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Abstract—Steam flow is a crucial indicator for assessing
the effectiveness of municipal solid waste incineration
(MSWI), a major municipal waste treatment technique, and
power generation performance. However, there remain some
challenges in accurately predicting steam flow. Traditional
single feature selection methods often fail to capture essential
relationships by analyzing data from a single perspective,
limiting model performance. Additionally, supervised learning
often suffers from its reliance on task-specific feature
engineering, which is overly sensitive to data distribution and
demands significant domain expertise. To address these issues,
we propose a predictive framework that combines a stacking
ensemble of feature selection with self-supervised learning
(SSL). The stacking ensemble strategy captures variable
relationships from diverse perspectives, which enhances the
robustness of feature selection. Meanwhile, SSL helps the model
learn general feature representations and balance short- and
ultra-short-term dependencies. Experimental results show that
the proposed method outperforms existing approaches in both
point prediction and prediction interval tasks. It improves
generalization, uncertainty quantification, and robustness for
complex industrial data, thereby supporting better risk
assessment and decision-making.

Index Terms—Steam flow prediction; Self-supervised
learning; Ensemble feature selection; Prediction interval.

I. INTRODUCTION

N recent years, with the rapid economic growth and

accelerated urbanization in China, waste management
has become an increasingly pressing issue. As shown in
Fig. 1, by 2022, the annual volume of municipal solid
waste (MSW) collected in Chinese cities exceeded 200
million tons, with a continuous upward trend, presenting
significant challenges to urban environmental management
and sustainable development. Compared to traditional
landfilling, municipal solid waste incineration (MSWI)
technology not only effectively reduces waste volume but
also converts thermal energy into electrical energy through
high-temperature combustion, enabling resource recovery
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[1]. MSWI has increasingly become the primary method
for MSW treatment [2]. In this process, steam flow serves
as the core of energy conversion, directly reflecting the
combustion stability of the incinerator and the efficiency of
power generation [3]. Therefore, accurately predicting steam
flow is crucial for ensuring stable incinerator operation and
enhancing power generation quality.

Machine learning (ML), as a data-driven approach, has
become an essential tool for MSWI prediction tasks due to
its strong data processing and pattern recognition capabilities
[4]. Common methods include multiple linear regression
[5], support vector regression (SVR) [6], [7], artificial
neural networks (ANN) [8], and gradient boosting regression
trees (GBRT) [9]. Xu et al. [10] proposed an industrial
steam flow prediction model using grid search-optimized
SVR to improve accuracy. However, these methods have
notable limitations: linear models are ineffective at capturing
nonlinear features, while ANN and SVR incur high
computational costs when processing large, high-dimensional
datasets and require extensive hyperparameter tuning.

Deep learning (DL) has become a widely applied method
in industrial predictive modeling [11]. Models such as
Long Short-Term Memory networks (LSTM) [12], Gated
Recurrent Units (GRU) [13], Transformer [14], and its
variants leverage deep neural networks to capture both
short-term and long-term dependencies in data. These models
effectively address the complex nonlinear relationships in
industrial tasks and are thus frequently employed for MSWI
prediction. Tian et al. [15] proposed a DL model combining
one-dimensional convolutional neural networks (1D-CNN)
and LSTM to predict differential thermal analysis (DTA)
data during the fine screening incineration process, utilizing
TensorBoard for model unit visualization. Hu et al. [16]
devised a multi-step prediction approach integrating Principal
Component Analysis (PCA) with Pyraformer [17] to forecast
the main steam flow in MSWI systems. Transformer and
its variants excel in long-sequence modeling but require
substantial amounts of data and computational resources.
In contrast, GRU models, with a simpler architecture,
deliver comparable performance in many time-series tasks
while achieving higher efficiency and lower resource
demands [18]. Additionally, the recursive structure of GRU
captures sequence dependencies without the need for explicit
positional encoding, making it a practical choice for real-time
predictions in resource-constrained industrial environments.

DL models are typically built within the supervised
learning (SL) framework but often struggle with challenges
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China’s waste removal and treatment capacity in 2022. Data from China’s National Bureau of Statistics: (a) waste removal reached 244.447

million tons by 2022, and (b) waste treatment shifted towards incineration, with a capacity of 195.02 million tons, compared to 30.432 million tons for

landfill.

such as diverse data distributions and noise in real-world
conditions. These models also rely heavily on task-specific
feature engineering, limiting their generalization ability.
Recently, self-supervised learning (SSL) has emerged as
an effective method for extracting high-level features from
unlabeled data [19], though its application in MSWI
prediction remains underexplored. SSL enables models to
learn meaningful representations through pretraining tasks,
such as predicting data segments or reconstructing masked
information. These representations can be effectively utilized
for downstream tasks, including prediction and classification,
thereby enhancing the model’s generalization capabilities
[20]. For example, the BERT model [21] achieves excellent
performance in downstream tasks by pretraining on unlabeled
text data. In MSWI prediction, SSL can capture temporal
dependencies and dynamic features through tasks like
forecasting future steps or reconstructing missing data,
effectively addressing noise and distribution shifts while
enhancing model generalization and applicability [22].

Furthermore, the operating conditions of waste
incineration are complex, involving dozens of related
factors. Most current waste incineration forecasting methods
rely on single feature selection approaches to capture
global features. However, such methods typically fail to
comprehensively evaluate the multidimensional associations
between features and target variables, limiting the ability
of subsequent predictive models to select richer and
potentially valuable information. For example, Xu et
al. [10] employed the Spearman correlation coefficient
to identify overall monotonic relationships in the data.
Similarly, Hu et al. [16] utilized Principal Component
Analysis (PCA) for dimensionality reduction. However, the
variance-maximization assumption of PCA restricts its ability
to capture nonlinear correlations, thereby constraining the
diversity of feature representations. Consequently, predictive
models that rely on single feature selection approaches
struggle to fully exploit the latent information within the
data, hindering further improvements in model performance.

To address these challenges, this paper presents a
Stacking Ensemble of Feature Selection and GRU-based
SSL  (SEFS-GSSL) method tailored for steam flow
prediction. This method integrates multiple feature selection

techniques to construct a more comprehensive feature set,
leveraging stacking and weighted assignment strategies
to enhance model robustness and predictive performance.
SEFS-GSSL also employs target-masked self-supervised
pretraining, enabling it to more accurately capture
temporal dependencies and general feature representations.
This approach significantly improves the accuracy and
generalization of steam flow prediction while providing
valuable insights for uncertainty quantification and risk
management. The main contributions of this work are as
follows:

o We integrate multiple feature selection methods
by stacking and weighted assignment strategies to
enhance model robustness and predictive performance
in capturing complex feature patterns, reducing
over-reliance on any single approach.

e We propose a GRU-based SSL strategy with a
target variable masking mechanism. Through
pre-training and fine-tuning, the model -effectively
learns dependencies and feature distributions from
historical data while adapting to variations across
different time periods, significantly improving the
accuracy and generalizability of steam flow predictions
in complex industrial systems.

o« To quantify prediction uncertainty, we employ
Gaussian-based error probability density estimation to
construct prediction intervals at multiple confidence
levels. This approach improves result interpretability
and provides robust information for risk management
and decision-making in industrial systems.

II. SYSTEM BACKGROUND

The core of the MSWI technology lies in efficiently
converting the energy in waste into electrical power while
ensuring environmentally safe treatment of exhaust gases and
residues. As shown in Fig. 2, the MSWI process primarily
includes key stages such as incineration, steam generation,
power generation, and exhaust gas treatment. The following
provides a detailed overview of these stages.

MSW is typically delivered to the incineration power plant
via sealed transportation vehicles, where it is first weighed
and counted to ensure accurate measurement. Subsequently,
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Fig. 2. Industrial process flowchart of MSWI technology.

the waste is transferred through enclosed conveyor systems
into the plant’s storage area, referred to as the waste pit,
awaiting further processing. Mechanical grappling devices
then load the waste into the incinerator for combustion
treatment.

Inside the incinerator, waste undergoes high-temperature
combustion. The incinerator’s temperature is generally
maintained between 850°C and 1000°C to ensure complete
combustion and minimize residual materials. During
combustion, significant thermal energy is released,
accompanied by high-temperature flue gases, typically
exceeding 850°C. These flue gases are directed from the
incinerator to the waste heat boiler, a crucial component in
the incineration-to-power process, designed to recover heat
from the flue gases and convert it into high-temperature,
high-pressure steam.

The waste heat boiler typically contains multiple heat
exchange tubes filled with water. As the flue gases pass
through these tubes, they transfer heat to the water within,
rapidly increasing its temperature and causing vaporization
at high pressure. This process essentially transforms the
thermal energy of the flue gases into the internal energy of
steam, creating a stable steam flow [23]. Then the generated
steam is directed to a downstream turbine apparatus, where it
drives the rotation of turbine blades, subsequently generating
electrical energy. To further enhance efficiency, the boiler is
often equipped with an economizer [24] to recover additional
heat from the flue gases, preheating the boiler feedwater and
improving the overall thermal efficiency of the system.

After completing the power generation process, the
remaining flue gases move on to the next treatment phase.
Initially, the gases pass through a bag filter to remove fine
particulates and dust generated during combustion. The gases
then enter a wet scrubber, where they are sprayed with an
NaOH solution to neutralize acidic substances such as sulfur
dioxide. Following purification, the exhaust gases are finally
discharged through the chimney by induced draft fans.

The incineration process also generates slag and fly ash,

NaOH
Solution

Wet Flue Gas
Reheater (GGH)

Asumipy)y

Induced
Draft Fan

Fly Ash Storage Silo

Fly Ash
Solidification

> Waste water

which are collected and treated through specialized transport
systems. Slag, mainly consisting of unburned mineral matter,
can generally be recycled as building materials or roadbed
materials. Fly ash, however, requires special treatment, such
as solidification, to ensure safe disposal.

III. METHODOLOGY

The overall architecture of the proposed steam flow
prediction network is illustrated in Fig. 3. This framework
first applies a stacking ensemble feature selection method
to identify key variables influencing steam flow from the
raw input data. Then, the extracted multivariate data is fed
into a GRU-based SSL model with a masking mechanism
for pre-training. The pre-trained model is subsequently used
for downstream steam flow prediction tasks, with prediction
intervals generated based on point prediction errors. Details
of the model’s implementation are provided in subsequent
sections.

A. Feature selection method based on SEFS

SEFS is an advanced ensemble learning method
that integrates multiple feature selection techniques with
weighted feature evaluation to not only select the most
relevant features from the data but also preserve the
unique advantages of each individual approach, such as
minimizing feature redundancy. Specifically, we employ
three distinct types of feature selection methods: (1) Filter
method: Maximal Relevance Minimal Redundancy (mRMR),
which selects the most relevant features while minimizing
redundancy based on mutual information; (2) Model-based
method: Random Forest (RF), which ranks features by
their importance to the target variable; (3) Embedded
method: Lasso Regression, which utilizes L1 regularization
during model training to simultaneously compress and select
features.

After obtaining feature subsets SprMR, SRF; SLasso
generated by each feature selection method, we perform
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Fig. 3. The SEFS-GSSL framework for steam flow forecasting.

a merging process to eliminate redundant features. The
resulting feature set is defined as follows:

6]

where (')unique denotes the unique feature set obtained
after eliminating duplicate features, ensuring that Scompined
contains the distinct and meaningful features selected by each
method, comprehensively capturing the diversity in the data
to enhance robustness and adaptability in the model.

After obtaining the combined feature set Scombineds SEFS
method utilizes a stacking ensemble strategy to train multiple
base learners on this feature set. We selected three base
learners: Ridge regression, Decision Tree regression, and
XGBoost. Each base learner has unique advantages, enabling
them to handle both linear and nonlinear relationships in
the feature set and to capture data patterns from different
perspectives. To reduce model complexity, we employ a
simpler Linear regression model as the meta-learner. The loss
function of the meta-learner can be defined as follows:

Scombined = (SmRMR U SRF U SLasso)unique

N N2
L=>(Q:- Q) @
i=1
Qi = wRdQRd,i + wDTQDT,i + 'LUXGBQXGB,Z‘ 3)

where (); denotes the true steam flow value for the i-th
sample, QRd,i, QDM, and QXGBJ represent the predicted
values of the i-th sample obtained through the corresponding
base learner. wgry, wpr, and wxgp represent the weights
assigned to the output of each base learner, reflecting the
contribution of each learner to the final prediction. These
weights are optimized by minimizing the loss function L,
enabling an optimal weighted combination of base learner
predictions in the ensemble model, thereby enhancing the
model’s overall predictive performance and generalization
ability.

Finally, SEFS integrates the importance scores of each
base learner with their respective weights to obtain the final
comprehensive feature importance score. The overall feature
importance I(X;) is calculated by summing the weighted
importance scores from each base learner, as shown below:

I(X;) = wra - Ira(X;)
+ wpr - Ipt(X;)
+ wxas - Ixas(X;)

“4)

where Irq(X;), Ipr(X;), and Ixge(X;) represent the
importance scores of feature X; in Ridge regression,
Decision Tree regression, and XGBoost, respectively.

Overall, SEFS constructs a diverse feature set through
multiple feature selection methods and further integrates
it with an ensemble of weighted base learners. This
weighted ensemble strategy not only improves the accuracy
of feature importance evaluation and predictive performance
but also significantly enhances the model’s robustness and
generalization capabilities.

B. GRU enhanced by SSL

To address the challenges posed by data noise and
distribution diversity in MSWI prediction, this paper
proposes a steam flow prediction approach based on
SSL, with GRU serving as the core prediction model.
SSL enables the model to learn from unlabeled data by
introducing a masking mechanism, where target variables are
partially obscured. Then the model is trained to reconstruct
these masked portions using surrounding context, thereby
effectively capturing temporal dependencies and learning
robust feature representation from the data itself.

The foundational GRU model, an improved variant of
the recurrent neural network (RNN) [25], is designed
to overcome the gradient vanishing problem common in
traditional RNNs when processing long sequential data. GRU
utilizes two gating units—the reset gate and update gate—to
dynamically control information flow through selective
updating and forgetting [26]. This structure allows GRU to
capture both long-term and short-term dependencies in time
series data. The hidden state update equations for GRU are
as follows:

Zy = o(Wohy—1 + Uxy) &)

Ry = oc(Wyhi—1 + Upay) (6)

h, = tanh(Whp(hi—1 @ r) + Upay) @)
he =2, Ohy+ (1= Z4) @ hyy (8)
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where x; is the input to the GRU model at time step t,
h is the hidden state at time ¢, o is the sigmoid activation
function, and ® represents element-wise multiplication. The
matrices W, W,, and W), apply transformations on the
previous hidden state h;_;, while U,, U,., and U}, are weight
matrices that apply transformations on the current input ;.
Here, Z; and R; are the update and reset gates, respectively.

Within the GSSL framework, the GRU model serves
as the core predictive component, designed to reconstruct
masked target values in time series data. In this context,
let Q =[Q1,...,Q,...,Qr] represent the true steam flow
values over 7' time steps. The objective is to reconstruct the
value (); at time step ¢ using contextual information. The
objective function, designed to minimize the error between
the predicted and true values, is expressed as:

Lonask = Y 1055(Qy, Q1) ©)

teM

where M denotes the set of masked time steps, and Qt
is the model’s prediction of Q;. Here, loss(-) quantifies the
error between the predicted value Qt and the true value Q.
By minimizing this loss, the GRU model learns temporal
dependencies from unlabeled data.

This process enables the model to better learn the
intrinsic patterns and temporal dependencies of the sequence,
enhancing its ability to capture complex dependencies
and increasing robustness to data noise. Consequently,
it improves the accuracy of steam flow predictions in
downstream tasks.

C. Gaussian distribution and prediction interval

The Gaussian distribution, also known as the normal
distribution, is a fundamental distribution widely used
in probability and statistics, particularly in constructing
probability density models for modeling errors and
uncertainties [27]. In the context of steam flow prediction, we
assume the prediction error of all samples at time ¢, denoted
as Erry, follows a Gaussian distribution. Its probability
density function (PDF) is defined as:

2
PDF(Err) = ——— exp (—(E“%"OO> (10)
2m 32 2432

where « is the mean, representing the central tendency
of the error, and §3 is the standard deviation, reflecting the
degree of error dispersion. The Gaussian distribution curve
is symmetrically bell-shaped, with the mean at the center.
The standard deviation controls the curve width, illustrating
the extent of variation around the mean.

The goal of prediction interval is to determine a range
within which future observations are likely to fall with high
probability. To better capture the uncertainty in steam flow
predictions, we propose a method for constructing prediction
intervals based on the assumption that prediction errors
follow a Gaussian distribution. This approach calculates the
upper and lower bounds at different confidence levels. For
instance, at a 95% confidence level, the prediction interval
for a Gaussian distribution is given by:

[a — 1.963, a + 1.96] (11)

This interval suggests that there is a 95% probability that
future observations will fall within this range, offering a
clear probabilistic basis for prediction interval. The method
is simple, highly interpretable, and effectively handles noise
and outliers due to the symmetric long-tail properties of
the Gaussian distribution. By calculating prediction intervals,
extreme values can be identified and excluded, preventing
them from distorting the model. This is particularly useful
for managing uncertainties and noise in industrial processes.

IV. EXPERIMENTAL DESIGN AND FRAMEWORK

A. Data description

The dataset used in this study was collected from a
waste treatment facility in Qingdao, Shandong Province. It
records the operational parameters of the incineration system
from 00:00 on July 4, 2024, to 00:00 on August 4, 2024,
with data collected at a frequency of one measurement per
second by multiple instruments. The dataset includes 105
distinct variables, such as the temperature at the inlet of the
recirculating flue gas fan, the pressure in the superheated
steam header, the outlet temperature of the superheated
steam, and the concentrations of NO and CO gases, among
other critical parameters.

B. Experimental framework

The basic experimental framework of the steam flow
prediction model includes data preprocessing, data splitting,
feature engineering, self-supervised pre-training and
fine-tuning, and the construction of prediction intervals. The
main steps are as follows:

Step 1: To ensure the integrity and validity of the data,
the first step is to preprocess the relevant data from the
waste incineration process. This process includes operations
such as checking and filling missing values, as well as
removing outliers. Since the data is collected at a frequency
of once per second, using the raw data directly may lead
to redundancy and increased computational complexity. To
improve data processing efficiency and reduce the impact of
ultra-short-term fluctuations on model predictions, the data is
resampled using a 15-second moving average. This method
smooths out data fluctuations while preserving important
trend information.

Step 2: In this experiment, data from the 21 days after
July 4 is used as the pre-training dataset, split into training
and validation sets in an 8:2 ratio. Data from the 9 days after
July 26 serves as the fine-tuning dataset, divided into training,
validation, and test sets in an 8:1:1 ratio, as shown in Fig. 4.
The dimensional details of each dataset are summarized in
Table L.

TABLE 1
NUMBER OF EACH SUBSET

Dataset name Description Samples  Features
Pretrain-Train Training data of pre-training 96,640 105
Pretrain-Val Validation data of pre-training 24,161 105
Finetune-Train Training data of fine-tuning 41,313 105
Finetune-Val Validation data of fine-tuning 5,025 105
Finetune-Test Testing data of fine-tuning 5,026 105
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Fig. 4. The figure shows the data splits for steam flow in the pre-training and fine-tuning phases.

Step 3: We utilize the novel feature selection method
(SEFS) on 80% of Pretrain-Train. Specifically, 70% of
Pretrain-Train is used for feature selection, while 10% is
reserved for validation to ensure the robustness of the
extracted features. Through this innovative approach, we
identify 8 highly discriminative and domain-relevant feature
variables (as detailed in Table II). These features are
rigorously selected based on their contribution to predictive
accuracy and are directly integrated into the pre-training
and fine-tuning stages to enhance model generalizability.
Moreover, to capture the temporal dynamics of the system,
we incorporate date information as an explicit temporal
feature, enabling the model to better understand time-related
dependencies and patterns.

TABLE 1T
FEATURE SELECTION RESULTS.

Input Variable Name

x1 Drum Pressure 2

x2 Furnace 2 Steam Drum Pressure
x3 Steam Outlet Pressure

x4 Primary Desuperheating Flow
x5 Secondary Desuperheating Flow
x6 Flue 1 Lower-Middle Left Temp
x7 Flue 1 Middle Left Temp

x8 Flue 1 Lower Left Temp

x9 (target) Steam Flow

Step 4: During the self-supervised pretraining stage,
m features are selected from the Pre-training dataset for
pretraining the GRU model using a 60% masking rate
on target variables to foster learning of general data
features. The model is then fine-tuned on the Finetune-Train
and Finetune-Val datasets to enhance dataset-specific
adaptability. It is worth noting that the Huber Loss [28]
is used in both the pre-training and fine-tuning phases to
balance small and large errors. Its mathematical expression
is:

if Q- Q<

1
14—
5-(1Q—QI—058) if|Q-Q[>4

where Q and @ are the predicted and true steam flow
values, respectively, and § controls the transition between
quadratic and linear loss, improving robustness to outliers.

Step 5: The prediction error of the Finetune-Val dataset is
calculated, and the error is modeled using probability density
estimation based on a Gaussian distribution to determine
the upper and lower bounds at different confidence levels.
These confidence intervals are then applied to the predicted
values of the test set, ultimately constructing the prediction
interval for steam flow. This approach ensures reasonable
quantification of uncertainty.

The whole experimental flowchart of the proposed model
is shown in Fig. 5, focusing on pre-training and fine-tuning
phases. Initially, the model learns feature representations
from historical data via a self-supervised method. It is then
fine-tuned with data similar to the test set, improving its
predictive accuracy and adaptability for the target period.

C. Evaluation metrics

In the analysis of point prediction results, several
commonly used error evaluation metrics are employed to
more accurately quantify the magnitude of prediction errors.
These metrics include the Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and Mean Absolute
Percentage Error (MAPE). The formulas for these metrics
are as follows:

1 Y .
Mﬂ:NZ@w@| (13)
N
RMSE = | | - ; (14)
N )
MAPE — — Z Q x 100% (15)

=1

where N is the total number of predicted points, Q; and Qt
represent the original steam flow value and predicted steam
flow value at time ¢, respectively.

To assess the performance of prediction intervals, we adopt
three evaluation metrics: the Prediction Interval Coverage
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Probability (PICP), the Prediction Interval Normalized
Average Width (PINAW), and a comprehensive index, the
F-value. Their corresponding formulas are as follows:

| X
PICP = ;f(-)(Downt <Q:<Up) (16

al Up, — Downy

(17)
=1 Qmax - Qmin

1
PINAW = —
N

F = )\; - PICP — )\ - PINAW (18)

where Down, represents the lower bound of the prediction
interval at time ¢, and Up, denotes the upper bound of
the prediction interval at time ¢. The symbol f(-) stands
for the indicator function, which takes the value 1 if the
condition Down; < @; < Up, is satisfied, and O otherwise.
Qmax and Qpin are the maximum and minimum values of
the observed data, respectively. Finally, \; and Ay are the
weighting coefficients for the PICP and PINAW, balancing
the trade-off between coverage and interval width in the
comprehensive index F.

In these evaluation metrics, a higher PICP value is
desirable, as it indicates that a larger proportion of true
values fall within the predicted interval, representing better
interval coverage. On the other hand, a lower PINAW
value is preferred, as it suggests a narrower prediction
interval, reflecting higher precision. The F-value serves as

a comprehensive index, and a higher F-value indicates a
better balance between interval coverage (PICP) and interval
width (PINAW). Therefore, the optimal model would achieve
a high PICP, a low PINAW, and consequently, a high F-value.

V. RESULTS ANALYSIS AND COMPARISON

In this section, we assess the predictive performance of
the proposed method from two aspects: point prediction and
prediction interval.

A. Comparison of point forecasting results

In this experiment, we use historical data from the past
30 minutes to predict steam flow values for the next 3,
5, and 10 minutes. Fig. 6 illustrates the point prediction
results on the test set for the three forecasting horizons. To
evaluate the effectiveness of the proposed SEFS-GSSL model
in point forecasting, we compare it with eight time series
models, namely: Linear, LSTM, WaveNet [29], Transformer,
TCN [30], DSANet [31], N-BEATS [32], and TFT [33]. The
prediction errors of each model on the fine-tuned dataset are
summarized in Table III.

From these prediction results, the SEFS-GSSL model
demonstrates strong performance across all prediction tasks.
Specifically, in the 3-minute and 5-minute forecasting
tasks, SEFS-GSSL consistently outperformes all baseline
models across key error metrics—MAE, RMSE, and
MAPE. In the 3-minute prediction task, SEFS-GSSL
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The figure shows that prediction errors increase with forecast time, indicating higher accuracy for ultra-short-term and greater uncertainty for
longer-term steam flow forecasts.

TABLE III
COMPARISON OF POINT PREDICTION RESULTS FOR THREE TIME PERIODS.

Models 3min Smin 10min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
Linear 0.348 0.424 1.206% 0.398 0.485 1.383% 0.506 0.617 1.761%
LSTM 0.306 0.397 1.060% 0.360 0.465 1.247% 0.468 0.612 1.626%
WaveNet 0.264 0.339 0.913% 0.321 0.413 1.114% 0.434 0.564 1.509%
Transformer 0.260 0.328 0.905% 0.311 0.402 1.083% 0.439 0.571 1.526%
TCN 0.262 0.337 0.908% 0.318 0.412 1.100% 0.476 0.614 1.649%
DSANet 0.217 0.279 0.755% 0.309 0.402 1.073% 0.592 0.760 2.049%
N-Beats 0.310 0.400 1.075% 0.378 0.488 1.312% 0.497 0.635 1.727%
TFT 0.310 0.392 1.080% 0.335 0.432 1.163% 0.463 0.592 1.610%
SEFS-GSSL 0.204 0.266 0.710% 0.272 0.365 0.949 % 0.422 0.565 1.474%

TABLE IV
THREE TIME PERIODS OF ABLATION EXPERIMENTS.
3min Smin 10min
Models

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
GRU 0.262 0.340 0.908% 0.345 0.449 1.195% 0.458 0.606 1.592%
GRU-SEFS 0.217 0.280 0.752% 0.292 0.389 1.015% 0.438 0.581 1.529%
GRU-SSL 0.235 0.305 0.814% 0.292 0.386 1.013% 0.429 0.579 1.493%
GRU-SSL-RF 0.209 0.270 0.727% 0.278 0.371 0.969% 0.428 0.565 1.494%
SEFS-GSSL 0.204 0.266 0.710% 0.272 0.365 0.949 % 0.422 0.565 1.474%

achieved MAE, RMSE, and MAPE values of 0.204, 0.266,
and 0.710%, respectively. These values were significantly
lower than those of the other models. For instance, the
next best model, DSANet, reported corresponding values
of 0.217, 0.279, and 0.755%, respectively. SEFS-GSSL
improved MAE by 6.0% (from 0.217 to 0.204), RMSE
by 4.7% (from 0.279 to 0.266), and MAPE by 5.9%
(from 0.755% to 0.710%) for the 3-minute prediction.
These improvements are particularly important in real-world
applications where accurate ultra-short-term predictions are
critical for operational decision-making.

In the 5-minute prediction task, SEFS-GSSL continued

to outperform the baseline models, achieving MAE, RMSE,
and MAPE values of 0.272, 0.365, and 0.949%, respectively.
These values were again significantly lower than those
of the next best model, DSANet, whose corresponding
values were 0.309, 0.402, and 1.073%. SEFS-GSSL achieved
a 12.0% improvement in MAE (from 0.309 to 0.272),
a 9.2% improvement in RMSE (from 0.402 to 0.365),
and an 11.5% improvement in MAPE (from 1.073% to
0.949%). This shows that, even with slightly longer-term
predictions, where models often struggle to maintain stability
due to the accumulation of uncertainties, SEFS-GSSL still
maintains high accuracy. The improvement in RMSE is
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Fig. 7. The figure displays the Gaussian distribution of prediction errors for steam flow at three forecast times: (a) 3 min, (b) 5 min, and (c) 10 min.

As the forecast time increases, the error distribution widens, indicating greater variance in prediction accuracy over longer intervals. Each plot includes
confidence intervals at 80%, 85%, 90%, and 95%, shown with vertical lines to illustrate error bounds.

TABLE V
UPPER AND LOWER BOUNDS OF PREDICTION ERRORS AT DIFFERENT CONFIDENCE LEVELS.

3min Smin 10min
Confidence Levels
Lower Upper Lower Upper Lower Upper
80% -0.3937 0.3918 -0.5738 0.5665 -0.9254 0.9131
85% -0.4422 0.4402 -0.6441 0.6368 -1.0387 1.0265
90% -0.5051 0.5032 -0.7354 0.7281 -1.1860 1.1737
95% -0.6017 0.5998 -0.8756 0.8683 -1.4121 1.3998

particularly significant, as it indicates that SEFS-GSSL
reduces prediction variability, making the model more stable
and reliable over extended periods.

Although the WaveNet model achieved the lowest RMSE
(0.564) in the 10-minute task, SEFS-GSSL maintained
an advantage in both MAE and MAPE. Specifically,
SEFS-GSSL’s MAE of 0.422 was 2.76% better than
WaveNet’s MAE of 0.434. Similarly, SEFS-GSSL achieved a
MAPE of 1.474%, which was slightly better than WaveNet’s
MAPE of 1.509%. While the RMSE metric for the 10-minute
prediction was lower in WaveNet, the fact that SEFS-GSSL
achieves better MAE and MAPE indicates that it is more
reliable in terms of these metrics, which is particularly
important in real-world scenarios where consistent and stable
predictions are critical for decision-making processes.

These results confirm that SEFS-GSSL consistently
delivers both high accuracy and stable performance across
ultra-short-term horizons, establishing it as a valuable tool
for real-time industrial forecasting applications.

B. Ablation study

In the point prediction task, to evaluate the impact
of two key components in the SEFS-GSSL model—the
stacking ensemble feature selection method and the
SSL mechanism—on the overall model performance, we
conducted ablation experiments. Specifically, five scenarios
were investigated: 1) GRU, using only the GRU model,;
2) GRU-SEFS, using GRU and the stacking ensemble
feature selection method; 3) GRU-SSL, using GRU and
the SSL mechanism; 4) GRU-SSL-RF, using GRU, the
SSL mechanism, and the best-performing feature selection
method among the three, namely Random Forest; 5)
SEFS-GSSL, using both the stacking ensemble feature
selection method and the SSL mechanism.

The results presented in Table IV clearly demonstrate
the individual contributions and synergistic effects of the

model components. Firstly, the comparison between GRU
and GRU-SEFS shows that the introduction of the stacking
ensemble feature selection significantly enhances prediction
accuracy across all three forecasting horizons (3 min, 5 min,
and 10 min). For example, in the 3-minute prediction task,
MAE decreased from 0.262 to 0.217, RMSE from 0.340 to
0.280, and MAPE from 0.908% to 0.752%, indicating that
SEFS effectively selected and integrated the most informative
features, thereby improving the model’s ability to capture the
temporal dynamics of steam flow.

Secondly, the standalone application of the SSL
mechanism (GRU-SSL compared to GRU) also yields
consistent performance improvements. The mask-based SSL
pretraining enables the model to learn robust and generalized
feature representations, enhancing its capability to handle
data variability and noise. In the 3-minute prediction task,
MAE was reduced from 0.262 to 0.235, RMSE from
0.340 to 0.305, and MAPE from 0.908% to 0.814%.
Similar improvements were observed in the 5-minute and
10-minute prediction tasks, further validating the SSL
mechanism’s effectiveness in enhancing model generalization
and prediction stability.

Thirdly, a comparison between GRU-SSL-RF and
GRU-SEFS reveals that although GRU-SSL-RF integrates
SSL with a single feature selection method—RF—its overall
performance is still inferior to that of GRU-SEFS. This
indicates that a single feature selection method is less
effective than the proposed stacking ensemble feature
selection strategy in improving model performance. Taking
the 3-minute prediction task as an example, GRU-SSL-RF
achieved MAE, RMSE, and MAPE of 0.209, 0.270, and
0.727%, respectively, whereas the corresponding metrics
for GRU-SEFS were 0.217, 0.280, and 0.752%, which
further confirms the superiority of the ensemble strategy in
aggregating complementary features.

In summary, the ablation experiments clearly confirm
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TABLE VI
INDICATORS FOR 3-MINUTE PREDICTION INTERVAL.

Models 80% 85% 90% 95%
PICP PINAW F value PICP PINAW F value PICP PINAW F value PICP PINAW F value
SEFS-GSSL 0.876 0.1618 1.7145 0.908 0.1817 1.7266 0.938 0.2076 1.7303 0.969 0.2474 1.7212
GRU-SSL-RF 0.873 0.1625 1.7105 0.911 0.1825 1.7285 0.941 0.2086 1.7324 0.967 0.2485 1.7185
GRU-SEFS 0.874 0.1664 1.7076 0.911 0.1869 1.7241 0.936 0.2136 1.7224 0.964 0.2545 1.7095
GRU-SSL 0.862 0.1831 1.6789 0.899 0.2057 1.6933 0.932 0.2350 1.6970 0.966 0.2800 1.6860
GRU 0.838 0.1813 1.6567 0.870 0.2036 1.6664 0.909 0.2327 1.6763 0.947 0.2772 1.6698
TABLE VII
INDICATORS FOR 5-MINUTE PREDICTION INTERVAL.
Models 80% 85% 90% 95%
PICP PINAW F value PICP PINAW F value PICP PINAW F value PICP PINAW F value
SEFS-GSSL 0.901 0.2348 1.6665 0.923 0.2637 1.6589 0.941 0.3013 1.6394 0.968 0.3591 1.6091
GRU-SSL-RF 0.901 0.2394 1.6616 0.925 0.2689 1.6561 0.943 0.3073 1.6357 0.970 0.3662 1.6038
GRU-SEFS 0.904 0.2479 1.6561 0.928 0.2785 1.6495 0.947 0.3182 1.6288 0.969 0.3792 1.5898
GRU-SSL 0.897 0.2461 1.6509 0.923 0.2764 1.6466 0.947 0.3159 1.6311 0.968 0.3764 1.5916
GRU 0.837 0.2447 1.5923 0.876 0.2749 1.6011 0.909 0.3141 1.5949 0.949 0.3743 1.5747
TABLE VIII
INDICATORS FOR 10-MINUTE PREDICTION INTERVAL.
Models 80% 85% 90% 95%
PICP PINAW F value PICP PINAW F value PICP PINAW F value PICP PINAW F value
SEFS-GSSL 0.885 0.3528 1.5326 0.916 0.3963 1.5197 0.945 0.4529 1.4918 0.975 0.5396 1.4353
GRU-SSL-RF 0.895 0.3603 1.5347 0.922 0.4048 1.5172 0.949 0.4625 1.4865 0.979 0.5511 1.4279
GRU-SEFS 0.904 0.3761 1.5279 0.932 0.4225 1.5095 0.957 0.4828 1.4742 0.978 0.5752 1.4028
GRU-SSL 0.903 0.3686 1.5344 0.927 0.4140 1.5130 0.951 0.4731 1.4779 0.977 0.5637 1.4133
GRU 0.866 0.3449 1.5211 0.897 0.3874 1.5096 0.926 0.4427 1.4833 0.955 0.5275 1.4275
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Fig. 8. The figure shows prediction intervals for the first 1000 samples of steam flow at different time horizons: (a) 3 min, (b) 5 min, and (c) 10 min.

Prediction intervals widen as the forecast horizon increases, indicating higher uncertainty over longer periods. The blue dashed line represents predicted
values, the black solid line denotes true values, and shaded areas indicate various confidence intervals.

that both the stacking ensemble feature selection and
the SSL mechanisms are crucial contributors to the
performance enhancements of the SEFS-GSSL model.
The former enriches the input quality through a diverse
and comprehensive feature set, while the latter improves
prediction accuracy and stability by enhancing representation
learning. The synergy between these two components results
in a more robust and precise steam flow forecasting
model, demonstrating the value of advanced feature selection
techniques combined with SSL in complex industrial time
series prediction tasks.

C. The results of prediction interval

In this section, we analyze the prediction interval
results to assess the uncertainty quantification capability of

the proposed SEFS-GSSL model. First, we estimate the
prediction errors for three time intervals on the validation
set using a Gaussian distribution and calculate the upper
and lower bounds at different confidence levels, as shown
in Fig. 7. The values of these bounds are summarized in
Table V. Finally, we apply the calculated bounds to the
predicted values on the test set, obtain the prediction intervals
for steam flow, and compare them with the ablation models.
The results are summarized in Table VI, VII, and VIII. As
shown in Fig. 8, the prediction intervals for the three forecast
periods on the test set are displayed for 1,000 data points,
respectively.

From these results, it is evident that the SEFS-GSSL

model consistently outperforms other ablation models on
all prediction tasks (3 min, 5 min, and 10 min) and
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confidence levels, exhibiting particularly strong performance
in terms of PICP and PINAW. For instance, in the 3-minute
prediction task at the 80% confidence level, SEFS-GSSL
achieves a PICP of 0.876, surpassing the baseline model
GRU-SSL-RF, which attains 0.873. This indicates superior
interval coverage. Moreover, the PINAW of SEFS-GSSL is
0.1618, narrower than that of other models, demonstrating
its ability to generate more precise prediction intervals.

As the confidence level increases to 90% and 95%,
SEFS-GSSL maintains a high level of interval coverage. At
the 90% confidence level, its PICP is 0.938, slightly less than
that of GRU-SSL-RF (0.941), yet PINAW remains compact
at 0.2076, indicating that the model sustains high precision
with narrower intervals even under stringent confidence
requirements. At the 95% confidence level, SEFS-GSSL
attains a PICP of 0.969, exceeding all other ablation models,
with a PINAW of just 0.2474, which signifies its capability to
produce relatively tight intervals even at very high confidence
levels, thereby providing greater assurance in uncertainty
quantification for industrial applications.

In the 5-minute and 10-minute prediction tasks,
SEFS-GSSL  similarly demonstrates robust uncertainty
quantification capabilities. Notably, in the 10-minute
prediction task, SEFS-GSSL achieves the highest F-values
across all confidence levels. For example, at 95% confidence,
the F-value of SEFS-GSSL reaches 1.4353, outperforming
the baseline GRU model’s 1.4275. This indicates that
SEFS-GSSL not only provides high-coverage prediction
intervals but also maintains compact interval widths, offering
more precise and reliable forecasts in complex industrial
environments.

Overall, the SEFS-GSSL model exhibits outstanding
uncertainty quantification performance across all prediction
tasks, particularly excelling in PICP and PINAW metrics
compared to baseline models, highlighting its advantages
in ultra-short-term forecasting scenarios. In practical
applications, SEFS-GSSL delivers high-quality prediction
intervals that simultaneously increase coverage rates and
maintain narrow widths, making it especially valuable in
complex industrial settings.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposes a time series prediction model,
SEFS-GSSL, which integrates a stacked ensemble-based
feature selection strategy with GRU-based SSL. Its
effectiveness is validated through extensive experiments
on steam flow forecasting. The SEFS-GSSL model
consistently outperforms baseline and ablation models in
both point forecasting and interval prediction tasks across
multiple forecasting horizons, achieving significant gains
across multiple error metrics. Specifically, by leveraging
ensemble-based feature selection and SSL, SEFS-GSSL
effectively models complex industrial data, leading to
substantial improvements in accuracy and generalization.
Additionally, the SEFS-GSSL model exhibits strong
uncertainty quantification capabilities, generating tighter and
more comprehensive prediction intervals, thus providing
reliable support for risk assessment and decision-making in
industrial applications.

Despite these promising results, there remains room
for further improvement. Future work may explore: (1)

enhancing the SSL mechanism for improved adaptability
to non-stationary industrial environments; and (2) tailoring
the model to domain-specific requirements to boost practical
applicability and deployment efficiency.
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