
 

  
Abstract—Short-term passenger flow prediction for urban 

rail transit is imperative for effective real-time scheduling, 
efficient resource allocation, and prompt emergency response. 
However, conventional models face challenges in accurately 
capturing passenger flow features, which are influenced by 
numerous sources. Consequently, to address the limitations of 
traditional models, this paper investigates the improved 
dual-channel convolutional neural network (DC-CNN) and 
long-short-term memory network (LSTM) to construct a 
combined model to deal with complex spatiotemporal data, 
capturing non-linear features and sequence dependencies. 
Secondly, the impact of data quality, station heterogeneity, and 
model parameter training strategy on prediction accuracy was 
considered. A multi-dimensional index system was constructed 
based on the ontological attribute characteristics of subway 
stations and location environment features. The research 
sample was classified as a typical station using the k-means 
clustering algorithm. Furthermore, the model training phase 
incorporates a hybrid tuning strategy that integrates manual 
parameter optimization and automated hyperparameter search 
algorithms. An early-stop mechanism is also integrated to 
balance the model performance and training efficiency. To 
conclude the research, an example analysis is carried out by 
combining Hangzhou Metro AFC data. Based on the station 
POI data and historical passenger flow data, the stations are 
grouped into four categories (Cluster 0, 1, 2, 3). The MAPE 
values of the passenger flow prediction results are 14.02%, 
18.12%, 13.57%, and 13.82%, respectively. Through 
experimental validation, it is determined that the prediction 
accuracy of the DC-CNN-BiLSTM prediction model optimized 
by considering site heterogeneity and using an improved 
training strategy is enhanced in all types of sites. Furthermore, 
the average absolute percentage error can be reduced by up to 
1.62% compared with that of the original data without site 
segmentation. Additionally, the sensitivity of different 
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hyperparameters to the prediction accuracy of the model 
demonstrates significant heterogeneity. 

The present study has the potential to contribute to the 
theoretical framework for predicting short-time passenger flow 
in urban rail transit. 
 

Index Terms—urban railway transport; k-means clustering; 
deep learning; predicting passenger flows 
 

I. INTRODUCTION 
n the context of accelerating urbanization, rail transit has 
emerged as a pivotal component of the urban 

transportation infrastructure, assuming a predominant role in 
facilitating passenger mobility. The short-time passenger 
flow of urban rail transit is influenced by a multitude of 
factors, including time, space, holidays, and others, resulting 
in significant volatility and spatial and temporal complexity. 
Given the frequent fluctuations in passenger flow within 
urban rail transit systems, it is imperative to accurately 
capture the dynamic changes in passenger flow over brief 
periods, which is essential for supporting traffic scheduling 
and emergency response. Traditional time series forecasting 
methods are inadequate for accurately capturing the spatial 
and temporal dynamics of passenger flow. Consequently, the 
central objective of this study is to explore effective 
methodologies for integrating temporal and spatial 
characteristics within the rail transit system through the 
application of deep learning techniques. This endeavor aims 
to formulate a passenger flow prediction model that can 
comprehensively address the multifaceted influences of 
various sources, thereby enhancing the accuracy and 
generalizability of predictions.  

An accurate analysis of passenger flow features of urban 
rail transit is fundamental to the construction of accurate 
passenger flow prediction models. Numerous results have 
emerged from related research. In a study by  L. X. Si et al. 
[1], the authors examined the spatial distribution of the 
occupational and residential population in Hangzhou, as well 
as the spatial and temporal characteristics of subway 
commuting data. This analysis was based on the degree of 
occupational and residential spatial matching, as determined 
by cell phone signaling data from China Mobile. The findings 
led to preliminary conclusions regarding the reasonable 
degree of spatial and temporal features of occupational and 
residential spatial matching, as well as the spatial and 
temporal features of subway commuting in Hangzhou. In a 
related study, Y. S. Jiang et al. [2] proposed an acceptable site 
classification method based on the k-means++ algorithm 
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clustering site public features to cluster the passenger flow of 
each site. They established a fitting equation between the 
results of the passenger flow clustering and the 
multi-dimensional parameters of land use features and 
calculated to obtain the public features of the traffic flow of 
the sites in five broad categories. Z. J. Zhu et al. [3] analyzed 
the passenger flow distribution characteristics of rail transit 
origins and destinations (OD) by using the drift power law 
distribution model. They then used the community discovery 
method based on the Louvain algorithm to divide the rail 
transit network into different community structures. This 
analysis revealed the spatial correlation between different 
stations from the perspective of OD ridership. 

The theoretical methods currently employed in rail 
passenger flow prediction research can be broadly 
categorized into three distinct classes. 

Concerning prediction methods based on mathematical 
and statistical models, this approach is widely employed as a 
conventional classical passenger flow prediction method due 
to its robust theoretical foundation. J. Xiong et al. [4] 
proposed a method based on the Kalman filtering principle 
and gray correlation analysis to realize the short-term 
prediction of passenger flow and carried out the validity test 
of the prediction method. C. Q. Ma et al. [5] have proposed 
a differential integration moving average autoregressive 
model to predict short-term passenger flow for the entire 
network under various time granularities. G. Y. Zhang et al. 
[6] developed a research approach based on an enhanced 
ARIMA model for the prediction of short-duration passenger 
flow in urban rail transit, which can predict the amount of 
delay generated by the dependent variable, the lagged value, 
and the current value of the random error generated. 

The advent of artificial intelligence has precipitated the 
advancement of intelligent algorithms for conventional 
machine learning predictive models. These models have been 
further developed to capture non-linear relationships and 
interaction effects between features in data with greater 
flexibility than mathematical-statistical models. With respect 
to predictive methods based on traditional machine learning, 
L. H. Li et al. [7] developed a short-term passenger flow 
prediction model based on the random forest regression 
algorithm, incorporating factors such as departure date and 
operation time. They evaluated the importance of passenger 
flow influencing factors by combining the OOB residual 
mean square. S. S. Liu et al. [8] proposed a least squares 
support vector machine (LSSVM) based on the optimization 
parameter of the Improved Particle Swarm Optimization 
Algorithm (IPSO) to address the passenger flow fluctuations 
during complex holidays and achieve sparsification of model 
solutions. J. Jin et al. [9] analyzed the spatio-temporal 
complexity characteristics and employed a backpropagation 
(BP) neural network to predict the zone passenger flow. This 
prediction was based on the inbound and outbound flows of 
the first three consecutive periods of the urban rail transit and 
the zone passenger flow data of the next period. 

In the context of the proliferation of traffic data and the 
advent of advanced deep learning algorithms, time series 
prediction models have emerged as a prevalent approach for 
extracting temporal correlations in data to address traffic 
prediction challenges. In the domain of passenger flow 
forecasting, the utilization of deep learning methodologies 

for the extraction of features from passenger flow time series 
has been a subject of considerable research interest. Q. 
Ouyang et al. [10] have developed a historical LSTM model 
for passenger flow prediction at bus stops. This model is 
founded on the feature extraction of an Xgboost model, the 
encoding of historical data, the encoding of real-time data, 
and the decoding of a multilayer neural network. The LSTM 
model for real-time data has been employed for passenger 
flow prediction at bus stops. J. Li et al. [11] developed a 
high-speed railroad passenger flow prediction model based 
on LSTM, and the results indicated that the number of hidden 
units, neurons, and input step size have a significant impact 
on the accuracy of passenger flow prediction. T.D. Sajanraj et 
al. [12] proposed a methodology that employs a long 
short-term memory (LSTM) algorithm to circumvent the 
limitations of a station-specific model in conducting a global 
model search for all stations. In their study, C. Y. Lin et al. 
[13] examined the spatial correlation of subway stations 
within a subway line and the temporal correlation of time 
series in passenger flow prediction. They developed a 
long-short-term memory (LSTM) model applicable to the 
prediction of a single subway station. This model predicted 
subway passenger flow based on the land use around the 
subway station. 

The majority of extant studies exclusively consider time 
series data, a methodological approach that falls short of 
meeting the demand for accurate prediction of passenger 
flow. These studies also tend to overlook the existence of rich 
spatial features in traffic data. Consequently, some scholars 
have introduced convolutional networks to assist the model 
in extracting spatial information. In their seminal work, J. L. 
Zhang et al. [14] proposed Conv-GCN, a pioneering deep 
learning architecture that fuses graph convolutional networks 
(GCN) and three-dimensional convolutional neural networks 
(3D CNN). This innovative framework not only handles three 
inflow and outflow modes (near-term, daily, and weekly) but 
also captures the spatio-temporal correlation and topological 
information of the entire network, which is then deeply fused. 

In light of the growing body of research examining the 
factors influencing passenger flow characteristics, scholars 
have increasingly combined the time series model and a 
convolutional network to integrate the temporal and spatial 
dimensions of passenger flow in passenger flow prediction. 
This integration has been shown to enhance prediction 
accuracy. In the context of prediction based on combinatorial 
models, B. X. Cao et al. [15] have proposed a CNN-LSTM 
model that integrates built environment indicators with 
historical passenger flow and key built environment 
indicators as input variables to facilitate precise short-term 
passenger flow prediction. X. L. Ma et al. [16] have proposed 
a convolutional neural network (CNN)-based abstract traffic 
feature extraction and a network-wide traffic speed 
prediction method that learns the traffic as an image and can 
predict the traffic speed of large-scale and network-wide 
traffic with high accuracy. J. Liu et al. [17] have constructed a 
subway passenger flow prediction model based on 
ISSA-CNN-LSTM by using ISSA to optimize the 
hyperparameters of the CNN-LSTM model based on the 
analysis of the correlation between different types of subway 
stations passenger flow and weather factors. 

In summary, some extant studies have given insufficient 
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consideration to the variability of passenger flow features and 
spatial distribution among different subway stations, making 
it difficult for the models to capture local flow patterns at the 
station level in a fine-grained manner. Furthermore, 
conventional time-series prediction methodologies 
predominantly emphasize the statistical characteristics of the 
time series itself, which poses significant challenges in fully 
integrating the intricate spatial dependencies. These 
methodologies frequently necessitate extensive data 
preprocessing and model training, consequently leading to a 
substantial increase in the time complexity of the model when 
dealing with large-scale site data. In the context of model 
construction, a single convolutional neural network can 
capture spatially localized features; however, it is deficient in 
its ability to portray in-depth temporal dynamics. Conversely, 
traditional LSTM models and their variants encounter 
limitations in their capacity to capture spatial information, 
which hinders their efficacy in dealing with complex 
spatio-temporal dependencies. Furthermore, the efficacy of 
several prediction models is constrained in the context of 
non-linear variation, extended time dependence, and 
fine-grained time prediction. This limitation impedes the 
ability to accurately predict short-term passenger flow, 
hindering adequate support for metro scheduling and 
emergency management protocols. 

In order to address these issues, a deep learning prediction 
model has been constructed based on the combination of 
CNN and Bi-LSTM. This model mines the passenger flow 
characteristics of different types of stations and captures the 
changing law of short-term passenger flow of rail 
transportation more accurately through the fusion of spatial 
and temporal features. The purpose of this is to improve the 
accuracy and applicability of the prediction model. Grouping 
sites based on similarity through clustering effectively 
reduces the heterogeneity of the data and improves the ability 
to recognize local patterns, which in turn compensates for the 
lack of spatial heterogeneity mining ability of traditional 
models. Combining the advantages of CNN for spatial 
feature extraction and BiLSTM for in-depth modeling of 
bidirectional temporal dependencies significantly improves 
the spatial and temporal feature fusion capability for 
short-term passenger flow prediction, overcoming the 
limitations of traditional prediction models in modeling 
spatial and temporal dependency structures. The integrated 
prediction model has been demonstrated to be more effective 
in capturing the fluctuating characteristics of short-duration 
passenger flows.  

The model integrates the structural framework of the rail 
transit station network with the temporal progression of 
passenger flow, thereby enabling the provision of relatively 
precise passenger flow prediction outcomes within a concise 
timeframe under complex spatial and temporal contexts. This 
integration signifies the model’s substantial applicability and 
practical relevance. 

II. DESCRIPTION OF THE ISSUE 
The research for short-term inbound and outbound 

passenger flow prediction is essentially a passenger flow 
time-series prediction problem. That is to say, based on 
historical passenger flow data past{ ( ) }X t t T∈∣ , the passenger 

flow at any station is  at a future point in time t t+ ∆ ( t∆ /min) 
is predicted by analyzing the multi-source factors affecting 
the passenger flow. These factors may include, for example, 
the spatial distribution characteristics of the station and 
weather conditions at the regional scale.   

The urban rail transit network is modeled as a 
graph ( , )G S E= , where the set of stations of the rail transit 
network 1 2{ , , , }NS s s s= … , the number of stations is N ;  the 
set of edges between stations E S S⊆ ⊗  is described as the 
spatial connectivity between stations. 

Furthermore, a correlation matrix A  is constructed, taking 
into account physical distance, historical passenger flow 
correlation, and spatial correlation. The application of 
artificial intelligence ( ijA ) facilitates the determination of 

connection strength and similarity between  is  and js . 
In light of the aforementioned prediction of future 

passenger flow, the construction of a deep learning prediction 
model f  has been undertaken. The subsequent analysis will 
seek to ascertain the model’s optimal prediction performance. 

 { } ( )
1 2ˆ ˆ ˆ, ,..., ( , ( ), )t t t T EAx x x f X G A Wθ

+ + + =  (1) 

Where, ˆt kx +  is the predicted value of the model at time 
t t+ ∆ ( [1, ]t T∆ ∈ ); EAW  denotes data related to external 
factors; and θ  is a model parameter. 

Due to the temporal and spatial distribution characteristics 
of the passenger flow into the station, the model outputs the 
predicted value 1:

ˆ
t t T+ +X , which is a two-dimensional matrix 

that responds to the spatial and temporal characteristics of the 
passenger flow as follows 
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To ensure that the results of the output of the model  f  are 
as accurate as possible, the deviation between 
{ }1 2ˆ ˆ ˆ, ,...,t t t Tx x x+ + +  and the actual value of the future 

passenger flow { }1 2, ,...,t t t Tx x x+ + +′ ′ ′  should be minimized 
under some error metric. Construct an appropriate loss 
function ( , )⋅ ⋅ to minimize the loss  as follows  

 
future

ˆ( , )
t T

Y Y
∈

= ∑   (3) 

To further represent the model prediction accuracy, based 
on the literature [25], the model loss function is constructed 
using the mean square error (MSE) as follows 

 2
MSE , ,

1 1

1( , )ˆ ( )ˆN T

i t i t
i t

Y Y Y Y
N T = =

′

′
== ∑∑ −

×
  (4) 

To summarize, the problem of predicting passenger flow is 
essentially solved by training a model f  with historical data 

past{ ( ) }X t t T∈∣  and appropriate exogenous variables 

past{ ( ) }iW t t T∈∣ and applying it to make predictions at future 
points in time futuret T∈ . 
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III.  RESEARCH METHODS 

A. Site Segmentation Based On K-means 

A comparative analysis of passenger flow features across 
distinct metro stations is conducted, with particular attention 
to the impact of POIs on these features. The utilization of 
clustering and synthesis techniques to identify commonalities 
in passenger flow patterns enables the grouping of stations 
with similar features into distinct categories. This approach 
facilitates the classification and coding of stations with 
significant variations in passenger flow features, thereby 
enhancing the accuracy of prediction models. 

Given a collection of light rail stations, where N
i

Ns ×∈  

denotes the thi  station data point. To ensure the cohesion of 
clusters, in each iteration  is  is assigned to the cluster center 

{ }: , 1, ,j i i j i lQ s s s l Kµ µ= − ≤ − ∀ = … that is closest to it. 

The cluster center is updated after each allocation 
1/

i jQjj is
Q sµ

∈
= Σ , which is the average of all data points in 

the current cluster. The instant algorithm converges when 
( 1) ( ) 1, 2, ,t t
j j j Kµ µ ε+ − < ∀ = … . 

To circumvent an excessive degree of randomization in the 
selection of cluster centers, the k-means++ algorithm is 
employed to enhance the initialization method. Specifically, 
an arbitrary point is initially selected as the first cluster center, 
and the subsequent cluster centers are then selected based on 
the probability distribution, which is determined by the 
distance ( )D s  between the data points and the selected 
cluster centers. The initialized probability distribution 
operation ( )P s  is as follows 

 
2

2

( )( )
( )

s N

D sP s
D s

′∈

=
′∑

 (5) 

The principle underlying this methodology is that the 
maximum contour coefficient indicates the optimal 
clustering effect. The contour coefficient operation ( )S i  for 
any point i  is as follows 

 

 ( ) ( ) ( )
( ) ( ){ },

b i a i
S i

max a i b i
−

=  (6) 

Where, ( )a i  is the distance of the vector i  to other points in 

the same cluster; ( )b i  is the mean value of the distance of 
the vector i  to the points contained in the nearest 
neighboring cluster. The mean value of the contour 
coefficient of all data points is taken as an assessment of the 
overall clustering effect. 

To achieve the minimum value of the optimized objective 
function, the data is divided into K  clusters 1 2, , , KQ Q Q…  
as follows 

 
1 2

2

, , , 1
min

K j

K

j
j x C

x
µ µ µ

µ
… = ∈

∑ ∑ −  (7) 

Where, jµ  is the center of the cluster jQ ; jx µ−   
represents the Euclidean distance between the data points and 
the cluster center. By iteratively updating the cluster 
assignments and cluster centers, the algorithm continuously 
approaches this optimal solution, which is the optimal 
number of clusters. 

B.  Combinatorial Predictive Modeling and Feature 
Engineering Construction 

The integration of convolutional neural networks (CNNs) 
and bidirectional long short-term memory (BiLSTMs) has 
been demonstrated to be a highly effective approach for 
addressing the challenges posed by spatio-temporal features 
and long-term temporal dependencies, respectively.  

This integration has enabled the construction of a 
combined prediction model that exhibits both efficiency and 
accuracy in predicting passenger flow. The structure of the 
predictive portfolio model is shown in Fig. 1. 

To more systematically extract the value of the data and 
construct a high-quality feature set to significantly improve 
the accuracy and reliability of the passenger flow prediction 
model, the following steps should be taken to construct a 
feature engineering that can be better adapted to the 
short-time passenger flow prediction model: 
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Fig. 1. Structure of the predictive portfolio model 
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 - The creation of a feature engineering process to identify 
the key information dimensions in passenger flow forecasting. 
The identification and extraction of the base period hourly 
features. The hourly features of the base period are identified 
and extracted, and the “hourly” features are derived from the 
time index. 

- The feature construction is engineered by applying the 
derivation technique to derive six time step rolling mean 
features based on normalized historical passenger flow to 
capture the short-term smoothing trend. Derived differential 
features with six time steps characterize the short-term rate of 
change and volatility of passenger flow. 

Feature Reduction And Fusion

Feature Extraction 
Time Series Model Influencing Factor

 Daily 
Cycle

Historical 
Statistics

Historical 
Shift

Station Type
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TimeSlot Category

Specific Time Slot 

Feature Construction
Time Series Derivative

Time 
Offset

Feature 
Intersection Rollup Temporal 

Feature

Factors Affecting Processing

Select a subset of features Dimensionality 
Reduction 

Final Feature Matrix

Serialization Model Input

 
Fig. 2. Theoretical system for constructing passenger flow features 
engineering 

Encoding multi-dimensional features, including different 
time slices of the time axis, multiple features, and their 
correlations. Suppose the input feature matrix X  has three 
dimensions N T F× × , the number of features at each time 
step is F . The model input is considered a three-dimensional 
tensor T N F× ×∈X . Coding the input matrix as a 
two-dimensional matrix 

'' N F×∈X , where feature fusion 
'F  obtains the final feature dimension. 
Regarding the time series coding, a time granularity of t  

(min) is selected on the time axis, and the forecasting target is 
designated as the future ( 10t∆ = ) short-term passenger flow. 
The features of the time dimension can be expressed as 

1 2{ , ,..., }Tt t t=T , where it  is a time slice indicating the 
corresponding time feature it ∈  (e.g., hour, date, holiday 
identifier, etc.). 

Calculate average passenger flow ,
m
r sx  based on 

time-series data, taking into account departure station types 
rξ  and arrival station types sξ  . The category of the fusion 

features of passenger flow space and time obtained by cluster 
analysis is denoted as ,

m
r sC . The set of passenger flow data 

corresponding to each site in the spatial dimension is 
represented by 

1 2 1
{ , , , , }

N Ns s s sx x x x
−

= …N . The features of 

each site include, but are not limited to, the actual number of 
passengers at each site at different time steps, the date, 
whether it is a holiday, special events, etc. Let the eigenvector 

of the thi site be, for the moment t . 
The input space-time feature matrix 

it,sX  can be expressed 

as follows 

 ( )
{ }
{ }
{ }

,

1, 2, , ,

1, 2, , ,

1, 2, ,
i

f
it s

t T

C s N

f F

 ∈ …
  = ∈ … 
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it,sX  (8) 

Where, ( )
, i

f
t sC  denotes the thf  feature at t , is . 

The term ′X  is defined as the input matrix of the 
combined forecasting model, which is the model used to 
predict future passenger flows as follows 
 ( )1 52, , , ,ξ ξ ξ′ = 

TX X  (9) 
Where, X  is the passenger flow matrix for each time 
segment; 51 2, , ,ξ ξ ξ  is each influencing factor. The urban 
rail passenger flow data are aggregated at regular time 
intervals, resulting in the formation of two-dimensional data 
comprising time steps and the number of features. Relevant 
features are shown in Table I. 

TABLE I  
Factors Affecting Rail Ridership 

variant factor data range 

1ξ  entry/exit times 06:00—23:00 

2ξ  days of the week 1,2,3,4,5,6,7 

3ξ  holiday yes-1; no-0 

4ξ  high/peak conditions 

morning peak-0;  
morning flat peak-1; 
evening peak-2;  
evening flat peak-3 

5ξ  type of site depending on the results of site 
cluster 0,1,… 

C. Spatial feature extraction based on DC-CNN 

The spatial features of subway passenger flow include not 
only the geographical relationship between each station but 
also the spatial distribution pattern of passenger flow in 
different periods and different scenes. To accurately extract 
the spatial features of multi-scene passenger flow, a parallel 
processing Dual-Channel Convolutional Neural Network 
(DC-CNN) has been proposed. This network is designed to 
extract and integrate different types of spatial information, 
thereby obtaining a richer and multilevel representation of 
spatial features. 

 As can be seen in Fig. 3, the urban rail transit system is 
divided into grid cells based on the relative positions of the 
stations on the plan, and the spatial topological relationships 
of the stations are preserved. The pixel value of each cell is 
defined as the passenger flow of the corresponding station. 
This data is then constructed into a two-dimensional image, 
which is referred to as a spatio-temporal map of the passenger 
flow of urban rail transit stations. 

The two-dimensional image under consideration is to be 
represented as a vector H W CX × ×∈ , where H  is the height 
of the image, W  is the width of the image, and C  is the 
number of channels of the image. The image is to be used in 
the construction of a convolutional neural network with 
multiple channel inputs 0H W C× ×  and outputs 

1H W C× × . 
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Fig. 3. Diagram of CNN operation 

A convolutional layer is constructed to extract local 
features. The output value of the convolutional result ( ), ,i j kY  

in the position ( ),i j  and channel c  is operated as indicated 
in the following equation. 

 ( ) ( )

1 1 1

, , ,, , , ,0 0 0

M N C

m n c k ki j c i m j n cm n c
Y W X b

− − −

+ +
= = =

= ∑ ∑ ∑ ⋅ +  (10) 

Where, ( ), ,i j cX  is the pixel value of the channel c  at the 

position ( ),i j  in the input image; , , ,m n c kW  is the weight of 
the convolution kernel of size M N× , where m  and n  is 
the index used to traverse the height and width of the 
convolution kernel; k  is the output channel index; kb  is the 
bias term of the convolution kernel. 

In light of the necessity to incorporate non-linear features, 
while concurrently seeking to circumvent the pitfalls of 
overfitting, the implementation of the ReLU activation 
function ( )ReLU

f x  proves instrumental. This function is 
deployed to process the linear pre-activation feature maps 
derived from the convolution kernel, ensuring a systematic 
and methodical approach to model development. 

 ( )ReLU

, 0
0,
x x

f x
otherwise

>
= 


 (11) 

Subsequently, the value ( ), ,i j kZ  of the position in the 

position of ( ), ,i j k in feature map can be obtained following 
activation function processing. 

 ( ) ( )( ) ( ){ }Relu, , , , , ,max 0,i j k i j k i j kZ f Y Y= =  (12) 

The maximum pooling method is employed to construct 
the pooling layer, which serves to reduce the dimensionality 
of the feature map while retaining the most salient features, 
thus reducing the computational burden. Pooling outputs the 
downscaled values ( )

'
pool , ,i j kZ  as  

 ( ) { }{ }'

pool , , 0, 1 0, 1
max max , ,i j k m A n B

Z i m j n k
= − = −

= + +  (13) 

Where: A B×  is the size of the pooling window; ,i j  is the 
index of the output feature map in height and width 
directions. 

Subsequently, the magnitude pool poolH W×  of the feature 
map post-pooling is determined as follows 

 pool 2

2 ( 1)H p M s s aH
s

+ − + − +
=  (14) 

 pool 2

2 ( 1)W p N s s bW
s

+ − + − +
=  (15) 

Where:  s  denotes the step size in the convolution operation; 
p  denotes padding. The padding technique is introduced in 

response to the loss of data edge information and the 
limitation of CNN applications due to the reduction of output 
data size that accompanies the increase in the number of 
convolutional layers. 

The feature map poolΖ , which is obtained after multiple 

convolutions and pooling, is spread into a vector  dz ∈ . 
This vector is then linearly transformed to output a vector jo  
by a fully connected layer as follows 

 ,
1

d

j i j i j
i

o w z b
=

= ∑ × +  (16) 

Where,  ,i jw  is the weight of the fully connected layer;  jb is 
the bias term; pool pool poold H W C= × × . 

D. Temporal feature extraction based on Bi-LSTM 
In essence, the majority of passenger trips are typically 

oriented around commuting between residential and 
occupational locations, exhibiting a high degree of regularity. 
Consequently, the temporal distribution of subway passenger 
flow characteristically exhibits unevenness. In consideration 
of the periodicity and cyclicity of time, the prediction results 
are contingent not only on historical data but also on future 
trends. To address this, the Bi-LSTM model is employed to 
capture the time-dependent characteristics in both directions. 
Bi-LSTM is an extended version of LSTM, consisting of 
forward and inverse LSTM units. Forward and reverse 
LSTMs are computed from the starting and ending points of 
the time series, respectively, and the outputs of both are 
combined to measure changes in urban rail passenger flow. 
The procedure is as follows 
 forward 1LSTM ( , )t t th x h −=

 

 (17) 

 backward 1LSTM ( )t t th x h +=
 

，  (18) 

 [ , ]t t th h h=
 

 (19) 

The final hidden state Th  of the Bi-LSTM is connected to 
a connected layer. The output of this layer is the predicted 
value of passenger traffic at a future moment t . The 
operation of this layer is as follows 

 ˆ h T hy W h b= ⋅ +  (20) 
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Fig. 4. Internal structure of the LSTM “neuron” at time  t  

The interior of each LSTM cell is illustrated in Fig. 4. The 
operations of the LSTM forget gate, input gate, and output 
gate are as follows 

 1( [ , ] )t f t t ff W h x bσ −= +  (21) 

Where, tf  is the activation value of the forgetting gate; fW  

is the weight matrix; fb  is the bias vector; σ  is the sigmoid 

activation function, ( ) -

1
1 tt

e
σ =

+
. 

 1( [ , ] )t i t t ii W h x bσ −= ⋅ +  (22) 

 1tanh( [ , ] )t C t t CC W h x b−= ⋅ +  (23) 

 1t t t t tC f C i C−= ∗ + ∗   (24) 
Where, ti  is the activation value of the input gate; iW , CW  is 

the weight matrix; ib , Cb  is the bias vector; tC  is the 
candidate memory cell state; tx  represents the vector of 
inputs; tC  is the updated cell state; the activation function 

( )tanh
x x

x x

e ex
e e

−

−

−
=

+
. 

 ( )1[ , ]t o t t oo W h x bσ −= ⋅ +  (25) 

 ( )tanht t th o C= ⋅  (26) 
Where, to  is the activation value of the output gate; oW  is 
the weight matrix; ob  is the bias vector; th  represents the 
hidden state vector. 

The spatial features extracted in the CNN module are then 
fed into the LSTM part, which processes the dependencies in 
the time dimension and captures the time series features of 
the passenger flow. At each temporal interval t , the hidden 
state th  of the LSTM model is updated by the following 
inputs: (1) the spatial features ;  (2) the hidden state 1th −  from 
the previous moment. The update process is defined as 
follows 
 ,: 1LSTM( , )t t th X h −=  (27) 

Where, ,:tX denotes the convolutional output features for all 
sites at the time step moment t . 

E.  Preprocessing of data 
E.1. Data cleaning 

To ensure the quality of data, missing values, outliers, and 
duplicates are treated in this paper. The interpolation method 
is employed to address the presence of missing values. If the 
missing values cannot be reasonably filled, the obviously 
unreasonable data points are deleted. 

To identify outliers, the box-and-line plot method is 

introduced for statistical analysis. The upper and lower 
bounds are calculated based on the interquartile range (IQR), 
which is defined as follows 
 upper 3 1.5IQR Q IQR= + ×  (28) 

 e 1low r 1.5IQR Q IQR−= ×  (29) 
Where, 1Q  and 3Q  are the 25th and 75th percentiles of the 
data, 3 1IQR Q Q= − . Each data point xIQR  is identified. If  
it satisfies either condition lowerxIQR IQR<  or 

upperxIQR IQR> , then an exception exists for that data point. 
In this paper, we employ the average value method to 

address the outliers. The anomalous data is to be presented on 
the day i  of the cycle m . For each station is , the inbound 
passenger flow during the period [ , ]t t ε+  is denoted as 

0status = , and the outbound passenger flow is denoted as 
1status = . Subsequently, the mean value of the concurrent 

passenger flow on the same day of the cycle before and after 
the cycle in which the outlier is situated is designated as the 
outcome of the repair as follows 

 ( )

1, , 1,
[ , ], [ , ], [ , ],,

[ , ], 3
i i i

i

m status m status m status
t t s t t s t t sm status

t t s

x x x
x ε ε ε

ε

− +
+ + +

+

+ +
=  (30) 

E.2. Standardization of data 

To enhance the training of the model, the data undergoes 
normalization, resulting in processed data that possesses a 
mean of 0 and a standard deviation of 1. In this paper, the 
Z-score standardization is introduced to process each of the 
original sample data ,i jx , and the operation  ,i jx  of the 
standardized data is as follows 

 ,
1

1 N

j i j
i

x
N

µ
=

= ∑  (31) 

 ( )2
,

1

1 N

j i j j
i

x
N

σ µ
=

= −∑  (32) 

 

,
,

i j
i j

x
x

µ
σ
−

=  (33) 

Where, N is the sample size; jµ  is the mean; jσ  is the 
standard deviation. 

F. Indicators for evaluation 
Following extant literature concerning the evaluation of 

performance metrics for passenger flow prediction models 
[18], [19], [20], this paper selects the metrics most frequently 
employed in traffic flow prediction, including Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), and 
Mean Absolute Percentage Error (MAPE). The following 
formulas calculate the values of these metrics. 

 

2
RMSE

1

1 ( )i i
i

N

f y
N

y
=

= −∑  (34) 

 

MAE
1

1
i

N

i
i

f y
N

y
=

= −∑  (35) 

 


MAPE
1

1 i i

i

N

i

y y
f

yN =

−
= ∑  (36) 

Where, iy  is the actual value; iy  is the predicted value. 
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TABLE II 
Partial Historical Traffic Data Set 

IV. EXAMPLE ANALYSIS 

A. Data set 

To train and validate the performance of the model and 
evaluate the predictive effect, using the real passenger flow 
dataset of urban rail transit, for example validation in this 
paper. The dataset is from the data of the automatic fare 
collection (AFC, Automatic Fare Collection) system of the 
Hangzhou Metro subway, and the period is from January 1 to 
January 28, 2019. The data includes the time of passengers 
entering and leaving the station, station information, etc. The 
original data format is shown in Table II. 

The dataset is divided in order to prevent the dissemination 
of information during the training process and to guarantee 
the impartiality of the test results. The initial two weeks are 
allocated for the training set, the third week is designated for 
the validation set, and the remaining days are apportioned for 
the test set. 

B. Analysis of passenger flow feature 
A thorough examination of historical passenger flow data 

is imperative to elucidate the characteristics of passenger 
flow fluctuations and their potential influencing factors. 
Furthermore, a comprehensive analysis of the factors that 
may affect the characteristics of passenger flow fluctuations 
is necessary. The original dataset is first subjected to a series 
of cleansing and preprocessing steps, after which outliers 
remain in the processed data. Because reliance on the 
box-and-line plot method may result in the exclusion of 
inevitable fluctuations in passenger flow that are, in fact, 
realistic possibilities. However, these reasonable outliers 
must be retained to reflect the dynamic change characteristics 
of passenger flow more comprehensively when identifying 
passenger flow peaks, special events, extreme weather, etc. 
Therefore, the cleaning and retention of outliers must be 
balanced. 

 
Fig. 5. Elbow method for cluster number determination 

 
The categorization of sites is achieved through the 

implementation of the k-means clustering algorithm, a 
statistical method that involves the combination of data 
pertaining to historical passenger flow, geographic latitude 
and longitude of the site, and surrounding land use.  

The final number of clusters is also influenced by the 
outcomes of the elbow method, a multifaceted approach 
designed to guarantee the rationality and stability of value 
selection k , as illustrated in Fig. 5. 

By calculating the contour coefficients at different values 
k , the highest contour coefficient of approximately 0.375 is 
reached 4k = . At this point, the tightness of data within 
clusters and the separation of data between clusters reach an 
optimal balance. The site clustering results are shown in Fig. 
6. 

 
Fig. 6. Results of the k-means clustering of sites 

As demonstrated in Fig. 6, the urban rail transit stations 
have been classified into four distinct types, designated as 
cluster 0, 1, 2, and 3, according to the results of the k-means 
clustering analysis. These categories represent the archetypal 
samples obtained through cluster analysis. 

The Zhonghe North Road Station has been selected as a 
representative business office station within cluster 0. It is 
situated in the primary business district of Hangzhou City, 
near numerous office and commercial buildings, 
experiencing a high volume of passenger traffic with 
discernible morning and evening rush hours. The passenger 
flow in and out of the station fluctuates significantly, 
exhibiting clear peaks and valleys that reflect the observable 
commuting patterns. The passenger flow on weekdays 
exhibits a high level of variability, and the fluctuations in 
passenger flow demonstrate a strong time dependence and 
regularity. Given its status as a business district station, the 
passenger flow pattern necessitates precise short-term 
forecasting and possesses substantial representative value. 

For cluster 1, the station of the University of Traditional 
Chinese Medicine is selected as a representative of typical 
university and research park stations. The university ’ s 
location in the vicinity of prominent academic institutions 

time lineID stationID deviceID status userID payType 
2019-01-02 

00:00:00 
C 39 1824 0 B958313f7b5b847d32120b6fa97587b3a 1 

2019-01-02 
00:00:01 

B 8 384 0 Bdd932cd325d8e6021e71d0f27a149073 1 

2019-01-02 
00:00:03 

B 2 74 0 B32a6c9e89459cf3afac6956d0ba2349f 1 

… … … … … … … 
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and scientific research facilities contributes to a stable yet 
less volatile flow of passengers, influenced by the rhythms of 
teaching and research activities. The inbound and outbound 
passenger flows exhibit stability, characterized by minor 
fluctuations, slow intra-day variations, and discernible 
intra-week rhythms. The impact of holidays during the 
semester is significant, and seasonal patterns are prominent. 
It is considered a representative of a low volatility, high 
regularity type. 

The station is situated within a predominantly residential 
neighborhood, interspersed with limited commercial and 
living facilities. The regional pace of life influences its 
passenger flow. For these reasons, the Nanxing Bridge 
Station has been selected as the representative of Cluster 2, 
which is a typical residential area and mixed functional area 
station. The inbound peak is more pronounced, reflecting the 
travel patterns of residents as they commute to and from work 
during the morning and evening rush hours. The fluctuation 
of outbound passenger flow is relatively smooth, which 
makes it suitable for the study of passenger flow prediction of 
life service stations. 

Fengqi Road Station sits in central Hangzhou. It connects 
subway lines and many bus routes, which makes it a busy and 
complex hub. It serves as a key downtown interchange 
station. Its inbound and outbound passenger flow fluctuates 
wildly and is significantly affected by commercial activities, 
holidays, urban activities, and other factors. The peak-hour 
passenger flow is highly concentrated and changes rapidly, 
and the difference in passenger flow between different days is 
noticeable. The model must consider non-linear and 
unexpected factors in passenger flow predictions. It works 
well as a representative of complex models. 

Stations in each cluster have similarities in passenger flow 
characteristics (e.g., fluctuation amplitude, daily change 
pattern, the ratio of inbound and outbound stations, etc.), so 
these stations are selected as representatives of each cluster, 
which can better reflect the typical features of the stations in 
that category. These stations have relatively complete and 
high-quality data, with no obvious missing data or anomalies, 
which can ensure the reliability and consistency of the data in 
the analysis and modeling process. 

TABLE III  
Results of the k-means Clustering of Sites 

cluster 0 cluster 1 cluster 2 cluster 3 

Zhonghe 

North Road 

Station  

Chinese Medicine 

University Station  

Nanxing 

Bridge 

Station  

Fengqi Road 

Station 

Xintang 

Station 

Zhenning Road 

Station 

Renmin Road 

Station 

Longxiang 

Bridge Station 

Xinfeng 

Station 
Xixing Station 

Wenze Road 

Station 

Anding Road 

Station 

… … … … 

In order to evaluate the prediction performance of the 
model for different types of stations, according to the results 
of station clustering, take the period 6:00-23:00 to analyze 
the time sequence characteristics of the passenger flow of 
different categories of stations on an ordinary weekday with a 
time granularity of 10min, as shown in Figs. 9. 

 
（a）cluster 0 

 
（b）cluster 1 

 
（c）cluster 2 

 
（d）cluster 3 

Fig. 7. Historical passenger flow timing features for different types 
of stations 

As illustrated in Fig. 9, the historical passenger flow curves 
of different station types demonstrate that they exhibit 
distinct passenger flow dynamics. Passenger flows at all 
types of stations exhibit cyclical fluctuations, particularly 
during the morning and evening peak hours (approximately 
6:00-9:00 a.m. and 5:00-8:00 p.m.). The trends of inbound 
and outbound passenger flows are generally similar; however, 
certain stations exhibit slightly staggered periods of high and 
low passenger traffic, which is indicative of the spatial and 
temporal features of passenger flows. Accordingly, to predict 
the short-term inbound passenger flow of urban rail transit, it 
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is necessary to train the model according to the clusters to 
which the stations belong separately. Because the clusters 
exhibit different fluctuation patterns, the prediction accuracy 
will be improved. 

C. Experimental settings 
In this paper, the solution of deep learning algorithms is 

based on the PyTorch framework, which is implemented on a 
Windows 11 64-bit operating system configured with the 
PyCharm 2021.3 (Community Edition) development 
environment. The GPU parallel computing architecture of the 
system is CUDA version 11.8, and the accompanying 
cuDNN version is 8.7.0. The models constructed in this paper 
are built using the Python 3.9 programming language and 
calling third-party libraries of Python, such as matplotlib, 
pandas, numpy, sklearn, and so on. 

The initial model parameters are such that each channel of 
the DC-CNN part extracts data through a one-dimensional 
convolutional operation. This convolutional layer contains 32 
convolutional kernels with a kernel size of 3. A padding 
method is used to maintain the output size. A ReLU 
activation function and a max pooling layer with a pooling 
window size of 2 back the convolutional layer. Additionally, 
a Dropout layer is employed, with the initial dropout rate set 
to 0.2. The BiLSTM part utilizes a two-layer LSTM network, 
with each layer comprising 128 hidden units. The 
batch_first=True setting is employed to accommodate the 
data dimensionality, and Dropout regularization is applied 
between layers, with an initial dropout rate set to 0.3. 

To capture longer-term periodicity or trends, set the time 
window size to (6,24) based on the 10-minute data time 
frequency. 

D. Analysis of predicted results 
D.1. Hyperparametric analysis 

According to the extant literature on the subject[21],[22], 
the judicious selection of step size is instrumental in ensuring 
that the model is capable of comprehensively capturing the 
time-varying patterns and periodic characteristics inherent in 
the passenger flow data. In turn, it enhances the model’s 
capacity to discern alterations in short-term flow. 
Furthermore, there are discrepancies in the dynamic 
fluctuations of passenger flow across different subway 
stations and over various periods. The selection of an 
appropriate input step size facilitates the model’s capacity to 
adapt to these distinct temporal patterns. During the 
hyperparameter tuning process, by systematically exploring 
the step-size parameter space, the model can be prevented 
from overfitting the data features of a specific historical 
window length, which helps to improve the applicability and 
stability of the model in the actual complex and changing 
environment. 

Since the input step size directly affects the model’s ability 
to learn time series patterns, it is the benchmark for all 
subsequent experiments. Therefore, experiments are 
designed to compare the prediction performance of different 
input steps of 30 minutes, 40 minutes, 50 minutes, 1 hour, 
and 2 hours, respectively, and to determine the optimal time 
window in combination with the location clustering results to 
avoid feature loss or noise interference due to an 
inappropriate period. 

 
Fig. 8. Comparison of evaluation metrics for different input step 
prediction results for each type of site 

As shown in Fig. 8, the utilization of RMSE, MAE, and 
MAPE as evaluation metrics has been demonstrated to reveal 
discrepancies in the performance of the prediction model 
across varying input steps. The sensitivity of the root mean 
square error (RMSE) and the mean absolute error (MAE) to 
variations in the input step size is found to be minimal, and a 
relatively smooth profile characterizes the resulting curve. 
The MAPE curve demonstrates significant fluctuations, 
suggesting that the input step size exerts a substantial 
influence on the model ’ s prediction accuracy. It can be 
concluded that as the MAPE value decreases, the model’s 
performance improves. 

Based on this, the historical passenger flow characteristics 
of each type of station, the impact of high and low peak hours 
on the station’s passenger flow, the commuting pattern, the 
nature of the surrounding land, as well as the changing 
pattern of the evaluation indices RMSE, MAE, MAPE and 
other factors are comprehensively considered, and the input 
step length of the cluster 0 and cluster 2 stations is 
determined to be 40 min; the input step length of the cluster 1 
station is 1 hour (60 min); the input step length of the cluster 
3 site is 50 min, and all subsequent experiments are based on 
this. 

The learning rate constitutes the fundamental 
hyperparameter of model training, exerting a direct influence 
on the convergence speed and stability of gradient descent. A 
substantial body of research has demonstrated that the 
selection of an optimal learning rate during the model 
training phase is conducive to enhancing the model ’ s 
predictive performance [23], [24]. To further study the 
impact of learning rate on the prediction performance of 
various types of sites, the changes in the prediction accuracy 
of the observed model when setting different learning rates 
(learning rate = 0.0001, 0.001, 0.005, 0.01) are used to 
determine the reasonable range quickly, which avoids the 
subsequent experiments wasting computational resources 
due to inappropriate learning rates and laying the foundation 
for the subsequent optimization of parameter combinations. 
Preliminary experimental findings indicate that RMSE and 
the MAE demonstrate minimal responsiveness to variations 
in the learning rate. Consequently, the emphasis is directed 
towards the examination of the change in MAPE, as 
illustrated in Fig. 9. 
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Fig. 9. Comparison of evaluation metrics for prediction results at 
different learning rate sizes for each type of site 

 
As demonstrated in Fig. 9, the MAPE of Clusters 0, 2, and 

3 exhibits a downward trend as the learning rate increases, 
which suggests that a higher learning rate facilitates the 
convergence of the model. Notably, Cluster 0 demonstrates a 
consistently low MAPE across all learning rates, indicating 
its superior stability and prediction accuracy. However, an 
elevated learning rate can adversely impact the prediction 
performance of Cluster 1, as evidenced by a substantial 
increase in MAPE at higher learning rates. This finding 
suggests that the model exhibits heightened sensitivity to the 
learning rate when predicting this particular type of site data. 
A critical evaluation of the relationship between convergence 
speed and prediction accuracy reveals that a learning rate of 
0.01 is more appropriate for Cluster0, Cluster2, and Cluster3. 
Conversely, a lower learning rate of 0.001 is employed for 
Cluster 1 to avert performance degradation and ensure model 
stability. 

To reduce the risk of underfitting and overfitting the model, 
to effectively shorten the training time of the subsequent 
experiments, and to ensure that the model finds the number of 
rounds in which the validation set error is stable during a 
reasonable training phase, epochs tuning experiments are 
designed, and the training curves are shown in Fig. 10. 

 
（a）cluster 0 

 
（b）cluster 1 

 
（c）cluster 2 

 
（d）cluster 3  

Fig. 10. Model loss curves for each type of site at different learning 
rates and epoch settings 
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As can be seen from Fig. 10, preliminary observations 
indicate that the curve graph meticulously documents both 
the training set loss (Train loss) and the validation set loss 
(Val loss). 

Furthermore, the loss function progressively converges to 
a steady state when epochs surpass 60, signifying that the 
model attains a stable performance level. This critical value 
can be regarded as the minimum epoch value required to 
adapt to the features of each type of site, maximizing the cost 
of training time under the premise of guaranteeing the 
performance of the model. 

Under the condition that the previous study significantly 
improves the initial prediction accuracy of the model, 
considering the existence of limited training data, to further 
improve the generalization ability of the model and avoid the 
risk of overfitting, the impact of the regularization parameter 
of Dropout Rate (DRR) on the performance of the model is 
investigated. For each type of site model that has been 
preliminarily optimized, the dropout rate of the CNN and 
Bi-LSTM modules is systematically adjusted using the grid 
search method to assess its impact on the prediction accuracy 
of the models. The parameters are set within the range of 
0.1-0.5, in which the two-stage method of rough searching 
every 0.1 and fine searching every 0.05 is introduced. 
Moreover, the early-stopping strategy is adopted to facilitate 
the search for an optimal solution that balances the searching 
efficiency and searching accuracy. As demonstrated in Fig. 
16, the scatter plot illustrates the prediction evaluation 
indexes for various dropout combinations categorized by site 
type. 

 
（a）cluster 0 

 
（b）cluster 1 

 
（c）cluster 2 

 
（d）cluster 3 

Fig. 11. Comparison of the predictive performance of different 
dropout combinations for various types of sites 

As demonstrated by Fig. 11, the MAPE values of the 
prediction results exhibit substantial variations across 
different dropout combinations, exhibiting an overall positive 
correlation trend. That means the prediction accuracy of the 
model is comparatively higher under dropout combinations 
with lower values. The points in the figure that are labeled 
with stars correspond to the combinations that exhibited the 
smallest MAPE for all combinations of sample evaluation 
indexes in the experiment. These combinations can be 
considered the optimal ones. The four types of sites are 
14.02%, 18.12%, 13.57%, and 13.82%, in that order. These 
values correspond to the optimal dropout (CNN, LSTM) 
combinations, respectively: cluster 0 (0.1, 0.25); cluster 1 
(0.3, 0.15); cluster 2 (0.1, 0.15); cluster 3 (0.25, 0.35). 

The results of the aforementioned hybrid parameter tuning 
experiments of manual parameter optimization and 
automated hyperparameter search algorithm are finally 
integrated. Based on the optimal parameter combinations 
with relatively balanced prediction performance and 
efficiency, the future 10-minute inbound passenger flows of 
Cluster 0, 1, 2, and 3 stations are predicted to ensure that the 
overall model performance is maximized.  

The prediction results demonstrate a comparison between 
the actual and predicted passenger flow curves of the two 
cycles, as illustrated in Figs. 12, 13, 14, and 15, respectively. 

As demonstrated in Figs. 12, 13, 14, and 15, the predicted 
and actual value curves of the four stations exhibit analogous 
undulation and change trends. The shaded segment of the 
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figure denotes the 10% error band. Except for individual 
exceptional extreme values, the majority of the prediction 
results and real values are contained within the error band. 

The prediction results align with the actual flow of 
passengers in the timing characteristics of the law, thereby 
reflecting the prediction performance of the model.

 
Fig. 12. Result of predicting 10-min of inbound passenger flow for cluster 0

 
Fig. 13. Result of predicting 10-min of inbound passenger flow for cluster 1

 
Fig. 14. Result of predicting 10-min of inbound passenger flow for Cluster 2

 
Fig. 15. Result of predicting 10-min of inbound passenger flow for Cluster 3
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D.2. Comparative analysis of baseline model 

In order to validate the effectiveness of the prediction 
model (hereafter abbreviated as DC-CNN-BiLSTM) 
proposed in this paper that combines site classification, the 
prediction accuracy of the following baseline model and the 
combined model are compared, and each evaluation metric is 
shown in Table 4. 

TABLE IV  
Comparison of the predictive effectiveness of different baseline 

models 

model Cluster 
Evaluation indicators 

RMSE MAE MAPE% 

ARIMA 

0 48.58 28.06 28.5 
1 55.71 40.54 41.2 
2 46.34 25.89 25.8 
3 50.66 29.95 30.1 

RF 

0 20.85 14.03 26.44 
1 22.61 13.46 31.66 
2 17.83 10.87 25.81 
3 28.48 18.76 29.67 

LSTM 

0 18.47 11.61 16.83 
1 17.37 10.69 20.83 
2 17.10  9.67 16.14 
3 73.26 44.70  16.81 

CNN-BiLSTM 

0 15.29 9.48 15.64 
1 16.12 9.71 18.32 
2 13.14 7.69 13.89 
3 69.95 42.56 14.37 

DC-CNN-BiLSTM 

0 15.18 9.31 14.02 
1 15.49 9.4 17.85 
2 12.55 7.51 13.57 
3 32.68 20.36 13.82 

An analysis of Table 4 reveals that irrespective of the type 
of station for passenger flow prediction, the combination 
model exhibits superior prediction efficacy in comparison to 
a single model. The prediction accuracy of the deep learning 
model surpasses that of traditional mathematical statistics 
models, such as ARIMA, and machine learning models, such 
as RF. The evaluation indexes demonstrate enhancements, 
albeit to varying extents. The passenger flow patterns 
exhibited by clusters 0, 2, and 3 are characterized as being 
between regularity and volatility. The non-linear capability 
of the deep learning model is demonstrated to be 
advantageous, with the prediction results of MAPE reaching 
below 15% in all cases. As model complexity has increased 
and an early stop training strategy has been incorporated, the 
MAPE values of the model for passenger flow prediction 
have decreased, ranging from 14.02% to 13.57% and 13.82%, 
respectively. These results suggest that the model can achieve 
a more accurate prediction. 

However, for Cluster 1, compared with other types of 
stations, the errors of all models are larger, with a minimum 
difference of 2.72% and a maximum of 15.4% in the MAPE 
values predicted for different stations. A subsequent analysis 
of the underlying reasons indicates that the presence of these 
stations in commercial areas or their status as interchange 
stations may be contributing factors. Additionally, the 
fluctuations in passenger flow observed at these stations 
could be a contributing element to the variations in 
performance metrics. 

V. PROCEDURE FOR PAPER SUBMISSION 
In this study, a combined DC-CNN-BiLSTM prediction 

model was constructed, and the effects of station 

heterogeneity and model training strategy on the prediction 
results were considered. The future 10-minute inbound 
passenger flow of urban rail transit was predicted, and the 
following summary was made based on the research work. 

(1) A multi-dimensional index system is constructed, 
incorporating the ontological attribute features of subway 
stations and the location environment features. The historical 
passenger flow features of the stations are then fused with the 
newly constructed index system. The k-means clustering 
algorithm is subsequently employed to classify the rail transit 
stations. The objective is to accurately ascertain the various 
characteristics of passenger flow and to formulate a more 
rational urban rail transit station classification scheme. The 
research sample is divided into four categories of typical 
stations (Cluster 0, 1, 2, 3). The analysis shows that the 
different categories of stations present significant 
heterogeneity in the distribution of passenger flow in the 
spatial and temporal dimensions. This heterogeneity lays the 
foundation for differentiated passenger flow prediction. 

(2)  In each cluster, a representative station is selected as a 
typical case for in-depth data analysis, results presentation, 
and comparison. This selection is made to visually reflect the 
passenger flow characteristics of different types of stations. 

Cluster 0: The station’s passenger flow characteristics are 
typical, susceptible to the strong influence of the work cycle, 
and suitable for prediction modeling to deeply mine the 
changes of the peaks and valleys in the time sequence. The 
Zhonghe North Road station is selected as a typical station. 
Chinese Medicine University Station 

Cluster 1: This station type reflects the daily travel patterns 
of university students and staff, which facilitates the 
establishment of a relatively smooth prediction model. 

Cluster 2: This type of life service station is a prominent 
component of the passenger flow in the Hangzhou metro 
system, with a significant number of stations within the 
system. The Nanxing Bridge Station is selected as a 
representative station for this cluster. 

Cluster 3: The complexity of this hub station type poses a 
challenge to short-term prediction. The passenger flow 
pattern is challenging to predict in the short term due to its 
high fluctuation and uncertainty. Fengqi Road Station is a 
representative station for this pattern. The selection of 
representative stations for each cluster facilitates the adoption 
of more targeted short-time inbound passenger flow 
prediction model training strategies for different types of 
stations in the example analysis. 

(3) A combined prediction model of a convolutional neural 
network, combined with a two-way long and short-term 
memory network, was constructed to analyze and extract 
temporal and spatial features of passenger flow. This model 
was developed based on an analysis of historical passenger 
flow features of urban rail transit. The integration of spatial 
and temporal features is employed to forecast the inbound 
passenger flow of urban rail transit shortly. A comparison 
experiment was also designed with each baseline prediction 
model, which was verified by the example of subway AFC 
data, to show that the combined prediction model proposed in 
this paper has better prediction performance.  

The traditional classical model’s limited adaptability in 
complex scenarios poses a significant challenge in achieving 
accurate predictions for stations with more complex 
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passenger flow features. This discrepancy in prediction 
accuracy compared to other stations with relatively regular 
and stable passenger flow features is a notable concern. 

(4) In particular, with regard to the training of models, the 
impact of varying model parameter values on the efficacy of 
training is taken into account. Parameter tuning of the model 
is conducted in consideration of the parameters of input step 
size, learning rate, number of training rounds, and combined 
discard rate, respectively. A hybrid tuning strategy has been 
developed that integrates manual parameter optimization and 
automated hyperparameter search algorithms. This strategy 
also incorporates an early-stop mechanism to balance model 
performance and training efficiency. 

Following an examination of the training process with 
example validation, it was determined that the sensitivity of 
various hyperparameters to model prediction accuracy 
demonstrates significant heterogeneity. Furthermore, the 
degree of influence on the prediction effect of different types 
of sites varies. In addition to the advantages of the combined 
model structure on the improvement of prediction 
performance, for clusters 0-3, the DC-CNN-BiLSTM 
prediction results under the use of early-stopping and 
grid-search training strategies are significantly more accurate 
compared to the original data. Furthermore, the average 
absolute percentage error can be reduced by a maximum of 
1.62%, which suggests that the high-quality model training 
does contribute to the improvement of prediction accuracy. 

(5) Despite the enhancement in the precision of passenger 
flow prediction across all station types subsequent to the 
study outlined in this paper, substantial variations in the 
stability of prediction persist among distinct station types. 
Notably, within cluster 1 stations, the prediction accuracy 
remains suboptimal, underscoring the necessity for further 
optimization. 

The analysis may be due to the fact that this study relies on 
historical card swipe data and does not integrate external 
variables such as unexpected events, which leads to increased 
prediction bias in extreme scenarios. It is expected that we 
will continue to improve prediction accuracy by exploring 
more advanced deep-learning architectures or hybrid models 
in future studies. 
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