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Probability-Oscillating Convergence Factor for
Solving Economic Load Dispatch Problems
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Abstraci—FEconomic Load Dispatch (ELD) is a core problem
in power system optimization, aiming to allocate generator
outputs optimally while minimizing fuel costs and power losses
under system constraints and power demand requirements. To
address the optimization challenges of ELD, this paper proposes
an improved Chinese Pangolin Optimizer(ICPQO) incorporating
a probability-oscillating convergence factor strategy. This
strategy integrates six different probability distributions-
uniform, Beta, exponential, normal, Rayleigh, and Wei bull-to
enhance the algorithm’s global exploration and local
exploitation capabilities, thereby improving convergence
accuracy and stability. In the experimental evaluation, the
performance of the improved algorithm is first validated using
the CEC-BC-2022 benchmark test functions, from which the
most effective strategy is selected for solving the ELD problem.
The algorithm’s optimization effectiveness is assessed under
two typical scenarios: a 40-umit system with a load demand of
10,500 MW and a 110-unit system with a load demand of 13,000
MW. Experimental results demonstrate that the improved CPO
exhibits superior convergence performance and optimization
capability in handling ELD problems, providing an efficient
solution for economic power system dispatch.

Index Terms—Economic Load Dispatch, Chinese Pangolin
Optimizer, Probability-Oscillating Convergence Factor,
Function Optimization

[. INTRODUCTION

E conomic Load Dispatch (ELD) is a fundamental
problem in power system optimization and scheduling.
Its primary objective i1s to optimize the power output
allocation of generating units while minimizing fuel costs
and power losses, ensuring system stability and reliability

under system constraints and power demand requirements [1].

The ELD problem typically involves complex nonlinear
constraints, including generator physical characteristics,
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power balance constraints, environmental factors, and other
operational limitations, making its solution process highly
challenging. Therefore, developing efficient, stable, and
robust optimization algorithms to solve the ELD problem has
become a crucial research direction in power system
optimization.  Traditional — mathematical  optimization
approaches, such as linear programming, dynamic
programming and Lagrangian relaxation, have demonstrated
strong convergence properties and high precision when
applied to small-scale, linear, or convex Economic Load
Dispatch (ELD) problems. These methods efficiently
determine optimal power distribution by leveraging
well-established mathematical principles. However, in
large-scale, highly nonlinear, and constraint-intensive power
dispatch scenarios, these techniques encounter significant
challenges, including excessive computational overhead,
susceptibility to premature convergence at local optima, and
slow convergence rates, particularly when handling complex
objective functions and practical operational constraints [2].

To overcome these limitations, swarm intelligence (SI)-
based meta-heuristic algorithms have gained widespread
attention due to their superior global search capability,
robustness, and adaptability to intricate constraints [3]. These
bio-inspired methods leverage cooperative behavior and
distributed  problem-solving mechamsms to  balance
exploration and exploitation, thereby improving convergence
speed and solution accuracy. Representative approaches
include Particle Swarm Optimization (PSO), Genetic
Algorithm (GA), and Differential Evolution (DE), as well as
numerous novel intelligent optimization strategies aimed at
enhancing performance and efficiency [4].

To further refine the effectiveness of SI algorithms in ELD,
various enhancements have been proposed in the literature.
Hassan et al. introduced the Enhanced Social Network Search
(ESN) algorithm, which optimizes search strategies through a
"high-low speed ratic" mechanism to strengthen global
search capabilities while mitigating premature convergence
[5] Abhishek et al. developed Cognitive Team Optimization
{CTQO), which integrates a remedial hierarchy framework to
enhance the search capability of low-fitness individuals,
leading to superior performance in both ELD and Combined
Economic and Emission Dispatch (CEED) problems [6]. Hao
etal proposed an Arithmetic Optimization Algorithm (AOA)
that incorporates elementary function perturbation, thereby
reinforcing  global search efficiency and expediting
convergence [7].

In addition, Al-Betar et al introduced a hybnd
optimization framework by integrating the Grey Wolf
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Optimizer (GWO) with Beta Hill Climbing (PHC), achieving
a dynamic equilibrium between exploration and exploitation
to enhance solution quality [8]. Tribhuvan et al. proposed a
Chaos-Based Slime Mould Algorithm (CSMA), which
leverages chaotic maps to 1mprove stability and
competitiveness in handling ELD problems [9]. Zhang et al.
enhanced the Pelican Optimization Algorithm (POA) by
incorporating a vertical crossover operator, an elite-guided
perturbation strategy, and a variable dimension mechanism,
significantly improving population diversity and the
algorithm’s ability to escape local optima [10].

Moreover, Pan et al. developed the Multi-Group Marine
Predators Algorithm (MGMPA), which employs a multi-
population framework with periodic information exchange,
demonstrating remarkable cost reductions m ELD
applications [11]. Yang et al. proposed an Improved Whale
Optimization Algorithm (IWOA) by introducing an adaptive
nonlinear inertia weight mechanism and limited mutation
strategies, leading to enhanced convergence speed and global
search efficiency [12]. Furthermore, Hassan et al. introduced
the Leader White Shark Optimizer (LWSO), which
incorporates a leadership-based exploitation mechanism,
significantly improving convergence performance and search
efficiency [13].

These advancements highlight the continuous evolution of
SI-based optimization techniques, reflecting their increasing
effectiveness in addressing complex, large-scale ELD
problems with nonlinear constraints and multiple objectives.
By integrating adaptive mechanisms, hybrid strategies, and
multi-population frameworks, researchers have progressively
enhanced the balance between exploration and exploitation,
ultimately improving the robustness and accuracy of power
dispatch solutions.

The Chinese Pangolin Optimizer (CPO) [14], inspired by
pangolin predation, exhibits strong stability and convergence
in complex optimization tasks. However, its application to
constrained problems like ELD remains limited by
susceptibility to local optima and restricted search accuracy.
To address these issues, this study proposes an improved
CPO integrating a probability-oscillating convergence factor
strategy to enhance its performance in ELD. The proposed
approach 1s validated through multiple test cases,
demonstrating its effectiveness.

II. EcoNoMIc LoaD DISPATCH

A. Objective Function

The main goal of the Economic Load Dispatch (ELD)
problem is to optimally allocate power generation among
various units to minimize costs, while satisfying the total
electricity demand during the specified time period. This
optimization is subject to constraints, including power
balance and generator operational limits. Typically, the fuel
cost for each generation unit 1s modeled using a smooth
quadratic polynomial function, as shown in Eq. (1).

MinF; = 3 (a; + 8P + v:PH) (1

where, i represents the total fuel cost, while Pi indicates the
power output of the i-th generator, with » denoting the total
number of generating units. The constants a;, §; and y; are
the fuel cost coefficients specific to the i-th generator. In

steam turbines, the steam flow through control valves creates
a ripple effect, making it crucial to incorporate the valve-
point effect into the fuel cost model [15]. Therefore, the
actual fuel cost as a function of power output is generally
expressed as a combination of a quadratic polynomial and a
sinusoidal component, as described by the following
equation:

MinF; = Y7 (a; + B2 +y. PP + |e: x sin(F.(PT — PY]) (2)

where, e; and f; represent the coefficients associated with the
valve-point effect for the i-th generator, while P* denotes
the minimum permissible power output of the i-th generating
unit.

B. Constraint Handling
1) Power Balance Constraint

The power balance constraint can be mathematically
represented as:

T Pi=Ppt+P, 3

where, n denotes the total number of generating units, Pp
represents the total actual power demand, and P; corresponds
to the overall transmission loss within the system. The
traditional loss calculation formula is presented as follows:

P, =%, Z}Ll P;B;P; + 3 BoiP; + By 4

where, n denotes the total number of generating units, B
represents the loss coefficient associated with the #-th
element in the symmetric matrix, By, is the loss coefficient
vector corresponding to the i-th generating unit, and By is
the constant loss coefficient.

2) Generator Power Constraints

Each thermal generating unit operates within a predefined
power output range, constrained by minimum and maximum
generation limits. The generated power must not exceed the
specified upper limit and must remain above or equal to the
designated lower threshold for the respective unit. This
constraint can be mathematically formulated as follows:

PP < P PPt >

where, P; denotes the power output of the i-th generating unit,
while P and P/ correspond to the lower and upper
operational limits of the i-th generator, respectively.

3) Prohibited Operating Zone

A generating unit may exhibit restricted operating regions
within its mput-output characteristic curve due to inherent
physical limitations, such as mechanical vibrations in
variable-speed bearings or malfunctions in the generator and
its associated components. Consequently, each generator
must be prevented from functioning within these prohibited
zones. Inreal-world applications, the permissible operational
range of the i-th generator can be mathematically expressed
as follows:

P < P < Py
P,=4P% <P, <Pl k=23,..n,i=12...,n (&
Py, s P < P
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where, n denotes the total number of generating units, while £
represents the number of restricted operating zones for the
i-th generator. The parameters P!, and P%, correspond to the
lower and upper boundaries of the £-th prohibited operating
region, respectively.

III. CHINESE PANGOLIN OPTIMIZER BASED ON
PROBABILITY OSCILLATION CONVERGENCE FACTOR

A. Chinese Pangolin Optimizer
1) Mathematical Model of Aroma

In the natural environment, the Chinese pangolin primarily
relies on its highly developed sense of smell to locate ants or
emits its own scent to lure them. A higher detected
concentration of ant-related odors signifies proximity to the
prey, enhancing the likelihood of a successful hunt.
Conversely, a stronger pangolin-emitted scent perceived by
ants increases the probability of attracting them, thereby
improving capture efficiency. To effectively replicate this
predatory mechanism, it is crucial to develop a mathematical
model based on aroma diffusion and fusion. The
corresponding mathematical representation is given as
follows:

M(x,v,z) = R(x) e bz (7

where, R(x) = Tmnoyay denotes the pollutant concentration

distribution along the x-axis, influenced by factors such as
emission source intensity, wind velocity, and diffusion
coefficient, thereby modeling the dispersion and dilution
behavior of pollutants during propagation.

In the vertical dimension, the parameters o, and o,
represent the fusion coefficients along the y-axis and z-axis,
respectively, and can be determined using the following
exXpressions:

2 _ Jo y*Mey2dy

7 T MGy
0

7 _ fomzzM(x,y,z)dz

z meM(x,y,z)dz

(8)

The source intensity formula at the origin O is given by:
0=/.l.
where, u represents the average wind speed. By combinming

Eq. (7)-(9), we can calculate the aroma concentration at any
downwind point M{x, y, z) as:

—exp|-(L+ 5]

In practical scenarios, the Earth's surface imposes a
constraint on the dispersion of aroma concentration, limiting
its diffusion range. To more accurately replicate this
phenomenon, the surface 1s assumed to function as a
reflective boundary, causing aroma re-circulation. This is
modeled using the image source method. According to this
principle, the aroma concentration at any given point
M{x,v,z) is considered the cumulative effect of two
contributions. In the absence of a ground boundary, both the
actual source at point 4 and its mirrored counterpart at point
B nfluence the concentration at point A4. The point 4 can be
expressed as {ollows:

uM{(x,y, z)dydz (9

M(x,y z) = (10)

Ax,y,7) = —2 @m)

2mudy iy

(11

Likewise, the aroma concentration resulting from the

contribution of the image source located at point B is given
by:

)exz?(

B(x,y,7) = — m“)

me Ty

exp{ — )exp( (12)
Hence, by integrating Eq. (11)-(12), the resulting aroma

concentration at point Af can be expressed as:

M(x,v,z) =A(x,v,z2) + B(x,y,2) (13)

In conclusion, the aroma concentration at point Af can
be represented as:

MGy2) = o enp(— ) e~ T temn(- 0] A

The aforementioned equation describes a Gaussian
dispersion model for aroma propagation in a constrained
environment. It quantifies the aroma concentration at a
specific location situated x meters downwind, ¥ meters
laterally, and z meters above the surface. In this model, QO
represents the emission intensity of the aroma source, while u
denotes the mean wind velocity. The parameters ¢, and ¢,
correspond to the horizontal and vertical dispersion
coefficients, respectively, and H represents the effective
release height of the aroma source. The variables y and z
define the lateral and vertical distances from the dispersion
center.

The expression for calculating the aroma concentration at
ground level 1s formulated as follows:

M(x,0,0) = e 252) (14)
u=2 + ] (15)
H= %2 (16)

where, =100 denotes a constant aroma source emission rate.
To precisely model aroma dispersion in accordance with the
behavioral characteristics of the Chinese pangolin and ants,
the effective height of the aroma source 1s restricted to the
range of 0-0.5 m, while the mean wind speed is maintained
between 2-3 m/s. Additionally, 1 and r, represent random
variables following a uniform distribution within the interval
[0,1].

According to the P-G curve principle, as the distance
decreases, the diffusion capability in the horizontal direction
decreases linearly, whereas in the vertical direction, it
decreases non-linearly. In other words, as the Chinese
pangolin approaches the ants, ¢y exhibits a linear decline,
while o, follows a nonlinear decrease. Therefore, in this
study, @y and ¢, are defined as follows:

y - (17

o, = sm(—) + 40 * exp( ——) —10= tn(ﬁ—*t) (18)
where, ¢ represents the current iteration, and T denotes the
maximum number of iterations. To maintain the aroma
concentration within the bounds of 0 and 1, Eq. (14) is

subjected to a normalization procedure, which can be
formulated as follows:
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M —min(M)
Cu(t) = max(MI—min(M)

(19)

where, M (t) represents the aroma concentration at the ¢-th
iteration, while Cy(t) denotes the normalized aroma
concentration at the same iteration.

2) Imitialization
The population is thus defined as:

X11 %12 X1
X210 X220 X4

(20)

Xn1 Xn2 o Xngd

where, n represents the population size, and J denotes the
number of dimensions of the variables. .Y signifies the current
population of candidate solutions, where each solution is
randomly initialized within the specified upper bound (UB)
and lower bound (L.5) of the problem, as expressed by:

Xy=rand X (UB; —LB;)+LB;,i=12,...,n,j=
1,2,....d (21)

where, UB; represents the upper bound of the j-th component
of the given problem, while LB; denotes the lower bound of
the j-th component, expressed as:

{UB = [ubl,ubz,..
LB = [[bl, [bz,..

L ubg ]

by ] (22)

In CPO, during the hunting process, the Chinese pangolin
primarily utilizes its acute sense of smell to assess the aroma
concentration emitted by nearby ants. Guided by its predatory
instinets, it subsequently determines whether to engage in
luring or predation behavior. In the natural environment, the
Chinese pangolin typically exhibits both behaviors
concurrently over a period of time to enhance its prey capture
efficiency. This process can be mathematically represented
as:

Cy = 0.2, ry £0.5, Lurning behavior

{ Cy < 0.7||ry > 0.5, Predation behavior (23)

where, () represents the aroma concentration. When

0.2<Cy< 0.7, it indicates that the Chinese pangolin engages

in both behaviors simultaneously. r; is a random number
within the range [0,1].

3) Mathematical Model of Luring Behavior

The attraction behavior of CPO is divided into two phases:
the attraction and capture phase, and the movement and
feeding phase (Cy(t) = 0.2& &) < 0.5).

Case 1: Attraction and Capture Stage.

During this phase, the Chinese pangolin emits its scent to
attract ants, which follow the scent trail and move closer until
they are captured by the pangolin. In this scenario, the
positional dynamics between the pangolin and the ants are
primarily determined by factors such as the ants' movement
behavior, the scent path, fatigue levels, and energy variations.
The mathematical model representing this stage can be
expressed as:

D4(8) = la~ X4(t) = Xy (D)

(24)
(25)

In Eq. (24), the relative positional change between the ant
and the Chinese pangolin, influenced by the emitted scent
trajectory, is simulated. Eq. (25) models the energy
expenditure of the ant as it follows the scent path. Specifically,
as the ant progressively approaches the Chinese pangolin,
X, (6) represents the ant's position at the #th iteration, and
Xy (t) indicates the position of the Chinese pangolin at the
same iteration. D4 (¢) denotes the relative distance between
the ant and the pangolin at the #th iteration. In Eq. (24), a 1s
the scent trajectory factor, simulating the ant's gradual
approach toward the pangolin under the influence of the
emitted scent trail. The motion equation governing this
behavior in three-dimensional space can be simplified as:

-
a, =x{f)+ryx ’ZDC%
a, =y(t)+1 % IZDC%
a,=z{(t)+ry X ZDCl
L -\j T

a= ’ajzc+a32,+a§

where, a,, @y, and a, represent the perturbations in the scent
position along the x, ¥ and z axes after each iteration,
respectively. Meanwhile, x(t), ¥{£), and z(¢) denote the
scent position along the x v, and z directions at the #th
iteration. v, € randn() represents a random number drawn
from a standard normal distribution. D, denotes the
diffusivity of the scent, which is empirically set to 0.6 in this
study. 7 represents the maxaimum number of iterations. Eq.
{21) integrates the Brownian motion model with the tracking
factor, effectively capturing the complex dynamics of how
ants perceive and pursue the scent. This integration results in
a three-dimensional scent trajectory.

In Eq. (20), A, represents the energy fluctuation factor,
which simulates the energy vanations of ants due to fatigue
as they approach the Chinese pangolin. Its equation can be
simplified as:

y

(26)

@7

A =2xExrand() — E (28)

where, F represents the energy consumption factor, which is
defined as:

E=exp(—AxVy xtx {1+ Fatigue)) (29

where, 1 = 0.1 x rand() is the energy adjustment factor,
Voo = 0.2 xrand() denotes oxygen consumption, and
Fatiue represents the fatigue index, expressed as:

txa+T

Fatigue = tog(T) (30)

where, ¢ denotes the current iteration, while T represents the
total number of iterations.

Case 2: Movement and Feeding Phase. During this phase,
the Chinese pangolin captures the ants and swiftly moves
toward the nearest water source, such as a stream or pond.
Upon reaching the water's edge, the pangolin enters the water,
sheds its scales, and uses its elongated tongue to consume the
ants that are on the water's surface. The mathematical
representation associated with this phase can be expressed as
follows:
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@G
(32)

Dy(£) = 1C1 - Da(t) = Xpy (D] + Liewy - 1 = 3)
Xu(t+1) =X() + Xu(t) — Ay - Dy ()

Dy(t) is the relative distance between the Chinese
pangolin and the river (the optimal position) at the #-th
iteration. D 4(t) denotes the relative distance between the ants
and the Chinese pangolin at the #-th iteration. X, (t)
represents the position of the Chinese pangolin at the #-th
iteration. A is the energy fluctuation factor, calculated using
Eq. (28). C; represents the fast reduction factor, which
describes the Chinese pangolin's rapid approach to the river

as the iterations progress and can be computed using Eq. (33).
cl=2—tx(§) (33)

Lieyy represents the step size of the Levy flight function,
employed to model the random movement path of the

Chinese pangolin as it approaches the river. The
corresponding equation can be expressed as:
uxo
Ligyy =sx—¢ 34)
vlf

where,  is a random variable within the interval [0, 2]
(referred to as § = 1.5 in this study). s is a constant with a
fixed value of 0.01. # and v are random variables within the
range [0, 1], and o is defined as:

r(+p)xsin(2)

0= —[s’—l)

35
ré&3hxpxaz (35)

Ultimately, during the luring phase, the position of the
Chinese pangolin is updated according to Eq. (31).

3iei ot/T
X(t + 1) — XM(t)-ZI-XA(t) + Ty sin(X () e4n2)t
Am-tan(Xy(t)e T )

(36)

where, 7 is a random number in the range [0,1].
4) Mathematical Model of Predation Behavior

Case 1: Search and Localization Phase (0 <CM <0.3). The
corresponding mathematical model for this phase is given by:

Dy () = |Liewy - Xu(@®) — X ()| (37)
Dy(t+1) = sin(Cy - X(t) + Ay |Xy() = Liewy - Du(®)])  (38)

where, Dy (t) denotes the relative distance between the
pangolin and the nest (the optimal position) at the #-th
iteration.

Case 2: Rapid Approach Stage (0.2 < CM < 0.6). The
corresponding mathematical model for this stage is expressed
as:

Dy(®) = la-Xy(®) = X(®)] (39

Xut+1)=X(@) — Ay | Xy () —exp(— a) - sin(rand -
m) - Du(®)]) (40)

Eq. (39) illustrates the difference in distance between the
fragrance trajectory of the Chinese pangolin and the location
of the ant nest at the -th iteration. In Eq. (40), a denotes the
fragrance trajectory factor, which is derived from Eq. (26),
and Ly, represents the step size of the Lévy flight function,
which can be computed using Eq. (34).

Case 3: Digging and Feeding Stage (CM > 0.6). The
mathematical model for this stage is:

Dy (t) = [Cy - Xy (®) = X(®)]
X(t+1) = X(@O) + Ay Xy (@) = Dy (D]

(4D
(42)

Ultimately, during the predation phase, the position of the
Chinese pangolin is modified according to Eq. (43).

X(t+1)=0Cy-Xy(® (43)

In conclusion, the Chinese pangolin utilizes its keen sense
of smell and unique hunting behaviors, including both
attraction and predation, to capture ants.

B. Chinese Pangolin Algorithm Based on the Probability
Oscillation Convergence Factor Strategy

Due to the tendency of the original CPO algorithm to get
trapped in local optima during the iteration process and its
limited search accuracy, we propose the Probability
Oscillation Convergence Factor Strategy. This strategy
adjusts the search range and search form in Eq. (28). In the
Probability Oscillation Convergence Factor Strategy, we
incorporate several probability distributions, including
uniform, beta, exponential, normal, Rayleigh and Weibull
distributions, to enhance the initial exploration capability of
the Chinese Pangolin Optimizer (CPO). This approach aims
to improve the algorithm's ability to avoid local optima,
expedite the convergence process, and increase the overall
optimization accuracy. The introduction of mathematical
distribution is able to dynamically adjust the fitness value so
that it is in the sampling density of promising regions,
enabling targeted refinement and focusing on high-quality
regions.

For statistical convenience, we label the proposed different
distributions as CPO1-CPO6. The original CPO image is
shown in Fig. 1, and the formulas for the Probability
Oscillation Convergence Factor Strategy are given in Eq.
(44)-(45). The image with the introduction of the Probability
Oscillation Convergence Factor Strategy is shown in Fig. 2.

Cr=Q-tx(2)xs (44)

s=(1+W-(1-2) (45)

In the equation, s represents the introduced Probability
Oscillation Convergence Factor, and the specific information
for W is provided in Tablel.
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TABLE I. PROBABILITY OSCILLATION CONVERGENCE FACTORS

Name Distribution type w Parameter setting
ICPOI Uniform distribution Rand -

ICPO2 Beta distribution Betarnd (a,b) a=3, b=5
ICPO3  Exponential distribution Exprnd (a) a=0.2
ICPO4 Normal distribution Normrnd (a,b) a=0.5, b=0.1938
ICPOS Rayleigh distribution Raylrnd (a) a=0.27
ICPO6 Weibull distribution Whblrnd (a,b) a=0.1, b=0.9

C. Flowchart and Pseudo-code of CPO Algorithm Based on
Probability Oscillation Convergence Factor Strategy

The pseudo-code of the CPO algorithm is as follows:
Inputs: The population size », maximum number of iterations 7"and
variable dimension d
Outputs: The location of Chinese pangolin Xj,s and its fitness
value
01: Initialize the random population X;(i = 1,2,...,n)

02: While (+<7) Do

03:  Calculate the fitness values of Chinese pangolin

04:  Update the aroma concentration Cy; using Eq. (14)-(19)
05:  Update the rapid decrease factor C; using Eq. (33)

06:  Update the aroma trajectory factor a using Eq. (26)-(27)
07:  Update the Levy’s flight function step length Lieyy using Eq.
(34)-(35)

08: X = best position (Chinese pangolin position)

09: X, =second best position (Ant position)

10:  For (each Chinese pangolin position (X;)) Do

11: Update the energy fluctuation factor A, using Eq. (28)
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12: Update the energy consumption factor E using Eq. (29)
13: Update the fatigue index factor Fatigue using Eq. (30)
14: Update the random 7
/*Luring Behavior*/
15: If (Cy = 0.2&&r; < 0.5) Then
16: Update the location vector using Eq. (24)-(25)
/I Attraction and Capture Stage
17: Update the location vector using Eq. (31)-(32)
/l Movement and Feeding Stage
18: Update Eq. (36) update the best position X*
/*Predation Behavior®/
19: Else If (C); < 0.7 || 1 £ 0.5) Then
20: If (0 < Cy < 0.3) Then
21: Update the location vector using Eq. (37)-(38)

// Search and Localization Stage

22: Using Eq. (42) update the best position X*

23: Else If (0.3 < Cy < 0.6) Then

24: Update the location vector using Eq. (39)-(40)
// Rapid Approach Stage

25: Using Eq. (43) update the best position X*

26: Else If (Cy; = 0.6) Then

27: Update the location vector using Eq. (41)-(42)
// Digging and Feeding Stage

28: Using Eq. (43) update the best position X*

29: End If

30: End If

31: End For

32: =+l

33: End While
34: Return the best position X* and its fitness value

Set the algorithm parameters and
Start . . ¥ —>
the maximum number of iterations

Calculate the fitness value and update the Initialization
Chinese pangolin position X :zand Ant position X ..

[ Update current population location

l and the optimal individual position.
Output the location of Chinese Pangolin Y ) )
End - :
Xyrand its fitness value.
A
The equations (14) - (19), (26) - (30), (33) - (35) are used
to calculate C,.C,,.a.L,, . Fatigue.E. 4,.r,.
I
___________ ~
v \ ) 4
[ Using the equations (24) - (25), (31) - (32) | Y
to calculate the position X . X, . | C g 02
| Attraction and Capture Stage )
N\ __ Movement and Feeding Stage __ _+ ¥
Y N
<05 >t
v 0.4 / ________
Using Eq. (36) update . Using Fq (37) and £q.(38) |
the best position X 0< (‘V <03 _J calculate the position .Y, . I_
l l Search and Localization Stage l
Calculate the fitness value | B
and check boundaries. Y r =
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calculate the position Y, . I_
Digging and Feeding Stage I
| |Using Eq.(43) updatethe), ~~~~ — —— =— — =/ ™ -
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Fig. 3 CPO flow chart.

IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS

This section provides a thorough performance assessment
of the Improved Chinese Pangolin Optimizer (ICPO),
enhanced with the Probability Oscillation Convergence
Factor strategy to improve its global search capability and
convergence robustness. The evaluation is based on the 12
benchmark functions from the CEC-2022 competition, which

are widely used for testing optimization algorithms. These
functions encompass different problem types, including
unimodal (F1), basic multimodal (F2-F5), hybrid (F6-F8) and
composite (F9-F12). Each test function has a dimensionality
of 20, and each algorithm is allowed a maximum of 1000
iterations. To ensure the statistical validity of the results, each
algorithm is independently executed 30 times, with the
outcomes averaged across runs, including the best solutions,
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mean fitness values, and standard deviations.

Fig. 4 illustrates the convergence behavior of various
algorithms across these benchmark functions. The results
indicate that the ICPO algorithm, enhanced with the
Probability Oscillation Convergence Factor strategy,
consistently outperforms the original CPO in most test cases.
While slight under-performance is observed in a few
functions, the overall results suggest that the proposed
strategy significantly improves the global search capability
and mitigates premature convergence, enhancing the
algorithm's stability in convergence.

A closer examination of the statistical results in Table II
indicates that the original CPO algorithm does not attain
optimal performance in any of the benchmark test functions.
It consistently under-performs compared to the enhanced
versions in terms of best solutions, mean values, and standard
deviations. This suggests that the original CPO has a
propensity to converge prematurely to local optima,
restricting its capacity to thoroughly explore and exploit the
solution space. In contrast, the integration of the Probability
Oscillation  Convergence Factor strategy leads to
considerable improvements in the performance of the
modified variants (ICPO1-ICPO6), as they exhibit notable
advancements across several test functions.

For instance, ICPO1 achieves the best mean values for F3,
F8 and F10, the smallest standard deviations for F2 and F11,
and the optimal solutions for F3, F6 and F11, indicating its
strong performance in handling complex multi-modal and
hybrid optimization problems. ICPO2 shows the best mean
performance on F6 and achieves the optimal solutions for F7
and F9, demonstrating its powerful global search capability
in high-dimensional problems. ICPO3 attains the best mean
values for F2 and F11, the lowest standard deviation for F8,
and the optimal solutions for F2 and F12, suggesting its
efficiency in solving composite optimization problems.
ICPO4 outperforms other variants in terms of mean values
for FI, F4, F7 and F12, exhibits the lowest standard
deviations for F1, F3 and F10, and finds the optimal solution
for F11, highlighting its stable convergence characteristics.
ICPOS5 records the best mean value for F9, the smallest
standard deviations for F5, F7 and F9, and the optimal
solution for F1, reflecting its high precision in certain
function landscapes. ICPO6 achieves the best mean fitness
for F5, the lowest standard deviations for F4, F6 and F12, and
the optimal solutions for F4, F5 and F8, showcasing its strong
adaptability to hybrid and composite functions.

In order to more obviously compare the performance
superiority of ICPO, the stacked graph in line is drawn
according to the average fitness value ranking of each
algorithm, and each algorithm corresponds to an image, as
shown in Fig. 5. The smaller the area in the image, the higher
the overall ranking of the corresponding algorithm. Overall,
the ICPO variants exhibit distinct strengths across different
test functions. ICPO1 and ICPO4 consistently achieve the
best mean values in multiple test cases, indicating fast
convergence and stable optimization performance. ICPO2
and ICPO3 are more effective at discovering optimal
solutions, demonstrating their strong ability to explore the
search space and escape local optima. Meanwhile, ICPOS5
and ICPO6 frequently show the smallest standard deviations,
indicating their robustness and solution stability in certain

problem instances. A closer look at specific functions further
demonstrates the suitability of particular ICPO variants for
different problem landscapes.

In conclusion, the experimental results confirm that the
ICPO series significantly enhances the optimization
capabilities of the original CPO algorithm. The proposed
improvements lead to substantial gains in convergence speed,
global search ability, and solution stability. The varying
strengths of different ICPO variants across the benchmark
functions suggest that each modification strategy is
particularly effective for specific types of optimization
problems. Therefore, in practical applications, selecting the
appropriate ICPO variant based on the specific characteristics
of the optimization problem can lead to superior performance
and more reliable solutions.
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V. IMPROVE CPO ALGORITHM TO SOLVE ECONOMIC
SCHEDULING PROBLEM

To further validate the effectiveness of the Arithmetic
Optimization Algorithm (AOA) augmented with elementary
function perturbation, this section applies the algorithm to
address the single-objective Economic Load Dispatch (ELD)
problem in power systems. The objective of the ELD
problem is to minimize the total fuel cost while satisfying the
operational constraints of the power generation units. Two
separate scenarios are considered for evaluation: the first
scenario involves a power system with 40 generating units
and a total demand of 10,500 MW, while the second scenario
encompasses 110 units with a total demand of 15,000 MW.

In order to evaluate the performance of the proposed
algorithm, CPO3, which has demonstrated superior results in
solving the benchmark functions from CEC-BC-2022, is
selected and modified accordingly. This modified version is
referred to as the ICPO algorithm, where the "I" denotes the
integration of the probability oscillation convergence factor
strategy. The ICPO algorithm is then compared with several
well-established optimization techniques, namely the Whale
Optimization Algorithm (WOA) [16], Cuckoo Optimization
Algorithm (COA) [17], Harris Hawk Optimization (HHO)
[18], Pelican Optimization Algorithm (POA) [19] and the
original Arithmetic Optimization Algorithm (AOA) [20], to
assess its relative effectiveness in solving the ELD problem.

The choice of these comparison algorithms is motivated by
their established performance in solving various optimization
problems, including those related to power system load
dispatch. The results of these comparisons will provide a
thorough evaluation of the ICPO algorithm's capabilities and
offer insights into its potential for practical applications in
power systems optimization.

This comparative analysis aims to provide compelling
evidence of the ICPO algorithm's ability to outperform
traditional optimization methods and offer a more efficient
solution to the ELD problem, ensuring that the power system
operates in a cost-effective and reliable manner.

A. Case l

In this experiment, the power system is modeled with 40
generating units, which collectively meet a total power
demand of 10,500 MW. The specifications of each generator,
including capacity limits and operational parameters, are
detailed in Table III. To assess the performance of the
proposed ICPO algorithm, the experiment is repeated 20
times, ensuring statistical reliability of the results. For each
run, a maximum of 1000 iterations is allowed, with a
population size set at 50. The results of the experiments are
summarized in Table IV, while Fig. 6 illustrates the
convergence behavior over iterations. Additionally, Fig. 7
provides a comparative bar chart that highlights the cost
differences between various algorithms.

The experimental findings presented in Table IV clearly
indicate that the ICPO algorithm achieves the lowest total
cost, amounting to $121,336.92, while effectively satisfying
the power demand constraints. This result demonstrates a
significant improvement over other optimization techniques
in terms of minimizing the cost of power generation. As
shown in Fig. 6-7, the ICPO algorithm exhibits a robust
convergence trend, consistently approaching the optimal

solution with a relatively faster convergence rate compared to
other intelligent algorithms.

From the analysis of these results, it is evident that the
China Pangolin Algorithm (ICPO), enhanced with the
probability  oscillation convergence factor strategy,
outperforms the competing algorithms in solving the
economic load dispatch problem for Case 1. This suggests
that the ICPO algorithm offers superior optimization
capabilities, achieving cost-efficient solutions while
maintaining the required system performance. Such findings
highlight the potential of ICPO in practical power system
optimization tasks, where both cost-effectiveness and
operational constraints must be effectively balanced.
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Fig. 6 Convergence diagram of experimental results for solving Case 1.
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B. Case 2

In this scenario, the power system is composed of 110
generating units, collectively meeting a total power demand
of 15,000 MW. The detailed characteristics of the generators,
including their capacities, operational limits, and other
relevant parameters, are provided in Table V. The experiment
is executed 20 times to ensure statistical robustness, with
each trial allowing for a maximum of 1000 iterations and
utilizing a population size of 50. The experimental outcomes
are summarized in Table VI, while Fig. 8 depicts the
convergence behavior of the algorithm over the course of the
iterations. Additionally, Fig. 8 presents a bar chart comparing
the costs incurred by different optimization algorithms in this
context.

Upon examining the data in Table VI, it is apparent that the
ICPO algorithm achieves the lowest cost of $221,621.01,
while simultaneously satisfying the required power demand
of 15,000 MW. This outcome represents a marked
improvement over the other optimization techniques in terms
of minimizing the operational cost. Fig. 7-8 further illustrate
the superior performance of the ICPO algorithm. The
convergence graph in Fig. 8 indicates a fast and stable
approach toward the optimal solution, while the bar chart in
Fig. 9 highlights the ICPO algorithm’s clear cost advantage
relative to its competitors.

These results confirm that the China Pangolin Algorithm,

enhanced with the probability oscillation convergence factor
strategy, excels in solving the economic load dispatch
problem for Case 2. This performance underscores the
effectiveness of ICPO in optimizing large-scale power
systems, where managing operational costs and adhering to
power generation constraints are critical. The consistent and
superior optimization demonstrated by ICPO in this case
reinforces its potential as a powerful tool for real-world
power system optimization tasks.

C. Time Complexity Analysis of ICPO

In the ICPO algorithm, the overall time complexity
consists of two primary components: the initialization phase
and the iterative optimization phase. In the initialization
phase, a population of N agents with d dimensions is
generated using the initialization function, which requires
O(Nd), and each agent's fitness is evaluated once,
contributing an additional O(Nt) . Thus, the initialization
phase has a total cost of O(Nd + Nt).

In the optimization phase, the algorithm runs for T
iterations. In each iteration, the positions of all agents are first
boundary-checked in O(Nd), and their fitness values are
calculated in O(Nt). The best and second-best positions are
then updated in O(N). Several scalar control parameters are
computed once per iteration in O(1) or O(N) for vectorized
factors like Aroma-trajectory, Levy, and others, with
combined cost O(N).

Subsequently, for each of the N agents, a sequence of
operations is performed, including random sampling,
distance calculations, arithmetic operations on d-dimensional
vectors, and several conditional behaviors. Each agent update
involves 0(d) operations for position updates and distance
calculations, while the control parameter and scalar factor
updates remain in O(1). Therefore, the total cost per iteration
for agent updates is O(Nd).

Multiplying by the number of iterations gives the overall
optimization phase complexity as O(T X (Nd + Nt)). If each
fitness evaluation involves processing m samples over d
features, the total time complexity of the algorithm becomes:
O(T X N X (md+ d)) = O(T x N xmd). As the md term
dominates. Hence, the algorithm scales linearly with the
number of agents, iterations, features, and data samples per
evaluation.

TABLE . PERFORMANCE COMPARISON RESULTS FOR CEC2022 BENCHMARK FUNCTION OPTIMIZATION

Function CPO ICPOI ICPO2 ICPO3 ICPO4 ICPO5 ICPO6

Ave 3.8914E+04 1.9154E+04 1.8045E+04 2.3228E+04 1.5692E+04 1.8903E+04 2.0389E+04

Std 1.0692E+04 9.7637E+03 9.7121E+03 1.3325E+04 6.0022E+03 1.0527E+04 9.4372E+03

. Best 2.3743E+04 7.8363E+03 4.6172E+03 6.7316E+03 9.1717E+03 6.1090E+03 9.1516E+03
Rank 7 4 2 6 1 3 5

Ave 4.6777TE+02 4.5664E+02 4.5969E+02 4.5305E+02 4.5941E+02 4.5465E+02 4.5788E+02

Std 1.8486E+01 1.0740E+01 1.2275E+01 1.5503E+01 1.1463E+01 1.3732E+01 1.7308E+01

k2 Best 4.4927E+02 4.4529E+02 4.4686E+02 4.0341E+02 4.4534E+02 4.2212E+02 4.0438E+02
Rank 7 3 6 1 5 2 4

Ave 6.6500E+02 6.4199E+02 6.4591E+02 6.5249E+02 6.4337E+02 6.4476E+02 6.5436E+02

Std 8.8120E+00 2.0538E+01 1.7990E+01 1.9964E+01 1.4190E+01 1.6649E+01 2.1810E+01

" Best 6.4758E+02 6.1327E+02 6.2295E+02 6.2574E+02 6.2458E+02 6.2532E+02 6.1590E+02
Rank 7 1 4 5 2 3 6

F4 Ave 8.9384E+02 8.8555E+02 8.8941E+02 8.8712E+02 8.8130E+02 9.0139E+02 8.8657E+02
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Std 6.0398E+00 2.3057E+01 24783E+01 6.1075E+00 2.1503E+01 3.6264E+01 1.4267E+01
Best 8.7998E+02 84510E+02 8.5753E+02 8.7767E+02 8.3847E+02 8.4099E+02 8.3071E+02
Rank 6 2 5 4 1 7 3
Ave 3.5628E+03 3.0554E+03 3.0509E+03 3.2955E+03 3.0699E+03 3.2250E+03 2.6756E+03
Std 6.0031E+02 8.9616E+02 7.6217E+02 7.0222E+02 8.2390E+02 5.1505E+02 1.0271E+03
£ Best 2.5623E+03 1.3662E+03 1.1472E+03 1.7762E+03 1.1089E+03 2.1223E+03 9.2793E+02
Rank 7 3 2 6 4 5 1
Ave 3.1337E+04 1.3655E+04 8.0287E+03 1.0419E+04 1.2247E+04 8.2018E+03 9.5090E+03
Std 3.9863E+04 3.1619E+04 8.9712E+03 8.7805E+03 1.2997E+04 7.2484E+03 6.8668E+03
e Best 6.5577E+03 2.0684E+03 2.2470E+03 2.1061E+03 24944E+03 2.5591E+03 2.3653E+03
Rank 7 6 1 4 5 2 3
Ave 2.2933E+03 2.1693E+03 2.1462E+03 2.1659E+03 2.1262E+03 2.1458E+03 2.1927E+03
Std 1.5487E+02 7.7798E+01 6.1200E+01 7.5971E+01 4.6186E+01 3.9464E+01 7.9594E+01
F7 Best 2.1251E+03 2.0740E+03 2.0563E+03 2.0980E+03 2.0670E+03 2.0765E+03 2.0807E+03
Rank 7 5 3 4 1 2 6
Ave 2.5012E+03 2.3219E+03 2.3376E+03 2.3268E+03 2.3363E+03 2.3264E+03 2.3621E+03
- Std 1.9316E+02 1.0330E+02 1.0147E+02 9.7896E+01 1.0737E+02 1.0797E+02 1.2988E+02
Best 2.2311E+03 2.2303E+03 2.2260E+03 2.2315E+03 2.2282E+03 2.2294E+03 2.2269E+03
Rank 7 1 5 3 4 2 6
Ave 2.5197E+03 2.5120E+03 24918E+03 2.5061E+03 2.5072E+03 2.4895E+03 24942E+03
Std 2.2205E+01 6.2304E+01 1.9353E+01 5.2791E+01 4.7704E+01 7.0421E+00 1 4606E+01
F Best 2.4865E+03 24821E+03 2.4818E+03 2.4828E+03 24825E+03 24837E+03 24827E+03
Rank 7 6 2 4 5 1 3
Ave 6.4695E+03 2.7607E+03 34674E+03 3.2271E+03 3.0439E+03 3.5046E+03 4 A4277E+03
Std 1.5014E+03 9.8732E+02 1.5402E+03 1.3633E+03 1.2885E+03 1.7241E+03 1.9854E+03
F1o Best 3.0178E+03 2.5005E+03 2.5006E+03 2.5005E+03 2.5007E+03 2.5005E+03 2.5006E+03
Rank 7 1 4 3 2 5 6
Ave 3.1153E+03 2.9757E+03 2.9519E+03 2.9337E+03 2.9356E+03 2.9729E+03 2.9637E+03
Std 4.0457E+02 3.2548E+01 3.5021E+01 8.2107E+01 1.1296E+02 3.5319E+01 3.6T15E+01
i Best 2.6030E+03 2.9178E+03 2.9202E+03 2.6206E+03 2.6143E+03 2.9223E+03 2.9212E+03
Rank 7 6 3 1 2 5 4
Ave 3.2874E+03 3.0964E+03 3.0759E+03 3.1019E+03 3.0581E+03 3.0817E+03 3.0699E+03
F12 Std 2.3245E+02 9.9663E+01 1.0314E+02 1.1913E+02 9.2301E+01 1.1145E+02 6.0678E+01
Best 2.9947E+03 2.9761E+03 2.9570E+03 2.9518E+03 2.9631E+03 2.9656E+03 2.9602E+03
Rank 7 5 3 6 1 4 2
Friedman Rank 6.92 3.58 333 392 2.75 342 4.08
Final Ranking 7 4 2 5 1 3 6
TABLE IIT. GENERATOR SET CHARACTERISTICS OF 40-UNIT
Unit o B 7 P P & f
1 94.705 6.73 0.0069 36 114 100 0.084
2 94.705 6.73 0.0069 36 114 100 0.084
3 309.54 7.07 0.02028 60 120 100 0.084
4 369.03 8.18 0.00942 80 150 150 0.063
5 148.89 5.35 0.0114 47 97 120 0.077
6 222.33 8.05 0.01142 68 140 100 0.084
7 267.71 8.03 0.00357 110 300 200 0.042
8 391.98 6.99 0.00492 135 300 200 0.042
9 455.76 6.60 0.00573 135 300 200 0.042
10 722.82 12.9 0.00605 130 300 200 0.042
11 6352 12.9 0.00515 94 375 200 0.042
12 654.69 12.8 0.00569 94 375 200 0.042
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13 913.4 125 0.00421 125 500 300 0.035
14 1760.4 8.84 0.00752 125 500 300 0.035
15 17283 9.15 0.00708 125 500 300 0.035
16 17263 9.15 0.00708 125 500 300 0.035
17 647.85 7.97 0.00313 220 500 300 0.035
18 649.69 7.95 0.00313 220 500 300 0.035
19 647.83 7.97 0.00313 242 550 300 0.035
20 647.81 7.97 0.00313 242 550 300 0.035
21 785.96 6.63 0.00298 254 550 300 0.035
22 785.96 6.63 0.00298 254 550 300 0.035
23 794.53 6.66 0.00284 254 550 300 0.035
24 794.53 6.66 0.00284 254 550 300 0.035
25 801.32 7.10 0.00277 254 550 300 0.035
26 801.32 7.10 0.00277 254 550 300 0.035
27 1055.1 333 0.52124 10 150 120 0.077
28 1055.1 333 0.52124 10 150 120 0.077
29 1055.1 333 0.52124 10 150 120 0.077
30 148.89 5.35 0.01140 47 97 120 0.077
31 222.92 6.43 0.00160 60 190 150 0.063
32 222.92 6.43 0.00160 60 190 150 0.063
33 222.92 643 0.00160 60 190 150 0.063
34 107.87 895 0.0001 90 200 200 0.042
35 116.58 8.62 0.0001 90 200 200 0.042
36 116.58 8.62 0.0001 90 200 200 0.042
37 307.45 5.88 0.0161 25 110 80 0.098
38 307.45 5.88 0.0161 25 110 80 0.098
39 307.45 5.88 0.0161 25 110 80 0.098
40 647.83 7.97 0.00313 242 550 300 0.035
TABLE IV. THE OPTIMAT S0LUTION VALUES FOR THE FUEL COST OF THE 4 0-UNIT $YSTEM
ICPO WOA COA HHO ZOA AOA
Py 113.94 114 93.72 85.69 114 114
P, 113.38 4831 95.85 93.14 114 114
Ps 115.03 108.93 64.72 112.76 120 115.64
Ps 188.77 103.91 169.25 176.76 190 190
Ps 96.99 97 87.72 9533 97 97
Ps 139.73 9125 139.54 135.10 12364 113.59
P; 297.51 282.99 259.68 266.86 300 254.86
Pz 299.74 24379 286.73 297.17 300 300
Ps 198.34 300 251.78 287.09 300 300
Pin 140.68 300 180.18 279.56 19439 300
Py 208.36 375 192.43 232.44 17242 32338
P12 152.76 317.39 372.14 229.90 106.75 145.62
Pis 23348 295.52 482.86 310.26 427.05 252.87
Pis 317.76 340.97 475.37 307.99 19795 431.21
Pis 298.43 167.74 492.45 314.34 500 277.69
Pis 467.01 500 259.31 312.95 478.29 155.72
Py 38045 500 490.03 467.73 500 482.58
Pis 447.93 500 453.68 471.06 220 455.17
Pis 516.49 337.42 348.66 518.02 550 550
P 508.90 550 330.70 515.74 550 550
Py 548.25 482.44 478.97 517.92 525.70 461.47
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P 521.95 550 548.61 503.95 550 550

Pas 543.13 550 320.50 520.48 550 550

Pu 506.32 550 478.93 525.06 334.68 461.47

Pis 543 .46 387.95 520.96 523.43 550 461.47

Pas 522.94 520.68 473.01 518.82 550 550

P27 10.20 3591 20.83 33.26 23.37 30.30

Pu 10.31 17.03 1612 21.59 37.63 27.60

Pag 10.32 33.27 135.61 27.01 10 5515

Pan 95.87 97 96.24 88.68 97 58.28

P 189.97 81.57 150.59 153.06 60 190

P33 189.89 78.69 177.82 154.29 190 162.48

P 189.82 136.38 163.13 144.78 132.74 190

Pu 199.47 200 193.01 189.60 200 129.12

Ps3s 199.93 200 116.93 191.58 200 200

P34 197.41 200 189.30 190.11 13533 192.98

Py 98.39 110 108.23 6328 110 95.14

Psg 105.88 34.85 108.55 61.47 110 110

Pis 109.68 110 102.53 70.84 33.14 95.14

P 471.14 550 548.55 490.88 550 403.69

Pr 1.05E+04 1.05E+04 1.05E+04 1.05E+04 1.05E+04 1.05E+04
Fuel Cost(S) 121336.92 131459.60 130208.16 123727.97 125700.53 123036.11

TABLE V. GENERATOR SET CHARACTERISTICS OF 110-UNIT
Unit a B " Prin P Unit a B " P P

1 12 24 0.0253 25547 24 389 56 96 252 0.0098 14.327 82.136
2 12 24 0.0265 25675 24 411 57 96 252 0.0099 14354 82.298
3 12 24 0.028 25803 24.638 58 100 35 0.0092 14.38 82.464
4 12 24 0.0284 25932 24.76 59 100 35 0.0094 14 407 82.626
5 12 24 0.0286 26.061 24 888 60 120 45 0.0072 19 218.895
6 20 4 0.0120 37.551 117.755 61 120 45 0.0071 191 219.335
7 20 4 00126 37664 118108 62 120 45 0.007 192 219.775
8 20 4 0.0136 37777 118458 63 185 543 0.0066 11.694 143.735
9 20 4 0.0143 37.89 118821 64 185 543 0.0057 11715 144029
10 76 152 0.0088 13.327 81.136 65 185 543 0.0058 11.737 144318
11 76 15.2 0.0089 13354 81.298 66 185 543 0.0059 11758 144597
12 76 152 0.0091 138 81.464 67 197 70 0.0036 24 269131
13 76 15.2 0.0093 13407 81.626 68 197 70 0.0036 241 269.649
14 100 25 0.0062 18 217.895 69 197 70 0.0036 242 270176
15 100 25 0.0061 18.1 218.335 70 360 150 0.0025 11.862 187.057
16 100 25 0.006 182 218.775 71 400 160 0.0029 8.492 320.002
17 155 543 0.0046 10694 142735 72 400 160 0.003 8.503 321.91
18 155 543 0.0047 10.715 143.029 73 300 60 0.0054 13.327 52.136
19 155 543 0.0048 10737 143318 74 250 50 0.0055 12354 42208
20 155 543 0.0049 10.758 143.597 75 90 30 0.0099 11.38 32.464
21 197 68.9 0.0026 23 259131 76 50 12 0.0031 9.407 23.626
22 197 68.9 0.0026 23.1 259.649 77 450 160 0.0024 14 220
23 197 68.9 0.0026 232 260176 78 600 150 0.0023 131 190
24 350 140 0.0015 10.862 177.057 79 200 50 0.0036 132 250
25 400 100 0.0019 7492 210002 80 120 20 0.0049 135 230
26 400 100 0.0019 7.503 211.91 81 55 10 0.0061 24 70
27 500 140 0.0014 12 210 82 40 12 0.007 145 60
28 500 140 0.0013 12.1 180 83 80 20 0.0088 14.2 210
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29 200 50 0.0026 122 240 84 200 50 0.0022 134 150
30 100 25 0.0039 12.5 220 85 325 80 0.0048 113 130
31 50 10 0.0051 23 60 86 440 120 0.0053 8.9 80
32 20 5 0.005 135 50 87 35 10 0.0021 144 90
33 80 20 0.0078 132 200 88 55 20 0.0033 143 80
34 250 75 0.0012 124 140 89 100 20 0.0034 139 125
35 360 110 0.0038 103 120 90 220 40 0.0037 138 160
36 400 130 0.0043 9.9 90 91 140 30 0.0066 137 50
37 40 10 0.0011 134 80 92 100 40 0.0043 136 400
38 70 20 0.0023 133 70 93 440 100 0.0022 84 260
35 100 25 0.0034 125 115 94 500 100 0.0055 7.6 110
40 120 20 0.0067 12.8 150 95 600 100 0.0032 7.5 170
41 180 40 0.0056 12.7 40 96 700 200 0.0077 7.2 140
42 220 50 0.0023 126 300 97 15 36 0.0353 26.547 26.389
43 440 120 0.0012 74 250 98 15 36 0.0365 26.675 25411
44 560 160 0.0045 6.6 100 99 22 44 0.038 26.803 25.638
45 660 150 0.0022 6.5 160 100 22 44 0.0384 26.932 2576
46 700 200 0.0067 6.2 130 101 60 10 0.021 153 65
47 32 54 0.0353 26.547 34.389 102 80 10 0.023 16 82
48 32 54 0.0365 26.675 34411 103 100 20 0.024 202 86
49 52 8.4 0.038 26.803 34.638 104 120 20 0.035 202 84
50 52 84 0.0384 26.932 34.761 105 150 40 0.034 256 75
51 52 84 0.0386 17.061 34.888 106 280 40 0.037 305 56
52 60 12 0.032 38.551 127.755 107 520 50 0.039 325 67
53 60 12 0.0326 36.664 128.108 108 150 30 0.035 26 68
54 60 12 0.0236 38.777 128458 109 320 40 0.028 258 69
55 60 12 0.0243 38.89 128.821 110 200 20 0.026 27 72
TABLE VI. THE OPTIMAL SOLUTION VALUES FOR THE FUEL COST OF THE 110-UNIT SYSTEM
Algorithm ICPO WOA COA HHO POA AOA

P 11.15 493 10.98 6.91 5.75 24

P 5.11 11.57 2.52 6.72 2.40 24

P 4.46 5.28 12 7.69 5.77 24

P4 2.57 337 12 5.16 4.11 12

Ps 8.22 11.64 12 9.64 4.34 12

Ps 5.12 6.65 20 746 20 4

P 4.02 7.53 20 10.87 14.92 20

Ps 8.96 7.68 20 20.00 5.72 20

Py 16.01 18.86 20 14.98 1575 4

Pio 69.96 46.58 76 42.14 76 76

P11 69.79 73.90 76 60.45 15.2 76

P12 71.20 26.05 41.15 66.99 31.33 152

Pis 18.11 67.78 76 38.50 4323 76

P4 25.75 99.75 25.13 40.62 65.34 100

Pis 3546 54.10 7247 99.35 67.36 100

Pis 63.05 31.47 25 46.02 100 100

P17 151.88 148.57 78.93 65.97 153.77 54.3

Pis 149.68 92.44 155 138.80 73.92 155

Pis 140.80 94.66 155 77.51 145.51 155

Pao 154.42 153.80 155 105.88 125.02 155

P2 167.68 117.04 93.83 86.40 152.85 197

Pz 116.46 144.45 11942 93.14 68.9 68.9
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Pas
P
P3s
Pas
Pz
Pis
Py
Pz

Pa;
Pzs
P34
Pis
Pig
Pz
Pz
Py
Pao
P
Py
Pas
Pay
Pas
Pys
Pa7
Pas
Pag
Pso

Ps;
Pss
Ps4
Pss
Pss
Pss
Pss
Pso
Pso
Ps
P2
Ps3
Pea
Pss
Pss
Per
Pss
Pss
Pz
P71
Pn
P13
Pz

149.14
252.76
310.27
355.08
481.35
476.81
142.82
94.20
17.81
19.03
64.98
212.52
323.76
233.54
27.94
58.08
99.60
101.14
141.50
215.69
433.45
466.84
619.30
540.41
24.35
10.63
9.28
18.69
10.51
12.58
14.92
12.16
15.73
84.95
76.32
40.72
56.37
50.30
56.23
45.74
171.93
184.00
167.79
185
93.45
89.66
108.86
334.06
266.14
381.47
86.12
158.30

189.93
349.15
273.87
207.20
326.74
278.94
123.14
93.69
14.81
12.08
30.12
221.83
257.00
357.76
14.92
24.11
84.43
87.21
79.81
106.38
397.54
409.42
531.64
577.09
14.44
8.27
12.85
51.67
44.66
53.76
20.82
15.85
35.07
83.57
4733
58.33
98.98
118.33
72.63
106.64
71.42
137.35
114.36
86.35
124.79
196.21
194.19
342.69
378.21
240.72
148.42
192.75

197
350
134.86
215.72
226.14
37371
200
100
50
17.37
44.42
250
360
27189
32.17
20
100
120
180
51.12
440
560
660
700
32
22.25
52
52
4245
29.86
60
56.71
29.84
96
96
100
100
54.70
77.87
45
185
185
75.12
131.76
15646
70
70
360
400
201.64
300
250

181.04
269.51
37234
239.52
49995
450.55
68.18
99.99
18.26
11.22
25.10
172.00
260.12
376.34
2292
5355
41.22
119.99
127.02
14214
439.96
527.55
640.51
452.63
1336
25.39
3040
27.87
21.77
59.22
4338
42.84
21.84
88.45
80.89
96.78
72.59
84.10
11567
67.88
15592
77.61
18498
16431
107.25
17245
196.98
248.29
15092
240.58
14321
14157

117.37
253.84
263.01
400
500
361.02
94.77
95.99
4574

7091
250
185.40
400
3328
20
9235
21.70
51.60
9938
272.99
560
660
700
9.34
54
52
84
2934
51.75
24.78
1394
36.50
80.53
37.58
9420
7382
77.78
115.73
76.15
119.53
151.12
142.99
89.27
197
96.09
197
360
387.76
400
185.13
121.92

68.9
140
120.14
400
500
192.25
50
100
10

20
250
360
130
40
70
25
20
40
220
440
560
660
700
32
32
52
52
52
60
60
60
12
96
96
100
100
120
45
45
543
543
185
183
197
197
197
150
400
400
300
250

Volume 33, Issue 9, September 2025, Pages 3391-3409



Engineering Letters

P7s 84.43 88.00 90 89.99 3415 30
Pis 49.73 13.76 42.66 16.84 2471 50
Pz 359.56 361.53 208.53 449.97 377.29 450
Frs 334.17 491.20 407.95 400.78 600 27033
Frs 195.63 166.39 167.51 14475 50 200
Pso 89.08 115.11 120 45.93 29.63 20
Ps1 12.91 42.68 55 54.99 15.94 10
P52 34.98 17.65 40 2532 31.82 40
Ps3 30.97 45.56 80 68.62 21.74 20
P34 184.07 167.57 70.87 87.21 125.50 200
Fss 252.59 320.84 325 26911 325 325
Pss 381.41 150.14 290.52 439.96 227.63 440
Psz 24.20 34.69 35 32.77 31.12 35
Pss 39.70 49.23 20 29.14 36.58 55
Fso 89.06 §8.06 100 70.08 2126 20
Py 165.94 101.2% 11613 21998 40 40
Po1 74.03 90.51 30 12091 9951 30
Psz 99.81 70.04 40 63.82 75.84 40
Py3 200.95 413.80 440 245.57 414.11 440
Poa 496.96 410.74 21643 346.32 500 180.19
Pgs 580.55 508.48 38282 41513 600 600
Pys 394.39 579.68 700 627.54 276.96 700
Por 10.79 6.95 15 10.65 14.13 36
Pos 13.55 14.94 3.6 9.84 11.65 14.99
Py 4.94 835 8.73 13.90 1597 22
Pion 7.33 15.69 13.59 15.58 16.02 22
P 10.20 21.38 10.86 40.87 37.53 60
P 16.08 78.39 80 42.85 69.86 10
Pios 38.23 37.61 50.41 99.99 20 100
P14 20.66 89.04 120 91.71 97.88 120
Pus 122.37 96.91 94.87 13223 4034 40
Pus 110.11 132.58 40 202.99 280 40
Piov 263.58 383.77 50 263.59 113.96 50
P 87.79 100.45 30 46.32 98.98 150
Pioe 117.59 156.05 40 95.62 45.02 40
P 97.49 165.42 200 89.76 188.40 20
Po 1.50E+04 1.50E+04 1.50E+04 1.50E+04 1.50E+04 1.50E+04
Fuel Cost($/h) 221621.01 241792.64 224933.39 236963.17 231688.22 228383.93

VI. CONCLUSION

This paper introduces an enhanced Chinese Pangolin
Optimizer (CPO), incorporating a probability oscillation
convergence factor strategy to address the Economic Load
Dispatch (ELD) problem. The proposed method boosts the
algorithm's global search capacity and local exploration
efficiency by incorporating six distinct probability
distributions: uniform, Beta, exponential, normal, Rayleigh
and Weibull distributions. This diverse approach
significantly improves the optimization accuracy and
solution stability by providing varied search dynamics and
adaptability to different problem landscapes.

To assess the effectiveness of the proposed method,
comprehensive experiments were initially conducted using
the CEC-BC-2022 benchmark functions to evaluate the
optimization performance of the enhanced CPO algorithm.
Based on these findings, the most effective strategy for
addressing the Economic Load Dispatch (ELD) problem was
determined. Subsequently, the algorithm was tested under
two distinct power system configurations: the first scenario
nvolved 40 generators with a total power demand of 10,500
MW, and the second involved 110 generators with a total
demand of 15,000 MW . The results demonstrate that the
improved CPO  algorithm  outperforms  traditional
optimization methods in terms of reducing fuel costs,
minimizing power losses, and achieving faster convergence.
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These outcomes underscore the algorithm's robustness and
adaptability, positioning it as a highly promising solution for
practical ELD problems.

This advancement offers an efficient and reliable
intelligent optimization tool for power system operators,
facilitating the reduction of operational costs and enhancing
the economic performance of power grids. Moreover, the
proposed CPO algorithm can serve as a foundation for the
development of more sophisticated optimization techniques
in the power system domain.

Future research could explore the incorporation of more
dynamic and adaptive convergence factor strategies,
potentially in conjunction with advanced techniques such as
deep learning or reinforcement learming. Such integration
would enhance the algorithm's capability to tackle complex
constraints and large-scale optimization problems,
broadening its applicability to more complex and diverse
power system optimization scenarios. Additionally, these
advancements could improve the algorithm's performance in
dynamic, real-time system environments, thereby increasing
its potential for practical deployment in the energy sector.
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