one with the smallest K-S value, and the K-S test was
defined as

K − S = max |F (t)− Fe (t)| .

B. Parametric Mixture Model of Two Distribution in Survival
Analysis

In the context of a finite mixture distribution model,
the EM algorithm was a commonly applied method that

delivered an iterative process for determining the maximum
likelihood estimator of the unknown parameter [25]. In this
study, a model was constructed from a mixture of 2 distri-
butions, namely f1 (x; θ1) and f2 (x; θ1). The 2-distribution
mixture model of the density function T had the form

f (ti;ψ) =
2∑

k=1

πkfk (ti; θk),

where the vector ψ = (π, θk) included all the unknown
parameters, such as π and θk = (θ1, θ2), which represented
the parameters of the model. The function fk (ti; θk) de-
noted the density function for the component k = 1, 2. In
mixture models, π were the weights given to 2 distributions,
πk ∈ (0, 1). The sum of the weights must be 1 which could
be formulated as

∑2
k=1 πk = 1.

The survival function was also used to represent the model,
that is,

S (ti;ψ) =
2∑

k=1

πkSk (ti; θk),

where Sk (ti; θk) denotes the kth component survival func-
tion.

Due to the time survival DLBCL, which comprised 2
distinct distributions, namely log-logistic and log-normal, the
mixture of the densities of log-logistic and log-normal was
represented as

f (ti;ψ) = π1

β
α

(
t
α

)β−1(
1 +

(
t
α

)β)2 + π2
1√
2πσt

e−
1

2σ2 [ln t−µ]2 (1)

where π1 and π2 represented the proportion of the mixture
distribution, θ = (α, β, µ, σ) was a set of parameters. These
were denoted by α, β, a set of parameters for the log-logistic
distribution, and µ, σ, a set of parameters for the log-normal
distribution.

C. Estimation and Expectation-Maximization Algorithm in
the Survival Mixture Model

The purpose of this analysis was to estimate the
π weights and parameters α, β, µ, σ given ti from
(1). New distribution parameters could be estimated us-
ing the Expectation-Maximization (EM) Algorithm. The
Expectation-Maximization algorithm was shown to be the
most appropriate method for estimating the mixture parame-
ters [26]. This was an iterative procedure used to determine
the maximum likelihood (ML) estimate. The Expectation-
Maximization algorithm consisted of 2 steps, namely Ex-
pectation (E) and Maximization (M). To obtain the estimated
value, the first step was to formulate the likelihood function.

Right censored survival data could be represented as a
pair of survival observation values with their censored status,
namely (ti, δi), i = 1, 2, · · · , n where δi = 0 if i was
censored and δi = 1 if i obtained an event. From the
(Ti, δi) pairs, which were independent from one another, the
likelihood function for right-censored data was written as
follows [27],

L =
n∏

i=1

(f (ti; θ))
δi (S (ti; θ))

(1−δi).
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In this case, the sample was right censored, and the likelihood
function for a model for a mixture of the distributions based
on type-I censored samples was written as

L =
n∏

i=1

2∏
k=1

(fk (ti; θk))
δi (Sk (ti; θk))

(1−δi), (2)

where t = (t1, t2, · · · , tn) and δi was an indicator function.
The natural logarithm of (2) was given by

lnL =
n∑

i=1

2∑
k=1

[δi ln fk (ti; θk) + (1− δi)

lnSk (ti; θk)]. (3)

This was well-established that the maximum likelihood esti-
mate of the parameter vector corresponded to the values of
the parameters that maximized the likelihood function (2) or
the logarithm of the likelihood function (3). The Expectation-
Maximization algorithm, proposed by [25], used the concept
of missing data. In this context, the missing data referred to
the unknown group membership of each observation in the
sample. These missing values could be represented by the
random vector z = (z1, · · · , zn) where zi = (z1i, · · · , zki)
and

zki =

{
1, if Ti belongs to group k

0, otherwise
.

In addition, it was assumed that zki was a multinomial i.i.d
with probability πk and its density function was given by

f (zi) =
2∏

k=1

πzki

k . (4)

The probability density function for ti when zi was known,
could be represented as follows

f (ti|zi) =
2∏

k=1

(fk (ti; θk))
zki , (5)

where vectors zki = (z1i, z2i)
T , θ = (θ1, θ2)

T , and zki
considered as unobserved data.

As a result, the joint distribution of T and Z was

f (ti, zi) =
2∏

k=1

(fk (ti; θk))
zki πzki

k .

Therefore, for an i.i.d sample of size n that consisted of
observed pairs of (ti, δi), i = 1, 2, · · · , n, the likelihood
function (2) was expressed as

LC =
n∏

i=1

2∏
k=1

(πkfk (ti; θk))
zkiδi (πkSk (ti; θk))

zki(1−δi)

or this expression could be restated as

LC =
n∏

i=1

2∏
k=1

(hk (ti))
zkiδi (πkSk (ti))

zki . (6)

The estimation results were obtained by maximizing the
function LC , taking into account π, α, β, µ, σ. Subsequently,
the value of ln-likelihood was obtained based on (6) as
follows

lnLC =
n∑

i=1

2∑
k=1

ln
(
(hk (ti))

zkiδi (πkSk (ti))
zki

)

or

lnLC =
n∑

i=1

2∑
k=1

[zkiδi lnhk (ti) + zki lnSk (ti)

+zki lnπk]. (7)

The complete ln-likelihood in (7) was maximized using the
Expectation-Maximization iteration algorithm. In addition,
the Expectation-Maximization algorithm required an iteration
between what was called E (expectation) and was called Step
M (Maximization). The following were the steps to get the
parameter estimation formula. Step E of lnLC , E (lnLC),
was calculated considering the conditional distribution of the
unobserved data zki.

Based on Bayes’ theorem from (4) and (5), the conditional
distribution of zi over ti, the following equation was given
by

f (zki|ti) =
(fk (ti; θk))

zki πzki

k∑2
k=1 (fk (ti; θk))

zki π
zki

k

. (8)

To calculate the conditional expectation of zki, Equa-
tion (8) was used, which resulted in the following expectation
value,

E (zki|ti) =
1∑

zki=0

zkif (zki|ti) =
πkfk (ti; θk)∑2
k=1 πkfk (ti; θk)

.

The zk variables were considered as missing data in the
E-step and the hidden variable vector zk was estimated by
evaluation of the expectation E(zki|ti), resulting in

ẑki = E (zki|ti) =
πkfk (ti; θk)∑2
k=1 πkfk (ti; θk)

, (9)

so that

ẑ1i = E (z1i|ti) =
π1f1 (ti; θ1)

π1f1 (ti; θ1) + π2f2 (ti; θ2)
;

ẑ2i = E (z2i|ti) =
π2f2 (ti; θ1)

π1f1 (ti; θ1) + π2f2 (ti; θ2)
. (10)

At the E-step of the Expectation-Maximization algorithm,
the term of zki in (7) could be replaced by the expected value
ẑki calculated in (10)

lnLC =
n∑

i=1

2∑
k=1

[ẑkiδi lnhk (ti) + ẑki lnSk (ti)

+ẑki lnπk]. (11)

In the M-step of the algorithm, Equation (11) must be
maximized, taking into account. πk and θk assuming ẑki
remained at this step. Maximizing (11) by considering πk,
subject to the constraints in (11) could be obtained by the
Lagrange multiplier method. The maximized function was
written as follows f (ti, zki) = lnLC .

The extreme value (optimization) of the function f was
observed with certain constraints that needed to be satisfied,
such as.,

∑2
k=1 πk = 1, then the Lagrange function was

formed: F (λ, ti, zki) = f (ti, zki) + λ g (ti, zki). The
constraint function g (ti, zki) must be equal to zero to ensure
that g (ti, zki) =

∑2
k=1 πk−1 was obtained. As a result, from
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the function to be maximized and the constraint function, the
Lagrange function was formed as follows.

F (ti, zki) =
n∑

i=1

2∑
k=1

[ẑkiδi lnhk (ti) + ẑki lnSk (ti)

+ẑki lnπk] + λ

(
2∑

k=1

πk − 1

)
, (12)

where λ was the Lagrange Multiplier. Maximizing (12) con-
cerning θk was equivalent to maximizing the independence
of each expression k.

The determination of the mixing probabilities πk and
parameter vector θ was carried out through the application of
the Lagrange method. In addition, the mixing probabilities
will be obtained by

π̂k =

∑n
i=1 ẑki
n

. (13)

In this study, the first part on the left side l and the second
part on the right side h were assigned. When (11) was derived
against θk, then the value of h equals zero. To maximize
(11) taking into account θk was equivalent to maximizing
the independence of each expression k below,

lk =

n∑
i=1

2∑
k=1

[ẑkiδi lnhk (ti) + ẑki lnSk (ti)] (14)

or

l =
n∑

i=1

([ẑ1iδi lnh (ti;α, β) + ẑ1i lnS (ti;α, β)]

+[ẑ2iδi lnh (ti;µ, σ) + ẑ2i lnS (t;µ, σ)]).

The maximum likelihood estimator of the parameter
θ1 =

(
α̂, β̂

)
of the log-logistic distribution in the proposed

model were determined by assuming ẑ1iδi ln
[

α
β (

ti
β )

α−1

1+( ti
β )

α

]
+

ẑ1i ln

[
1

1+( ti
β )

α

]
= l1, then

∂l1
∂α

= ẑ1iδi

(
1

α
+ ln

ti
β

)
− ẑ1i (δi + 1)(

ti
β

)α
1 +

(
ti
β

)α ln
ti
β

(15)

and

∂l1
∂β

= −ẑ1iδi
α

β
+ ẑ1i (δi + 1)

α

β

(
ti
β

)α
1 +

(
ti
β

)α . (16)

The maximum likelihood estimator of the parameter θ2 =
(µ̂, σ̂) of the log-normal distribution for the proposed model

could be found by considering ẑ2iδi ln
[

ϕ
[

ln ti−µ

σ

]
σti
(
1−Φ

[
ln ti−µ

σ

])]+
ẑ2i ln

[
1− Φ

[
ln ti−µ

σ

]]
= l2 first, followed by

∂l2
∂µ

= ẑ2iδi
1

σ

(
ln ti − µ

σ

)
+ ẑ2i (1− δi)

1

σ

ϕ
[
ln ti−µ

σ

]
1− Φ

[
ln ti−µ

σ

] (17)

and

∂l2
∂σ2

= ẑ2iδi
1

2σ2

[
−1 +

(
ln ti − µ

σ

)2
]
+ ẑ2i

(1− δi)
1

2σ2

(
ln ti−µ

σ

)
ϕ
[
ln ti−µ

σ

]
1− Φ

[
ln ti−µ

σ

] . (18)

Given the results of the derivative of the log-likelihood
concerning the parameters α, β, µ, and σ2 which were equal
to zero in closed form could not be fulfilled (see (15)-(18)).
As a result, a numerical method was needed, in this case,
the Newton-Raphson method. Estimation of parameter values
using Newton Raphson required a matrix of the first and
second derivative of the maximized ln-likelihood equation.
The value θ̂ was an estimator, when θ̂ provided the maximum
value of l (θ). In addition, the value of θ̂ was maximum
when the second partial derivative matrix of l (θ), namely
the Hessian matrix, was a negative definite matrix, and in
this case, it was fulfilled.

IV. REAL DATA APPLICATION AND DISCUSSION

In this study, data from 225 DLBCL patients treated at
Dr. Sardjito Hospital between 2012 and 2020 were analyzed
and described using a 2-component model combining Log-
logistic and Log-normal distributions (k = 2), as shown in
TABLE II. The histogram and 3 density functions, illustrating
the probability of a better fit for the survival times of patients
compared to others, were shown in Fig. 1. Meanwhile, the
survival function of each model was shown in Fig. 2.

Based on the graphical comparison in Fig. 1, it could
be observed that the empirical density function closely
matched the density functions of the non-identical mixture
model. Moreover, it appeared that the survival function of
the mixture model, and the classical log-logistic/log-normal
model also fitted the empirical survival function, as shown
in Fig. 2. Since the survival graphs of the identical and non-
identical mixture models closely approximated the real data,
model selection criteria, and significance tests were applied
to determine the optimal model (see TABLE III).

The criteria for selecting the best model used the MSE and
K-S value of each model, while the model with the smallest
MSE and K-S value was good as presented in TABLE III.

Based on the MSE and K-S values in TABLE III, the
non-identical mixture model emerged as one of the suit-
able models for DLBCL data. The second smallest MSE
corresponded to the log-logistic model, followed by its
identical mixture model. However, the estimated value was
not sufficiently small. The model that was reasonably well-
fitted and could also be considered based on MSE and its
statistical significance was the standard log-normal model
and its identical mixture. Among the fitted models, the most
suitable one was the non-identical mixture model, which
emerged as an alternative for modeling and analyzing the
survival time of DLBCL patients in Indonesia.

Although the difference in MSE between the mixture and
standard models was small, the non-identical mixture models
still showed superiority in long-term prediction. Guidez et al.
[22], noted that the mixture models were able to extrapolate
relapse estimates, even though the observational data were
limited to a shorter period. Other studies have also shown
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Fig. 1: The probability density functions of the fitted dis-
tributions: Classical model (A) and Mixture Model versus
Classical Model (B) for survival times of 225 DLBCL
patients.

that a mixture of 2 non-identical distributions was as useful
as a mixture of identical distributions [23].

Fig. 2 showed that the survival function graphs of both the
mixture models and the single log-logistic/log-normal mod-
els fit relatively well with the Kaplan-Meier curve of the data.
The survival of all models revealed the highest probability of
survival (best prognosis) within the first year, but the lowest
probability of survival (poor prognosis) thereafter.

Fig. 3 presented the cumulative hazard (A-C) and hazard
function (D) derived from a model using a combination
of log-normal and log-logistic distributions applied to the
survival time data of DLBCL patients. The cumulative hazard
between the mixture model and the empirical data was
compared in this study. In addition, the results general-
ly indicated that the survival time data fitted the mixture
model, particularly the Log-normal-Log-logistic model. The
cumulative hazard value in DLBCL cases increased over
time, with an initial peak at 10 months, followed by a
continuous rise, indicating that the risk or danger continued
to increase as time progressed. This represented a situation
where the longer a patient suffered from DLBCL, the greater
the probability of death.

In this study, it was observed that the cumulative hazard

TABLE III: Estimated parameters, K-S, and MSE values for
the survival times of 225 patients with DLBCL.

Distributions Parameter Estimation K-S MSE

Exponential λ = 0.064710958 0.0009221 0.001183402

Gamma α = 1.506565549, 0.07875 0.0008052499

β = 10.257483

Weibull λ = 1.228679, 0.05087 0.0009668863

γ = 16.605594

Log-normal µ = 2.3706153, 0.0784 0.0002095301

σ = 0.9102271

Log-logistic α = 11.009, 0.4661 0.0001927844

β = 1.954

Lnorm-
Lnorm

π1 = 0.7004305,
π2 = 0.2995695,
µ1 = 2.390732,
σ1 = 0.9086296,
µ2 = 2.32358, σ2 =
0.9122216

0.07852 0.0002079922

Llogis-
Llogis

π1 = 0.5714271,
π2 = 0.4285729,
α1 = 1.954213,
β1 = 11.0094,
α2 = 1.954213,
β2 = 1.954213

0.4669 0.0001931253

Llogis-
Lnorm

π1 = 0.5058073,
π2 = 0.4941927,
α = 1.952846,
β = 10.97164,
µ = 2.367018, σ =
0.9109686

< 2.2e−16 0.0001833573

value was less than 1 in the 1 year following diagnosis
(the first 10 months). Subsequently, in the second year
after diagnosis, the cumulative hazard value increased by
an estimated 2. In this case, it was said that there was a
significant change in the second year. This suggested that
the risk of death or other events for these patients increased
rapidly in the second year, which revealed the development
of more serious DLBCL or a response to less effective
treatment. This increase could indicate changes in behavior
or other factors that elevated the risk of death in the second
year.

The hazard rate function in this survival analysis generally
followed a modal pattern (Fig. 3 (D)). This pattern illustrated
that the hazard rate increased gradually, reaching a peak in a
certain period, and then tended to decrease over time. Early
observations indicated a low hazard rate (0.03), suggesting
a relatively low risk of death for patients suffering from
DLBCL. This could be due to several factors, including
effective initial treatment (CHOP/R-CHOP), relatively mild
patient characteristics, or a disease that had not yet reached
a severe stage. The peak increase in hazard rate occurred
between the 5th month and the 18th month (approximately
0.075−0.085) which indicated changes in disease behavior or
other factors influencing mortality risk. In this month, there
was a significant increase in the risk of death, which revealed
a worsening in the condition of the patient, potentially
caused by complications or a poor response to more effective
treatment. A decrease in the estimated hazard rate after 18
months to reach less than 0.04 at the end time indicated
that the risk of death in patients decreased or stabilized after
reaching a peak. This could be caused by several factors, such
as a positive response to subsequent treatment, the body’s
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Fig. 2: The Survival of the fitted distributions: Mixture Model (A-C) versus Classical Model (D,E) for survival data of 225
DLBCL patients.

adaptation to the disease, or the effects of palliative care
between the 5th month and the 18th month.

Further analysis was conducted by constructing a life table
to illustrate the survival patterns in this dataset. The life
table presented the probability of survival (S (t)) at each
time interval (in months), as well as the probability of
an event occurring (qt) in each interval. Using the model
estimation results, this table helped identify high-risk periods
and provided a more structured understanding of survival
trends. The following were the results of the life table based
on the estimated non-identical mixture survival model, as
seen in TABLE IV.

Based on the results of TABLE IV, the survival probability
decreased over time, with a sharper decline in the early
intervals. A similar trend was also observed in the previ-
ously presented survival function, displayed in Fig. 2. This
suggested that the estimation of the non-identical mixture
model effectively represented the distribution of survival time
based on real data. In the 5th month, approximately 81% of
individuals remained alive. However, by the 10th month, the
survival probability decreased sharply to 53.68%, indicating
that almost half of the individuals had experienced an event.
By the 30th month, the percentage reduced to approximately
12.55%, and by the 60th month, only about 3.2% of individ-
uals remained alive. This indicated that the majority of the
population experienced an event before reaching 60 months.
The highest probability of an event (qt) occurred within

TABLE IV: Life table results were based on the non-identical
mixture model.

Interval qt S(t) Standard Error

5 0.0000000 0.81008837 0.019402894

10 0.8629979 0.53676927 0.022127018

15 0.5207312 0.35296788 0.022104180

20 0.4665894 0.24067259 0.021015041

25 0.4090981 0.17079903 0.019071616

30 0.3605490 0.12553685 0.016879335

35 0.3211230 0.09502283 0.014774992

40 0.2889971 0.07371842 0.012887782

45 0.2624522 0.05839304 0.011246963

50 0.2401754 0.04708450 0.009840441

55 0.2212077 0.03855568 0.008641675

60 0.2048498 0.03200041 0.007621268

the first 10 months, showing that this period was a critical
phase with the greatest risk. After 30 months, qt remained
above 20% but showed a decreasing trend, suggesting the
presence of a group of individuals who survived longer than
the majority of the population.

This information was very useful for understanding the
survival time pattern of DLBCL patients in Indonesia, par-
ticularly in identifying the period of highest risk. The 5 to 10-
month interval represented a critical phase that required more
attention in clinical intervention planning. By understanding

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3370-3378

 
______________________________________________________________________________________ 



0 10 20 30 40 50 60

0

2

4

6

8

(A) Log−logistic – Log−logistic

Survival Time

C
um

ul
at

iv
e 

H
az

ar
d 

F
un

ct
io

n

Empirical
Mixture Log−logistic–Log−logistic

0 10 20 30 40 50 60

0

2

4

6

8

(B) Log−normal – Log−normal

Survival Time
C

um
ul

at
iv

e 
H

az
ar

d 
F

un
ct

io
n

Empirical
Mixture Log−normal–Log−normal

0 10 20 30 40 50 60

0

2

4

6

8

(C) Log−normal – Log−logistic

Survival Time

C
um

ul
at

iv
e 

H
az

ar
d 

F
un

ct
io

n

Empirical
Mixture Log−normal–Log−logistic

0 10 20 30 40 50 60

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(D) Mixture Model

Survival Time

H
az

ar
d 

F
un

ct
io

n

Log−logistic − Log−logistic  
Log−normal − Log−normal  
Log−normal − Log−logistic  

Fig. 3: Cumulative hazard function (A-C) and hazard function (D) for mixture model.

this pattern, clinical decisions were more targeted, including
optimizing patient care and monitoring strategies during
the highest-risk period, ultimately improving overall patient
outcomes.

V. CONCLUSION

In conclusion, a combination of 2 distinct distributions was
applied, namely log-normal and log-logistic, to model the
survival time of DLBCL patients in Indonesia. This mixture
model represented a novel approach to modeling survival
data in this context, as it had not been widely applied to
patient survival data in Indonesia. The parameters were esti-
mated using the Expectation-Maximization algorithm. These
findings showed that the mixed Log-logistic and Log-normal
models were strong candidates for modeling DLBCL survival
time data as determined by the MSE and the K-S test. The
hazard rate obtained from patient survival data was unimodal,
which indicated that there was an increase in the hazard rate
at the beginning of time and then slowly decreased at the
end of time. One of the effects of CHOP/R-CHOP therapy,
which could promote patient healing and ultimately increase
the survival rate of patients, could have an impact on this.

Other factors not included in this study also needed to
be considered to fully understand the phenomenon that
occurred. Overall, the outcome of this study offered deeper
insight into the characteristics of survival time data from
individuals diagnosed with DLBCL. In addition, knowledge

of the parametric mixture model could help patients under-
stand their estimated prognosis, prepare mentally, and make
decisions related to treatment with more accurate informa-
tion. Future work must focus on incorporating covariates
as prognostic factors. These were compared with widely
applied semi-parametric survival models, such as the Cox
model, while also conducting further analysis using larger
datasets and appropriate statistical methods to identify factors
influencing changes in hazard rates. The comprehensive
approach provided valuable insights into DLBCL patient care
and disease management at both individual and population
levels.
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