
Abstract—The Light Spectrum Optimizer (LSO) is a novel
metaheuristic algorithm inspired by the natural phenomenon
of rainbow spectrum formation. To address the limitations of
slow convergence, proneness to local optima entrapment, and
insufficient population diversity inherent in LSO, this study
proposes an Enhanced Light Spectrum Optimizer (ELSO).
The proposed enhancements include: (1) Population
initialization via the Logistic chaotic mapping generates
diverse distribution patterns, thereby enhancing global search
capabilities and accelerating convergence speed; (2)
Integrating the Cauchy mutation mechanism improves
population diversity by leveraging its heavy-tailed distribution,
thereby enhancing global exploration and avoiding premature
convergence to local optima; (3) Lévy flight trajectory
adoption to optimize the exploration-exploitation balance,
thereby improving performance in complex optimization
scenarios. Furthermore, the Fitness-Distance Constraint (FDC)
method is synergistically combined with ELSO to develop the
FDC-ELSO variant, significantly enhancing constraint-
handling capabilities. Comprehensive evaluations were
conducted using CEC2017 benchmark functions and four
classical engineering optimization problems (spring system
design, gearbox design, wireless sensor network coverage
optimization, and arch bridge structural design). Statistical
validation was conducted using the Friedman rank test and
Wilcoxon signed-rank test. The results demonstrated that
ELSO and FDC-ELSO exhibit superior performance metrics
compared to existing algorithms. The proposed frameworks
demonstrate strong practical applicability across multiple
engineering domains, confirming their theoretical validity and
engineering value.

Index Terms—Light spectral optimizer, Logistic chaotic
mapping, Cauchy mutation, Lévy flight

I. INTRODUCTION
ptimization are generally divided into two types:
unconstrained optimization and constrained

optimization. Unconstrained optimization problems involve
no restrictions during solution searching, while constrained
optimization problems require solutions to meet specific
equality or inequality constraints. Both unconstrained and
constrained optimization problems are pervasive in mathem-
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atics, engineering, and economics. However, as these
problems become increasingly complex, traditional
analytical methods often become impractical or inadequate.
In response, meta-heuristic algorithms have gained
prominence, valued for their strong global search
capabilities and adaptability to various problem domains.
Classic algorithms such as Particle Swarm Optimization
(PSO) [1], Genetic Algorithm (GA) [2], and Differential
Evolution (DE) [3] have achieved outstanding results in a
wide range of optimization tasks and have inspired the
development of numerous improved variants. Nonetheless,
with increasing problem complexity, these traditional
algorithms frequently encounter limitations, including
premature convergence to local optima and reduced
convergence efficiency. This has led to significant research
focus on developing more efficient and adaptable
meta-heuristic algorithms for handling both unconstrained
and constrained optimization challenges [4]. Such
advancements hold substantial theoretical value while
providing critical technical solutions for real-world
engineering optimization needs.
The Light Spectrum Optimizer (LSO), proposed by

Abdul-Basset in 2022, is inspired by the formation of
rainbows through light scattering in raindrops. Owing to its
conceptual simplicity and impressive performance in global
optimization tasks, this algorithm has attracted considerable
attention within the computational intelligence community.
Subsequent research has focused on further expanding and
refining the LSO's capabilities. For instance, Reda
Mohamed developed the Binary Light Spectrum Optimizer
(BLSO), which enhances combinatorial optimization and
demonstrates improved performance on the 0-1 Knapsack
Problem (KP01) and the Multidimensional Knapsack
Problem (MKP) [5]; In another example, Thiyagu Thulasi
integrated the LSO with a Multi-Stage Convolutional Neural
Network (MSCNN), creating a hybrid MSCNN-LSO
framework for hyperparameter optimization in Internet of
Things (IoT) healthcare systems; this integration
significantly improves intrusion detection accuracy in
medical environments [6]; Additionally, Safaa Saber's
Improved Light Spectrum Optimizer (ILSO) advances
photovoltaic modeling by achieving precise parameter
estimation for Triple-Diode Models (TDM), outperforming
conventional approaches [7]. Despite considerable progress,
LSO still has several limitations when tackling complex
optimization scenarios. These include insufficient
population diversity, a tendency to converge prematurely to
suboptimal solutions, and slow convergence rates.
Collectively, these issues limit its effectiveness in
high-dimensional or multi-modal problem spaces.
To address the aforementioned limitations in existing

algorithms, this paper proposes the Enhanced Light
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Spectrum Optimizer (ELSO). ELSO improves population
diversity, global search ability, and the capacity to escape
local optima through three strategies: Logistic chaotic
mapping, Cauchy mutation, and Lévy flight mechanisms.
Moreover, the incorporation of the FDC method further
enhances ELSO's performance in constrained optimization
problems. This research aims to offer a more efficient
solution approach for both unconstrained and constrained
optimization challenges.
The remainder of this paper is structured as follows:

Section 2 introduces the standard Light Spectrum Optimizer,
outlining its theoretical basis and core operational principles,
along with systematic mathematical formulations. Section 3
provides an in-depth description of ELSO, covering its
motivation, key enhancement strategies, and
implementation details. The workflow of the algorithm is
depicted using a standardized flowchart. Section 4
establishes a standardized parameter configuration
framework based on the CEC 2017 benchmark suite. This
framework enables a comprehensive evaluation of
algorithmic performance by validating enhancement
strategies and analyzing parameter sensitivity. Section 5
presents a qualitative comparison between LSO and ELSO,
a quantitative comparison of ELSO against other algorithms
using the Friedman test and Wilcoxon signed-rank test, and
highlights the advantages of ELSO. Section 6 discusses
engineering applications from two perspectives: solving
unconstrained optimization problems and addressing
constrained optimization cases. Finally, Section 7 concludes
the paper by summarizing the technical contributions of
ELSO supported by experimental validation, critically
discussing current research limitations, and suggesting
future extensions for discrete and multi-objective
optimization problems.

II. INTRODUCTION OF STANDARD SPECTRUM OPTIMIZATION
ALGORITHM

The rainbow spectrum, a meteorological phenomenon
produced by the dispersion of light, inspires the design of the
LSO [8]. Its mathematical framework can be summarized as
follows:

A. Initialization
Initialization involves the stochastic generation of

candidate solutions at the commencement of the search
process. The LSO algorithm's initialization procedure is
mathematically defined as follows:

 0
1LB RV UB LBX    (1)

Where X0 denotes the initial solution, and LB and UB
lower and upper boundaries of the search space. A random
number RV1 is generated, uniformly distributed within the
interval ([0, 1]). Each color ray corresponds to a candidate
solution with a dispersion angle between 40° and 42°, and
a refractive index defined as:

1( )r red violet redRVk k k k   (2)

Where k red = 1.331.

B. Exploration phase

After determining the ray direction, a random probability
p between 0 and 1 is generated, which is then used to
construct the candidate solution. Specifically, if p is less than
another random value between 0 and 1, a new candidate
solution is generated:
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Otherwise, the new candidate solution is generated as:
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Where Xi+1(t) is the newly generated candidate solution
and Xi(t) is the current candidate solution. r1, r2, r3, r4 are the
indices of four solutions randomly selected from the current
population. ��1

n and ��2
n are vectors of uniformly

distributed random numbers in [0,1]. ɛ is the scaling factor
computed by Equation (5). GI is an adaptive control
parameter obtained from the inverse incomplete gamma
function, as defined by Equation (6).

3
na RV   (5)

Where ��3
n is a standard normal random vector (with

mean 0 and standard deviation 1), and a is an adaptive
parameter calculated by the following equation:

 1 1 ,1GI a ar P    (6)

GI is an adaptive control parameter [9]. R is a uniformly
distributed random variable in [0, 1]. During the
optimization process, R undergoes mathematical inversion
to activate the exploration operator. This operation generates
a real number exceeding 1. As a result, the current solution is
displaced to an unexplored region within the search domain,
enhancing the discovery of better solutions. P-1 represents
the inverse incomplete gamma function applied to parameter
a.

2

max
1

t
A RV

T
 

  
  
  

(7)

Where t represents the current iteration count, RV2denotes
a uniformly distributed random variable in [0,1], and Tmax
specifies the maximum function evaluation cycles. When
the input dimension exceeds 0.5, this inverse incomplete
gamma function produces high-range values spanning 0.8 to
5.5, otherwise, it generates subunitary values approaching
zero.

C. Exploitation phase
The exploitation phase enhances the algorithm's

exploration capability through directional search guidance
toward the current optimum or a randomly sampled
candidate solution. This mechanism enables the expansion
of the search region around the current solution, thereby
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improving solution quality, but it may also reduce the
convergence speed of LSO. To balance convergence speed
and solution quality, an adaptive strategy is introduced in
this paper: the current solution migrates toward the global
optimum with a fixed probability β. The mathematical
formulation of this spatial distribution is presented in
Equation (8)：

 
   

1 1 23
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i i r r

n
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    
(8)

Where X* denotes the current global optimum, Xr1 and
Xr2 represent uniformly sampled candidate solutions. RV3、
��4

n contains a uniformly distributed random variable in
[0,1]. In the second scattering phase, directional guidance
vectors are generated at the updated positions using the
historical best solution and the current solution, as described
in Equation (9).

   11( ) 2cos ( )i it tX r X X 
   (9)

Where r1 represents a uniformly distributed random
variable in [0,1]. Π denotes the mathematical constant for
the circle circumference ratio. The phase transition between
primary and secondary scattering processes occurs with a
fixed probability Pe as defined in the following equation:

1
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Where R represents a uniformly distributed random
variable in [0,1], a novel candidate solution is generated
through stochastic recombination of the randomly sampled
parent and the current solution, marking the final scattering
stage as defined in Equation (11):

  
   

1 2 351( ) ( ) ( )

1 1 ( )

p
r r ri

i

t t tRVX X X X

U U U tX

    

     
(11)

Where RV5 represents a standard normal random variable
(μ= 0, σ = 1), and U denotes a uniformly distributed random
vector in [0,1].

III. THE PROPOSED ENHANCED SPECTRAL LIGHT
OPTIMIZATION ALGORITHM (ELSO)

To address the inherent limitations of conventional LSO
algorithms-such as slow convergence rates and
susceptibility to local optima-the ELSO framework
introduces three enhancement strategies, as summarized in
Table I.

A. Logistic chaotic mapping
Logistic chaotic mapping-based enhancement strategies

are widely adopted in metaheuristic optimization. In this
study, Logistic chaotic mapping is incorporated into ELSO

TABLE I
IMPROVEMENT STRATEGIES

No. Improvement strategies

1 Logistic chaotic mapping

2 Cauchy mutation
3 Lévy flight

Fig. 1 Mapping graph

to generate n_pop initial population vectors at the population
initialization phase [10]. Due to its ergodicity within the (0,
1) interval, Logistic chaotic mapping exhibits
pseudo-random behavior, which helps to ensure population
diversity by uniformly distributing the initial solutions
throughout the search space. The mathematical formulation
of the Logistic chaotic mapping used in this work is as
follows:

 1 4.0 1n n nZ Z Z    (12)

Where Zn+1 and Zn denote the population states at
timesteps t+1 and t, respectively, and the parameter r is set
to 4.0, the Logistic chaotic mapping demonstrates ergodicity
in the (0,1) interval. This property ensures pseudo-random
population distributions with uniform-like dispersion across
the search space [35].

B. Cauchy mutation
The Cauchy mutation strategy is a widely used global

search mechanism in evolutionary computation. This
method enhances exploration ability and helps the algorithm
escape local optima by introducing heavy-tailed noise from
the Cauchy distribution [11].
During the update phase, Cauchy mutation is

implemented through stochastic perturbations calculated as:

 0.5 exp 1 /c Iter MaxIter    (13)

Set a random number with a value range (0, 1), if c > rand,
the positional update rule is defined in Equation (14):

 , 1, 2, 3,ln( )new
i j r j r j r jGI jX X X X      (14)
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Where ��,�
��� represents the updated position of the i_th

solution in the j_th dimension. GI denotes the global
guidance factor, typically configured as either a constant or
iteration-dependent parameter to adjust the magnitude of
positional updates. � is a small positive constant used to
prevent numerical singularity ln(j) when j=1.

The natural logarithm ln(j) introduces dimension-wise
weighting across search dimensions, while ��2,� and ��3,�
denote the positional coordinates of two randomly selected
solutions from the population in the j_th dimension [36].
If c<rand, the position update formula is:

 1 2 3( ) ( ) ln( )i it t GI j RX X L L       (15)

Where Xi+1(t) represents the updated position vector of
the i_th candidate, while Xi denotes its current state, R is a
standard normal variate with dimensionality matching Xi(t).
L2 and L3 correspond to positional coordinates of two
distinct population members randomly selected from the
archive. The positional update rule applies when rand<e,
US>F*d, the position update formula is:
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   
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1 2
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Among them:

 ln
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



(17)

 1,US rand Dim (18)

 exp 1 /d Iter MaxIter   (19)

Where Iter denotes the number of iterations, MaxIter is
the specified maximum number of iterations, and PopSize
represents the population size. Fitness(i) indicates the fitness
value of individual i, Gbest refers to the positional
coordinates of the optimal solution, and gbestValue stores
the global best fitness value. Xrand(t) denotes the positional
state of a randomly selected individual at timestep t.��� 2π
is a stochastic vector following a uniform distribution [37].

C. Lévy flight
In spectral optimization algorithms, stochastic parameters

determine the step size adjustments during both the global
and local exploration phases. Although the underlying
random variables are typically uniformly distributed,
traditional mechanisms often lack sufficient directional bias
and show limited exploration efficiency. To address these
issues, this study introduces the Lévy flight mechanism [12]
to enhance the global search capability of the original LSO,
thereby mitigating premature convergence to suboptimal
regions while maintaining the balance between exploration
and exploitation. Lévy flight is a stochastic motion paradigm
that mimics non-Gaussian step patterns observed in random
walks. Its characteristic step length follows a Lévy stable
distribution, which can be mathematically described by
Fourier transform analysis as:

 ( ) expF k k   (20)

Where α ∈ [ − 1,1] denotes the Lévy distribution's
skewness parameter. Studies confirm that the variation inβ
critically influences step length characteristics in Lévy
flights [39]: higherβ induces shorter step lengths in random
walks, whereas lower β produces extended step lengths.
The step length profile is mathematically defined in
Equation (21):

1

u
S

v 

 (21)

Where parameters u and v are generated through
Gaussian distributions defined in Equation (22), while
parameter σ is specified by the formulation in Equation
(23):
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WhereΓ denotes the Euler-Mascheroni gamma function,
and rand represents a uniformly distributed random variable
in [0,1]. Referencing related literature, the optimal range for
the parameter β is [1, 2], and in this paper, the value is set
to 1.5 [38].

D. ELSO algorithmic framework
Building upon the above framework, the enhanced LSO

integrates three optimization mechanisms: Logistic chaotic
mapping-based initialization, Cauchy mutation, and Lévy
flight dynamics. The algorithmic workflow is as follows:
Step 1: Initialize system parameters, including the
maximum fitness value, global optimum, boundary
constraint parameters, and refractive index coefficients. Step
2: Generate the initial candidate solutions using Logistic
chaotic mapping-based initialization, with each solution
vector corresponding to a search ray. Step 3: Evaluate the
fitness of all candidate solutions and update the global
optimum through competitive comparison. Step 4: Apply
Cauchy mutation, guided by the current global optimum
position and with dynamically modulated probability (see
Equation 8), then execute Step 3. Step 5: Adjust the search
direction vectors using Lévy flight trajectories (see Equation
9), and balance exploration and exploitation through
information sharing within the population. Step 6: Select
better solutions from the candidate pool based on their
fitness values, then update the next set of candidate solutions.
Step 7: Repeat Steps 4–6 until the convergence condition is
met. Step 8: Output the optimized solution vector and
terminate the algorithm.
Fig.2 visually formalizes the ELSO algorithmic

architecture, with the complete workflow diagram presented
in the figure caption.
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Fig. 2 Flow chart of the ELSO

IV. BENCHMARK FUNCITONS AND PARAMETER SETTINGS

A. Benchmark Function Evaluation
The performance of the proposed ELSO algorithm was

systematically evaluated using the CEC2017 benchmark
suite, which is a comprehensive set of test problems. This
suite encompasses four categories of functions: unimodal,
multimodal, hybrid, and composite.

B. Parameter Configuration​
Table II compares the proposed ELSO algorithm with

other algorithms using standardized parameter settings
adopted from the literature. The selected benchmark
algorithms encompass a variety of optimization paradigms
and have demonstrated effective global search capabilities.

C. Experimental results and data analysis
In this section, we comprehensively evaluate the

performance of the ELSO algorithm. We compare the ELSO
algorithm with the other algorithms listed in Table II, using
the CEC2017 test suite as the benchmark. This study
examines the effectiveness of the ELSO algorithm's
strategies and its sensitivity to parameter settings. The
application of these statistical methods aims to provide
detailed and objective evidence for accurately assessing the
practical performance and potential advantages of ELSO in
solving various optimization problems.

D. Strategy validity analysis
The strategy effectiveness analysis confirms the validity

of the enhancement strategies proposed in this study. To
evaluate the improvements in LSO algorithm performance
resulting from individual and combined enhancement
strategies, three core components were designed: Logistic
chaotic mapping, Cauchy mutation, and Lévy Flight [21].
By progressively integrating these three strategies into the
LSO framework, the ELSO algorithm was ultimately
developed, achieving an optimal balance between
exploration and exploitation through an innovative
initialization method and an adaptive search mechanism that
incorporates all three enhancements. Experimental results
demonstrate that the synergistic application of these
strategies leads to statistically significant performance
improvements, outperforming the use of any single
component.
As demonstrated in Fig. 3, each intermediate algorithm

was independently executed 30 times under identical
parameter configurations. Convergence performance
improves progressively across algorithm iterations, from
LSO to intermediate variants and finally to ELSO. This
trend confirms the cumulative effectiveness of the
enhancement strategies.
Statistical analysis shows ELSO is significantly superior

(p<0.05) to baseline LSO and intermediate variants,
validating the effectiveness of the proposed enhancement
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framework.

E. Parameter sensitivity analysis
Parameter selection plays a crucial role in the

performance of algorithms and represents an essential
component of system optimization. Sensitivity analysis
systematically identifies the key parameters that
significantly affect performance. This enables targeted
parameter tuning and improves optimization outcomes. The
ELSO algorithm involves two adjustable parameters: α (the
regulation parameter), which controls the balance between
exploration and exploitation during the search process, and β
(the adaptive update probability), which determines the
probability of moving a solution toward the optimal region.
These parameters strongly influence how the algorithm
behaves. Therefore, systematic sensitivity analysis is
essential to identify their optimal settings. Therefore, we
conducted a sensitivity analysis based on the CEC 2017
benchmark function set to quantitatively evaluate the impact
of each parameter on the algorithm's performance.
Parameter selection plays a crucial role in the performance
of algorithms and represents an essential component of
system optimization. Sensitivity analysis systematically
identifies the key parameters that significantly affect
performance. This enables targeted parameter tuning and
improves optimization outcomes. The ELSO algorithm
involves two adjustable parameters: α (the regulation
parameter), which controls the balance between exploration
and exploitation during the search process, and β (the
adaptive update probability), which determines the
probability of moving a solution toward the optimal region.
These parameters strongly influence how the algorithm
behaves. Therefore, systematic sensitivity analysis is
essential to identify their optimal settings. Therefore, we
conducted a sensitivity analysis based on the CEC 2017
benchmark function set to quantitatively evaluate the impact
of each parameter on the algorithm's performance.
Preliminary experimental results show that ELSO

performs reliably when α∈ [0.1,1.0] and β∈ [0.2,2.0]. To
determine the optimal parameter settings, we conducted a
systematic grid search analysis as part of our methodology.
Specifically, in order to achieve an optimal balance

between solution accuracy and computational efficiency, a
10×10 uniformly spaced grid was constructed across these
parameter intervals ( α : 0.1-1.0 with 0.1 increments; β :
0.2-2.0 with 0.2 increments), resulting in a total of 100
parameter combinations [22].
The parameters of the ELSO algorithm were set as

follows: the population size N was 50, the maximum number
of function evaluations was 1.0×10⁵, and the maximum
number of iterations T was 2000. For each parameter
configuration, thirty independent runs were performed. The
results are visualized in Fig. 4. The heatmap in Fig. 4 shows
ELSO's performance rankings for each parameter
combination, based on the mean optimization metrics from
the CEC2017 benchmark set.
Fig.4 shows that the ELSO algorithm attains its optimal

Fig. 3 Strategy effectiveness analysis diagram

Fig. 4 Parameter sensitivity analysis diagram

performance when α=0.5 and β=1. Although this parameter
combination may not be theoretically optimal, it
demonstrated statistically significant superiority (p<0.05)
compared to the 100 configurations evaluated. Therefore,
we selected α=0.5 and β=1 as the parameters for ELSO.
These values were used in all the following experiments.

V. EXPERIMENTS AND COMPARATIVE ANALYSIS

A. Qualitative comparison between LSO and ELSO
This study conducts a qualitative comparison between

LSO and ELSO from key algorithmic perspectives,
including search history plots, population diversity, and the
balance between exploration and exploitation. Focusing on
functional attributes, the analysis employs two CEC2017
benchmark functions: f1 and f6. Function f1 is unimodal,
featuring a smooth topology with a single global optimum.
In contrast, f6 is multimodal and exhibits complex,
multi-peaked structures with distributed sub-optimal regions.
This dual-function evaluation framework enables a
systematic comparison of algorithm performance in both
simple optimization scenarios, as represented by f1, and
complex fitness landscapes, as represented by f6.
To enhance the visualization of results, the dimensionality

of both f1 and f6 is set to 2. In the experiments, the parameter
settings for LSO and ELSO are as follows: population
size N=20, maximum iterations T=500, and maximum
fitness evaluations FEs=1×104.
As shown in Figs. 5 and 6, the search history plots

systematically divide the evolutionary process of the
algorithms into four distinct temporal phases (PI–PIV). The
progression from PI to PIV reveals that the population
distribution of ELSO gradually shifts from a dispersed
spatial pattern to a clustered configuration, whereas LSO
maintains spatial dispersion throughout all iteration phases.
This comparative visualization quantitatively highlights the
improved convergence efficiency of ELSO and the
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persistent exploration tendency of LSO.
The population diversity dynamics presented in Figs. 5

and 6 indicate that ELSO experiences a rapid decrease in
diversity during the initial phases (PI–PII), demonstrating
accelerated convergence and higher global search efficiency.
In contrast, LSO exhibits relatively stable diversity
throughout the iterative process, reflecting insufficient
convergence performance. Further analysis of the later
stages (PIII–PIV) reveals that ELSO's diversity stabilizes
near the optimal region (as the variance approaches zero),
while LSO continues to fluctuate, which hinders the
aggregation of effective solutions. The comparative
exploration-exploitation ratios further quantitatively
confirm that ELSO demonstrates superior switching ability
between these two processes, achieving rapid exploration in
the early phases and precise exploitation in the later stages.
In summary, a comprehensive analysis of search

trajectory patterns and exploration-exploitation ratios
confirms that ELSO has higher convergence efficiency and
more robust optimization performance.

B. Quantitative analysis with other algorithms
To further confirm the superior performance of ELSO, we

conducted both the Wilcoxon rank-sum test and the
Friedman test. The Wilcoxon rank-sum test, which is based
on the ranking of data, effectively reduces the influence of
outliers on the results. In contrast, the Friedman test is a
non-parametric method used to compare differences among
three or more related samples, making it suitable for
analyzing repeated measures data. This test is effective in
identifying differences among multiple treatment groups,
which is essential for comparing the performance of several
algorithms. Together, these two statistical approaches both
address common data variability in empirical studies and
provide a rigorous analytical foundation for algorithm
performance comparison, thus enhancing the reliability of
research conclusions.
These two statistical methodologies not only effectively

address common data variability in empirical research but
also establish rigorous analytical foundations for algorithm
performance comparison, thereby enhancing the reliability
of research conclusions.
In this study, ELSO and the comparative algorithms

(listed in Table II) were configured according to established
methodological guidelines. All comparison algorithms used

a population size of N=50, a maximum of 1.0×10⁵
evaluations, and were independently run 30 times to ensure
the reliability of the results. The experiments included both
30-dimensional and 50-dimensional benchmark functions
from the CEC2017 test suite, and the comparative results are
systematically presented. Tables III and IV report
performance metrics as follows: the "Rank" columns
indicate the ranking of algorithms based on ascending
performance values; the "Mean" columns show mean
performance metrics sorted by average performance;
"Overall Rank" aggregates individual rankings across all
functions; and "Final Rank" is determined by summing the
"Overall Rank" values.
The data in Tables III and IV clearly show that the ELSO

algorithm ranks first in both the 30-dimensional and
50-dimensional test functions, indicating that ELSO
outperforms the comparison algorithms in terms of overall
performance.
In addition, the "total ranking" value of ELSO is

significantly lower than those of the competing algorithms,
further confirming its superior performance. The "mean"
metric provides a comprehensive evaluation of the
algorithm's effectiveness: In 30 dimensions, ELSO achieves
14 best results and 11 second-best results, in 50 dimensions,
it achieves 15 best results and no worst results.
By contrast, the second-best algorithm in 30 dimensions

only achieves 3 best and 10 second-best results, while
HCLPSO, the second-best in 50 dimensions, obtains 6 best
and 8 second-best results. Thus, ELSO demonstrates clear
superiority over the other algorithms. The "Std" metric is
used to assess the stability of the algorithms: ELSO achieves
14 best and 11 second-best results in 30 dimensions, and 14
best and 10 second-best results in 50 dimensions, without
any worst results. Consequently, ELSO's stability is
noticeably better than that of the other algorithms. Fig. 7
presents the Friedman test results for the "mean," "standard
deviation," and "best" metrics.

C. Wilcoxon signed-rank test
The Wilcoxon signed-rank test was performed with a

significance level of α = 0.05. Table V presents a summary
of the comparative evaluation results. The statistical
notations are defined as follows: R⁺ represents the sum of
positive ranks, indicating instances where ELSO
outperforms the benchmark algorithms; R⁻ denotes the sum

TABLE II. PARAMETER SETTINGS OF THE COMPARED ALGORITHMS

No. Algorithm Parameters settings Year Reference

1 ASO α = 50, β = 0.2 2019 [13]

2 HGworf a = 2 − t * ((2)/T), β = 1.5 2023 [14]
3 AHA Inertia weight w = 0.4~0.9, c1 = 2.0, c2 = 2.0 2022 [15]
4 HBA α = 0.5~2.0, β = 0.5~2.0, Memory Update Probability p = 0.8~0.95 2022 [16]
5 TS Tabu List Size T = 0.1~0.2 2022 [17]
6 LSO α = 0.5, β = 0.2 2021 [18]
7 HCLPSO Inertia weight w = 0.2~0.99, c = 1.5 2021 [19]
8 SO Threshold(food) = 0.25, Threshold(temp) = 0.25 2022 [20]
9 ELSO α = 0.5, β = 1 Present Present
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negative ranks, reflecting cases where ELSO
underperforms. The symbol "+" indicates that ELSO
exhibits statistically significant superiority on the majority
of test functions, "-" denotes the opposite outcome, and "="
represents no statistically significant difference in
performance.
The experimental results reported in Table V demonstrate

that ELSO achieves superior comparative performance
across 21 benchmark functions (f1, f3, f4, f5, f7, f8, f11, f12, f14,
f15, f17, f18, f19, f20, f21, f23, f24, f25, f26, f27, f28, f29, f30). This is
evidenced by statistically significant p-values, substantially
higher R⁺ values, and consistently low R⁻ values. Under the
statistical significance criterion (h=1), these findings further
substantiate the consistent and significant superiority of
ELSO over the comparative algorithms in terms of overall
performance.

D. Convergence curve comparison
The convergence curves intuitively illustrate the

trajectories of various optimization algorithms as they
progressively approach the optimal solution across multiple
iterative processes. By meticulously analyzing these curves,
the performance of different algorithms can be
quantitatively and objectively evaluated, allowing
researchers to clearly identify which methods achieve the
target with faster convergence speed or higher solution
accuracy under diverse experimental conditions. To
systematically investigate optimization dynamics in
different scenarios, this study selected 30 benchmark
functions with diverse characteristics and dimensionalities,
ensuring broad representativeness and stability. The detailed
convergence progress of these functions is visually depicted
in Fig. 8.
The results indicate that ELSO achieves a rapid reduction

in the fitness function value during the initial iterations,
demonstrating effective exploration of promising solution
regions and accelerated optimization enabled by adaptive
search mechanisms. Further comparative analysis shows
that ELSO achieves a smoother descent during the early
stages of convergence. This makes it more effective than
other algorithms at avoiding local optima. In the subsequent
iterations, ELSO exhibits minimal fluctuations in fitness
values, thereby confirming its strong convergence stability
after finding the optimal solution. Although ELSO's early

convergence speed is similar to that of comparative
algorithms for some benchmark functions, its optimization
speed improves significantly in the later stages of iteration.
The final convergence results show that ELSO consistently
achieves better solution accuracy on most test functions,
further verifying that the synergistic enhancement
mechanism substantially improves both the convergence
stability and adaptability of the algorithm.

VI. PERFORMANCE VALIDATION OF THE ELSO
ALGORITHM ON TYPICAL ENGINEERING OPTIMIZATION

PROBLEMS

Engineering optimization problems provide an effective
means for evaluating the real-world performance of the
ELSO algorithm. In this section, four representative
engineering optimization problems are selected for a further
assessment of ELSO's effectiveness. The experimental suite
encompasses four classical engineering optimization
problems: the spring design problem, the reducer design
problem, the wireless sensor network (WSN) coverage
optimization problem, and the bridge arch design
optimization problem. Among these, the WSN coverage
optimization and bridge arch design problems are classified
as unconstrained optimization problems, while the spring
design and reducer design problems are considered
constrained optimization problems. To enhance ELSO's
capability in addressing constrained optimization challenges,
the FDC handling method is introduced in this study. The
operational framework of this method is outlined as follows:

/ : ( )f XMinimize Maximize (24)
 

 
0, 1, ...,

: {
0, 1, ...,

j

k

X j pg
S

X k p mh

 

  
(25)

The equation above presents a generalized mathematical
model for constrained optimization problems, which
typically consist of decision variables, a search space,
constraint functions, and an objective function. Here, S
represents the decision space, X denotes the d-dimensional
solution vector; f(x) is the objective function; hk(X) and gj(X)
correspond to the k_th equality constraint and the j_th
inequality constraint, respectively, and p and m are the
numbers of equality and inequality constraints.

TABLE V. WILCOXON SIGNED RANK TEST RESULTS

ELSO
Vs

Ranked in different dimensions
D=30 D=50

R+ R- +/=/- R+ R- +/=/-
ASO 275.72 189.28 17/3/9 302.28 162.72 19/4/6

HGworf 331.21 133.79 21/3/5 319.28 145.72 19/2/8
AHA 337.21 127.79 20/7/2 391.41 73.59 26/2/1
HBA 387.07 77.93 25/2/2 416.55 48.45 26/2/1
TS 382.66 82.34 25/1/3 415.52 49.48 26/1/2
LSO 397.41 67.59 24/1/4 421.62 43.38 26/1/2

HCLPSO 261.69 203.31 15/7/7 291.14 173.86 17/3/9
SO 344.45 120.55 21/6/2 404.41 60.59 27/1/2

p-value 1.86E-02 4.94E-02 1.26E-01 3.31E-02 4.65E-03 2.32E-03

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3440-3458

 
______________________________________________________________________________________ 



TABLE III
RESULTS OF COMPARING ALGORITHMS ON THE CEC2017 BENCHMARK FUNCTION (D=30)

f(x) Index ASO HGWO AHA HBA TS LSO HCLPSO SO ELSO
f1 Mean 2.0843E+03 4.5194E+03 3.9819E+03 5.5849E+03 1.2440E+06 2.0180E+03 2.1692E+03 7.9722E+03 1.0456E+02

Std 2.2188E+03 6.5798E+03 4.7627E+03 5.8642E+03 3.6609E+05 1.4776E+03 2.4957E+03 1.2984E+04 8.4531E+00
Best 1.0747E+02 1.0077E+02 1.7464E+02 1.1188E+02 7.9250E+05 1.2969E+02 1.0201E+02 1.6952E+02 1.0000E+02
Rank 3 6 5 7 9 2 4 8 1

f3 Mean 1.8663E+04 3.2370E+02 4.8373E+03 2.7872E+04 3.2852E+04 2.2120E+03 1.1586E+03 3.9708E+04 1.8907E+03
Std 8.6352E+03 3.8347E+01 2.0479E+03 7.0168E+03 3.9069E+03 9.1816E+02 9.8739E+02 1.0472E+04 1.3571E+03
Best 7.9378E+03 3.0005E+02 1.4349E+03 1.9918E+04 2.3157E+04 6.5860E+02 3.3527E+02 1.7989E+04 5.2032E+02
Rank 6 1 5 7 8 4 2 9 3

f4 Mean 5.2266E+02 5.0189E+02 4.9591E+02 4.8692E+02 4.9268E+02 4.8707E+02 5.0166E+02 4.9296E+02 4.8817E+02
Std 2.0818E+01 4.3961E+01 2.6330E+01 1.3408E+01 1.6532E+01 2.5486E+01 1.6802E+01 1.7896E+01 2.4821E+01
Best 4.6518E+02 4.0000E+02 4.6427E+02 4.6414E+02 4.7114E+02 4.0659E+02 4.6915E+02 4.6806E+02 4.0003E+02
Rank 9 8 6 1 4 2 7 5 3

f5 Mean 5.3937E+02 5.4464E+02 6.3585E+02 6.1882E+02 6.4660E+02 5.7745E+02 5.4272E+02 5.5884E+02 5.4053E+02
Std 1.0132E+01 1.2853E+01 3.6464E+01 2.1302E+01 2.1717E+01 1.2570E+01 1.3387E+01 9.8073E+00 8.1752E+00
Best 5.2388E+02 5.2686E+02 5.7164E+02 5.6766E+02 6.1190E+02 5.4673E+02 5.2686E+02 5.3487E+02 5.2587E+02
Rank 1 4 8 7 9 6 3 5 2

f6 Mean 6.0005E+02 6.0790E+02 6.0375E+02 6.0189E+02 6.0789E+02 6.0001E+02 6.0000E+02 6.0163E+02 6.0000E+02
Std 1.1368E-01 2.3257E+00 6.8084E+00 3.9351E+00 2.7966E+00 1.9535E-03 4.5130E-05 1.0574E+00 3.1986E-03
Best 6.0000E+02 6.0462E+02 6.0005E+02 6.0002E+02 6.0369E+02 6.0000E+02 6.0000E+02 6.0018E+02 6.0000E+02
Rank 4 9 7 6 8 3 1 5 2

f7 Mean 7.5427E+02 7.8570E+02 9.5108E+02 8.5985E+02 8.8785E+02 8.1497E+02 7.9511E+02 8.2062E+02 7.7349E+02
Std 6.5382E+00 1.7539E+01 6.4541E+01 5.6046E+01 2.8501E+01 1.2397E+01 1.3662E+01 3.4302E+01 1.1510E+01
Best 7.4670E+02 7.6573E+02 8.1847E+02 7.9407E+02 8.3639E+02 7.9873E+02 7.6257E+02 7.7570E+02 7.5621E+02
Rank 1 3 9 7 8 5 4 6 2

f8 Mean 8.3754E+02 8.3804E+02 9.1601E+02 8.8316E+02 9.1382E+02 8.7734E+02 8.5234E+02 8.5988E+02 8.4274E+02
Std 7.5545E+00 1.1684E+01 2.1107E+01 1.3651E+01 1.5389E+01 1.3579E+01 1.4174E+01 1.1932E+01 1.1071E+01
Best 8.1592E+02 8.2487E+02 8.8358E+02 8.5672E+02 8.7948E+02 8.5387E+02 8.3184E+02 8.4002E+02 8.2487E+02
Rank 1 2 9 7 8 6 4 5 3

f9 Mean 9.0000E+02 1.1445E+03 3.1875E+03 2.6381E+03 4.0998E+03 1.1782E+03 9.2514E+02 1.1128E+03 9.0063E+02
Std 4.7206E-14 1.0923E+02 1.0576E+03 9.2849E+02 4.4041E+02 1.8491E+02 3.8636E+01 9.8850E+01 6.7406E-01
Best 9.0000E+02 9.1830E+02 1.5868E+03 9.3198E+02 3.0068E+03 9.5016E+02 9.0027E+02 9.5005E+02 9.0000E+02
Rank 1 5 8 7 9 6 3 4 2

f10 Mean 4.0033E+03 4.4369E+03 4.1850E+03 5.3740E+03 4.3126E+03 4.6322E+03 4.1384E+03 3.3018E+03 3.6928E+03
Std 6.0695E+02 6.8129E+02 5.7208E+02 1.0562E+03 4.2126E+02 2.7639E+02 5.9408E+02 4.0611E+02 6.3651E+02
Best 2.7860E+03 3.2401E+03 3.0398E+03 3.2514E+03 3.3131E+03 3.9186E+03 2.9493E+03 2.5695E+03 2.5823E+03
Rank 3 7 5 9 6 8 4 1 2

f11 Mean 1.2002E+03 1.1995E+03 1.1803E+03 1.2125E+03 1.2114E+03 1.2000E+03 1.1653E+03 1.2223E+03 1.1312E+03
Std 3.9342E+01 3.4106E+01 3.3299E+01 5.3604E+01 2.8918E+01 1.7711E+01 3.1111E+01 4.0884E+01 2.5002E+01
Best 1.1507E+03 1.1528E+03 1.1316E+03 1.1415E+03 1.1680E+03 1.1563E+03 1.1272E+03 1.1494E+03 1.1074E+03
Rank 6 4 3 8 7 5 2 9 1

f12 Mean 4.3930E+05 1.6108E+05 1.0241E+06 6.2004E+05 1.3867E+06 5.1168E+03 7.6339E+04 2.9108E+05 2.5580E+04
Std 3.7178E+05 2.9288E+05 5.8206E+05 5.7153E+05 8.5472E+05 1.2413E+03 4.3205E+04 2.2651E+05 1.4911E+04
Best 4.4668E+04 2.8358E+04 9.8936E+04 6.5240E+04 1.7517E+05 3.3675E+03 1.4981E+04 5.3656E+04 6.8660E+03
Rank 6 4 8 7 9 1 3 5 2

f13 Mean 1.1539E+04 2.0117E+04 1.7584E+04 3.0613E+04 4.4635E+03 1.6181E+03 1.3466E+04 1.5389E+04 7.2636E+03
Std 6.2580E+03 1.4533E+04 1.3701E+04 4.6003E+04 2.8483E+03 7.2935E+01 1.1069E+04 7.9752E+03 5.3130E+03
Best 3.7865E+03 3.9617E+03 1.7280E+03 2.9617E+03 2.3111E+03 1.4768E+03 1.9209E+03 2.3947E+03 1.4315E+03
Rank 4 8 7 9 2 1 5 6 3

f14 Mean 1.7417E+04 4.3893E+04 1.0312E+04 1.0114E+04 2.3312E+05 1.4652E+03 1.6644E+04 8.9631E+03 1.4431E+03
Std 2.7878E+04 1.1263E+05 9.4612E+03 6.8934E+03 2.1160E+05 7.2230E+00 8.1917E+03 8.3717E+03 9.4375E+00
Best 1.8558E+03 1.8880E+03 1.6238E+03 3.2472E+03 1.2488E+04 1.4542E+03 2.4685E+03 1.7642E+03 1.4222E+03
Rank 7 8 5 4 9 2 6 3 1

f15 Mean 5.4649E+03 5.1093E+03 3.8947E+03 8.6807E+03 1.8335E+03 1.6039E+03 3.6413E+03 6.6222E+03 1.5562E+03
Std 3.8321E+03 3.5602E+03 2.8508E+03 1.2955E+04 1.9250E+02 1.8818E+01 2.9516E+03 3.3137E+03 3.6958E+01
Best 1.6447E+03 1.6357E+03 1.5800E+03 1.6739E+03 1.6057E+03 1.5761E+03 1.5331E+03 2.0266E+03 1.5097E+03
Rank 7 6 5 9 3 2 4 8 1

f16 Mean 2.4602E+03 2.2238E+03 2.6581E+03 2.5592E+03 2.5414E+03 2.5251E+03 2.2256E+03 2.2091E+03 2.0832E+03
Std 2.8338E+02 3.0141E+02 3.2269E+02 2.3859E+02 2.1169E+02 1.6231E+02 1.7550E+02 2.4651E+02 2.1043E+02
Best 1.7254E+03 1.7471E+03 1.9469E+03 2.2741E+03 2.1861E+03 2.2575E+03 1.8684E+03 1.8753E+03 1.7396E+03
Rank 5 3 9 8 7 6 4 2 1
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CONTINUED TABLE III
f(x) Index ASO HGWO AHA HBA TS LSO HCPLSO SO ELSO
f17 Mean 1.9457E+03 1.8644E+03 2.1253E+03 2.1992E+03 2.1383E+03 1.8862E+03 1.8316E+03 2.0544E+03 1.7832E+03

Std 1.3074E+02 9.4049E+01 1.8293E+02 2.4667E+02 1.9565E+02 6.3020E+01 1.0416E+02 1.7585E+02 7.4494E+01
Best 1.7616E+03 1.7451E+03 1.8620E+03 1.7583E+03 1.8286E+03 1.7946E+03 1.7559E+03 1.8064E+03 1.7151E+03
Rank 5 3 7 9 8 4 2 6 1

f18 Mean 2.4731E+05 1.2872E+05 1.1377E+05 2.8935E+05 2.2548E+05 1.8873E+03 1.4690E+05 2.5448E+05 7.7632E+03
Std 1.7211E+05 7.9159E+04 8.7295E+04 2.3786E+05 2.5661E+05 1.1921E+01 1.0297E+05 2.7019E+05 5.5023E+03
Best 1.3424E+04 3.2713E+04 2.6611E+04 7.3909E+04 3.8189E+04 1.8671E+03 3.4674E+04 4.6917E+04 2.3812E+03
Rank 7 4 3 9 6 1 5 8 2

f19 Mean 5.6163E+03 6.0228E+03 7.3474E+03 1.1365E+04 2.9921E+03 1.9386E+03 9.1917E+03 1.0362E+04 1.9241E+03
Std 4.1011E+03 3.9342E+03 7.1964E+03 1.3038E+04 1.0101E+03 5.7533E+00 9.2551E+03 7.7292E+03 1.4743E+01
Best 2.0656E+03 2.0827E+03 2.1322E+03 2.1144E+03 1.9688E+03 1.9284E+03 1.9755E+03 2.2350E+03 1.9110E+03
Rank 4 5 6 9 3 2 7 8 1

f20 Mean 2.2841E+03 2.2510E+03 2.4620E+03 2.4546E+03 2.4170E+03 2.2941E+03 2.2055E+03 2.2768E+03 2.1022E+03
Std 1.2812E+02 9.0715E+01 1.4329E+02 1.9959E+02 1.4234E+02 7.5321E+01 9.2427E+01 1.1725E+02 7.5105E+01
Best 2.0722E+03 2.1018E+03 2.1726E+03 2.1077E+03 2.1747E+03 2.0977E+03 2.0430E+03 2.0620E+03 2.0117E+03
Rank 5 3 9 8 7 6 2 4 1

f21 Mean 2.3377E+03 2.3423E+03 2.4113E+03 2.3959E+03 2.4263E+03 2.3761E+03 2.3495E+03 2.3608E+03 2.3394E+03
Std 1.1662E+01 1.2941E+01 3.1405E+01 3.1396E+01 5.9868E+01 1.1422E+01 1.8097E+01 1.1169E+01 1.0155E+01
Best 2.3165E+03 2.3236E+03 2.3609E+03 2.3441E+03 2.2170E+03 2.3569E+03 2.3266E+03 2.3368E+03 2.3237E+03
Rank 1 3 8 7 9 6 4 5 2

f22 Mean 2.5284E+03 2.6400E+03 2.3008E+03 2.8802E+03 2.4612E+03 2.3068E+03 2.3001E+03 3.3572E+03 2.3002E+03
Std 8.7497E+02 1.0504E+03 1.3629E+00 1.5413E+03 8.1086E+02 8.3931E+00 6.1394E-01 1.3342E+03 9.8439E-01
Best 2.3000E+03 2.3000E+03 2.3000E+03 2.3000E+03 2.3100E+03 2.3000E+03 2.3000E+03 2.3000E+03 2.3000E+03
Rank 6 7 3 8 5 4 1 9 2

f23 Mean 2.7280E+03 2.7052E+03 2.7777E+03 2.7495E+03 2.8338E+03 2.7236E+03 2.7080E+03 2.7379E+03 2.6915E+03
Std 3.0760E+01 1.7134E+01 3.1620E+01 2.9552E+01 3.6511E+01 1.2173E+01 1.5550E+01 2.0964E+01 1.0200E+01
Best 2.6821E+03 2.6753E+03 2.7283E+03 2.7090E+03 2.7585E+03 2.7053E+03 2.6782E+03 2.7120E+03 2.6691E+03
Rank 5 2 8 7 9 4 3 6 1

f24 Mean 2.8599E+03 2.8802E+03 2.9624E+03 2.9909E+03 3.1303E+03 2.8838E+03 2.8833E+03 2.9016E+03 2.8629E+03
Std 3.1057E+01 2.6477E+01 3.5579E+01 1.9708E+02 8.9573E+01 9.4927E+00 2.2717E+01 2.9847E+01 1.0443E+01
Best 2.8064E+03 2.8404E+03 2.8600E+03 2.8692E+03 2.9413E+03 2.8612E+03 2.8434E+03 2.8564E+03 2.8469E+03
Rank 1 3 7 8 9 5 4 6 2

f25 Mean 2.8924E+03 2.9047E+03 2.9044E+03 2.8962E+03 2.8902E+03 2.8873E+03 2.8878E+03 2.8874E+03 2.8871E+03
Std 9.6345E+00 1.6564E+01 1.9987E+01 1.6041E+01 5.5389E+00 3.0645E-01 8.6814E-01 1.1684E+00 1.2800E+00
Best 2.8873E+03 2.8843E+03 2.8838E+03 2.8835E+03 2.8841E+03 2.8868E+03 2.8838E+03 2.8836E+03 2.8836E+03
Rank 6 9 8 7 5 2 4 3 1

f26 Mean 3.5627E+03 4.1831E+03 3.5298E+03 4.3776E+03 2.8612E+03 4.2493E+03 3.5363E+03 4.7776E+03 4.0728E+03
Std 6.1683E+02 2.1130E+02 1.2958E+03 7.6752E+02 8.4496E+01 3.9806E+02 5.5220E+02 2.6138E+02 1.5532E+02
Best 2.8000E+03 3.8019E+03 2.8001E+03 2.8001E+03 2.8229E+03 3.3248E+03 2.8000E+03 4.0949E+03 3.6576E+03
Rank 4 6 2 8 1 7 3 9 5

f27 Mean 3.2854E+03 3.2311E+03 3.2595E+03 3.4204E+03 3.2343E+03 3.2335E+03 3.2236E+03 3.2546E+03 3.2078E+03
Std 4.7231E+01 1.2245E+01 1.9412E+01 1.7838E+02 1.3000E+01 9.8298E+00 6.1171E+00 1.2014E+01 5.2602E+00
Best 3.2156E+03 3.2124E+03 3.2296E+03 3.2148E+03 3.2081E+03 3.2166E+03 3.2136E+03 3.2362E+03 3.1999E+03
Rank 8 3 7 9 5 4 2 6 1

f28 Mean 3.2001E+03 3.2398E+03 3.2195E+03 3.5033E+03 3.2265E+03 3.2067E+03 3.2103E+03 3.2419E+03 3.1791E+03
Std 3.3670E+01 8.6326E+01 1.8890E+01 1.0662E+03 1.7056E+01 1.3305E+01 1.9759E+01 2.2225E+01 4.1651E+01
Best 3.1008E+03 3.1000E+03 3.1959E+03 3.2012E+03 3.2021E+03 3.1918E+03 3.1681E+03 3.2038E+03 3.1001E+03
Rank 2 7 5 9 6 3 4 8 1

f29 Mean 3.5957E+03 3.7366E+03 3.6685E+03 4.0413E+03 3.7354E+03 3.8449E+03 3.5705E+03 3.8064E+03 3.4002E+03
Std 1.2929E+02 1.6271E+02 1.5934E+02 4.6986E+02 1.6092E+02 1.1580E+02 1.2720E+02 1.9353E+02 9.4625E+01
Best 3.3932E+03 3.4954E+03 3.3780E+03 3.3854E+03 3.4307E+03 3.6180E+03 3.3615E+03 3.3885E+03 3.2695E+03
Rank 3 6 4 9 5 8 2 7 1

f30 Mean 1.8275E+04 7.0697E+05 9.4221E+03 5.9859E+04 1.2722E+04 8.1893E+03 7.6703E+03 1.2797E+04 7.0117E+03
Std 7.5586E+03 1.1149E+06 2.3377E+03 8.2924E+04 3.4352E+03 1.1327E+03 1.6411E+03 7.0181E+03 1.0308E+03
Best 1.0816E+04 1.4413E+04 6.1870E+03 8.3670E+03 7.2179E+03 6.6825E+03 5.5506E+03 7.2391E+03 5.6786E+03
Rank 7 9 4 8 5 3 2 6 1

Total Rank 128 148 180 218 189 118 101 172 51
Final Rank 4 5 7 9 8 3 2 6 1
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TABLE IV
RESULTS OF COMPARING ALGORITHMS ON THE CEC2017 BENCHMARK FUNCTION (D=50)

f(x) Index ASO HGWO AHA HBA TS LSO HCLPSO SO ELSO
f1 Mean 3.9208E+03 3.1252E+03 1.8058E+05 4.1980E+06 5.0415E+07 3.0489E+03 2.8633E+03 7.6125E+05 3.0207E+03

Std 4.3047E+03 4.2415E+03 1.0925E+05 3.5133E+06 8.9464E+06 3.4749E+03 3.0264E+03 8.0384E+05 3.9389E+03
Best 1.0000E+02 1.0017E+02 6.0443E+04 1.4940E+06 2.9385E+07 4.9304E+02 1.0813E+02 1.5556E+04 1.0511E+02
Rank 5 4 6 8 9 3 1 7 2

f3 Mean 8.3102E+04 1.7411E+04 3.7535E+04 1.2403E+05 1.1036E+05 3.4774E+04 2.7963E+04 1.2638E+05 2.7894E+04
Std 1.3198E+04 4.9682E+03 8.1197E+03 1.3774E+04 1.0430E+04 1.0033E+04 8.0173E+03 1.1463E+04 9.4786E+03
Best 4.0967E+04 9.0404E+03 2.1677E+04 8.8916E+04 9.2795E+04 1.7860E+04 1.6692E+04 1.0021E+05 1.3762E+04
Rank 6 1 5 8 7 4 3 9 2

f4 Mean 6.1060E+02 6.0289E+02 5.7162E+02 5.7845E+02 5.5649E+02 5.3901E+02 5.2712E+02 5.8501E+02 5.2724E+02
Std 5.0160E+01 6.0938E+01 5.7174E+01 5.3134E+01 3.0494E+01 3.7980E+01 4.8981E+01 3.3017E+01 5.3297E+01
Best 5.3315E+02 4.6483E+02 4.5125E+02 4.6752E+02 5.0038E+02 4.5040E+02 4.2983E+02 5.0955E+02 4.2855E+02
Rank 9 8 5 6 4 3 1 7 2

f5 Mean 6.0321E+02 5.9008E+02 8.2118E+02 7.3362E+02 8.0546E+02 7.1049E+02 6.1959E+02 6.3339E+02 5.8980E+02
Std 1.9962E+01 1.5030E+01 3.2437E+01 5.3318E+01 3.0365E+01 2.1470E+01 2.2538E+01 1.4762E+01 2.0244E+01
Best 5.5771E+02 5.7164E+02 7.4078E+02 6.4321E+02 7.3967E+02 6.6336E+02 5.8059E+02 6.0511E+02 5.5572E+02
Rank 3 2 9 7 8 6 4 5 1

f6 Mean 6.0045E+02 6.1689E+02 6.0700E+02 6.0830E+02 6.2684E+02 6.0020E+02 6.0003E+02 6.0569E+02 6.0005E+02
Std 7.6368E-01 3.4276E+00 6.2282E+00 5.9887E+00 5.3309E+00 1.1548E-01 4.2425E-02 2.4926E+00 8.1626E-02
Best 6.0000E+02 6.1117E+02 6.0059E+02 6.0125E+02 6.1597E+02 6.0006E+02 6.0001E+02 6.0257E+02 6.0000E+02
Rank 4 8 6 7 9 3 1 5 2

f7 Mean 8.0848E+02 9.1932E+02 1.3062E+03 1.0871E+03 1.2041E+03 1.0109E+03 9.2569E+02 8.8742E+02 8.3997E+02
Std 1.0184E+01 4.3239E+01 1.6004E+02 9.1947E+01 4.8408E+01 4.1393E+01 3.9809E+01 3.2664E+01 2.3635E+01
Best 7.9278E+02 8.5684E+02 1.0160E+03 9.8489E+02 1.0981E+03 9.5438E+02 8.3146E+02 8.4841E+02 7.9562E+02
Rank 1 4 9 7 8 6 5 3 2

f8 Mean 8.9369E+02 8.9263E+02 1.1352E+03 1.0124E+03 1.1111E+03 1.0107E+03 9.4722E+02 9.2080E+02 8.8868E+02
Std 1.8210E+01 1.7703E+01 5.7572E+01 3.0099E+01 2.8444E+01 1.9393E+01 4.2935E+01 2.0989E+01 2.0723E+01
Best 8.5472E+02 8.5870E+02 1.0099E+03 9.5675E+02 1.0484E+03 9.7051E+02 8.9154E+02 8.9600E+02 8.5074E+02
Rank 3 2 9 7 8 6 5 4 1

f9 Mean 9.0035E+02 2.5425E+03 1.0393E+04 1.1019E+04 1.5641E+04 4.3750E+03 1.4000E+03 2.0034E+03 9.2281E+02
Std 4.3983E-01 4.8397E+02 2.0712E+03 4.4110E+03 1.6623E+03 1.2383E+03 1.0735E+03 4.6504E+02 2.5576E+01
Best 9.0000E+02 1.6704E+03 4.7919E+03 3.2625E+03 1.2306E+04 2.2499E+03 9.7587E+02 1.2588E+03 9.0445E+02
Rank 1 5 7 8 9 6 3 4 2

f10 Mean 6.3724E+03 6.9763E+03 6.3869E+03 7.5345E+03 7.2066E+03 8.5620E+03 5.6546E+03 4.7945E+03 7.8389E+03
Std 9.5788E+02 9.7600E+02 7.3633E+02 1.5334E+03 5.4784E+02 4.5607E+02 9.0441E+02 1.0706E+03 1.2400E+03
Best 4.3993E+03 5.7068E+03 4.7443E+03 5.1981E+03 5.6162E+03 7.5199E+03 4.5988E+03 3.6566E+03 5.5956E+03
Rank 3 5 4 7 6 9 2 1 8

f11 Mean 1.2915E+03 1.2557E+03 1.3125E+03 1.3753E+03 1.7618E+03 1.3451E+03 1.2246E+03 1.3545E+03 1.1676E+03
Std 7.7804E+01 3.7183E+01 1.6590E+02 7.8219E+01 1.8924E+02 3.3674E+01 3.8301E+01 5.8568E+01 2.2614E+01
Best 1.2018E+03 1.2068E+03 1.1947E+03 1.2591E+03 1.4179E+03 1.2644E+03 1.1631E+03 1.2687E+03 1.1285E+03
Rank 4 3 5 8 9 6 2 7 1

f12 Mean 1.5743E+06 8.3259E+05 5.6860E+06 1.1358E+07 1.4762E+07 9.3787E+05 1.2226E+06 6.7048E+06 8.6202E+05
Std 7.6031E+05 6.0259E+05 3.2800E+06 7.9163E+06 6.3965E+06 4.6559E+05 4.7198E+05 3.7168E+06 5.6504E+05
Best 6.0631E+05 1.2694E+05 1.2739E+06 4.1383E+06 8.3076E+06 2.0497E+05 4.7244E+05 1.4692E+06 1.0467E+05
Rank 5 1 6 8 9 3 4 7 2

f13 Mean 1.2729E+04 1.0131E+04 1.1894E+04 4.0861E+04 2.5323E+04 5.2824E+03 4.9749E+03 1.6611E+04 2.9505E+03
Std 4.2209E+03 5.8886E+03 7.5843E+03 2.8640E+04 6.0738E+03 7.1225E+02 5.6872E+03 1.0242E+04 2.6232E+03
Best 6.3974E+03 3.3457E+03 2.7681E+03 5.6993E+03 1.4680E+04 3.6734E+03 1.4188E+03 5.4736E+03 1.3715E+03
Rank 6 4 5 9 8 3 2 7 1

f14 Mean 1.1962E+05 4.7394E+04 8.1719E+04 2.5581E+05 9.4108E+05 1.5938E+03 3.6712E+04 9.4897E+04 2.3972E+03
Std 2.4946E+05 3.2679E+04 6.6173E+04 3.8372E+05 7.3616E+05 1.7716E+01 3.3268E+04 6.3214E+04 1.4973E+03
Best 1.3440E+04 1.7545E+03 6.1210E+03 1.1763E+04 2.0905E+05 1.5593E+03 6.1595E+03 2.7978E+04 1.5046E+03
Rank 7 4 5 8 9 1 3 6 2

f15 Mean 3.6144E+03 8.3755E+03 1.1249E+04 1.9181E+04 6.6901E+03 2.0617E+03 6.9734E+03 1.3539E+04 5.8736E+03
Std 1.9010E+03 4.8129E+03 6.5726E+03 8.6889E+03 3.7268E+03 8.9932E+01 3.0115E+03 6.7128E+03 3.1278E+03
Best 1.9622E+03 1.8906E+03 2.2119E+03 4.9685E+03 2.7363E+03 1.9034E+03 2.0518E+03 3.9484E+03 1.6066E+03
Rank 2 6 7 9 4 1 5 8 3

f16 Mean 2.7396E+03 2.8079E+03 3.4176E+03 3.2433E+03 3.1416E+03 3.3239E+03 2.9467E+03 2.9446E+03 2.7149E+03
Std 3.5875E+02 2.9839E+02 4.2891E+02 6.9149E+02 3.3101E+02 2.6236E+02 3.1332E+02 3.2284E+02 3.0591E+02
Best 2.1556E+03 2.3688E+03 2.8247E+03 2.4455E+03 2.5502E+03 2.7308E+03 2.3692E+03 2.2724E+03 1.8626E+03
Rank 2 3 9 7 6 8 5 4 1
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CONTINUED TABLE IV
f(x) Index ASO HGWO AHA HBA TS LSO HCLPSO SO ELSO
f17 Mean 2.6375E+03 2.8136E+03 3.1486E+03 2.8830E+03 3.0931E+03 2.8815E+03 2.7530E+03 2.7870E+03 2.3447E+03

Std 2.6301E+02 2.5665E+02 2.5866E+02 2.9367E+02 2.8365E+02 1.7536E+02 2.7672E+02 2.8424E+02 1.8965E+02
Best 2.2032E+03 2.3703E+03 2.7958E+03 2.4559E+03 2.5203E+03 2.4740E+03 2.1638E+03 2.3823E+03 1.8925E+03
Rank 2 5 9 7 8 6 3 4 1

f18 Mean 7.9641E+05 2.9747E+05 9.7419E+05 2.3789E+06 2.0465E+06 2.7128E+03 3.4963E+05 1.6981E+06 9.0386E+04
Std 8.1511E+05 1.7785E+05 7.7553E+05 1.6717E+06 9.9747E+05 3.7420E+02 2.2517E+05 1.5375E+06 7.2172E+04
Best 1.4030E+05 7.5718E+04 6.6677E+04 3.8036E+05 2.2893E+05 2.3383E+03 7.1722E+04 1.9212E+05 2.5654E+04
Rank 5 3 6 9 8 1 4 7 2

f19 Mean 1.4218E+04 1.9923E+04 2.2347E+04 2.1073E+04 1.1122E+04 2.0266E+03 1.0423E+04 1.4023E+04 1.5308E+04
Std 6.0389E+03 1.0077E+04 1.0365E+04 1.0698E+04 4.1667E+03 1.7561E+01 9.1203E+03 1.2806E+04 6.7533E+03
Best 6.1248E+03 3.4255E+03 3.4410E+03 2.6197E+03 5.0292E+03 1.9981E+03 1.9663E+03 2.4195E+03 3.2401E+03
Rank 5 7 9 8 3 1 2 4 6

f20 Mean 2.8053E+03 2.7679E+03 3.2096E+03 2.9397E+03 3.0144E+03 2.9960E+03 2.9178E+03 2.7818E+03 2.4757E+03
Std 3.2939E+02 3.1439E+02 3.0351E+02 2.5835E+02 2.3474E+02 1.7364E+02 2.0415E+02 2.7139E+02 1.6785E+02
Best 2.4907E+03 2.1886E+03 2.7715E+03 2.5496E+03 2.2798E+03 2.6104E+03 2.4795E+03 2.4002E+03 2.0821E+03
Rank 4 2 9 6 8 7 5 3 1

f21 Mean 2.3952E+03 2.3896E+03 2.5173E+03 2.4862E+03 2.6068E+03 2.5070E+03 2.4168E+03 2.4267E+03 2.3912E+03
Std 2.3634E+01 2.7802E+01 3.9145E+01 4.2969E+01 3.6515E+01 2.2171E+01 2.5464E+01 1.8860E+01 1.6077E+01
Best 2.3641E+03 2.3423E+03 2.4658E+03 2.4248E+03 2.5405E+03 2.4545E+03 2.3640E+03 2.3884E+03 2.3582E+03
Rank 3 1 8 6 9 7 4 5 2

f22 Mean 8.0725E+03 8.7956E+03 7.7620E+03 1.0132E+04 8.8813E+03 1.0361E+04 7.2705E+03 7.1474E+03 8.4564E+03
Std 1.8462E+03 8.1693E+02 2.4650E+03 1.9450E+03 1.8581E+03 4.6547E+02 2.2835E+03 2.5233E+03 2.0599E+03
Best 2.3000E+03 6.8961E+03 2.3016E+03 2.3254E+03 2.3527E+03 9.3514E+03 2.3000E+03 5.4494E+03 2.3000E+03
Rank 4 6 3 8 7 9 2 1 5

f23 Mean 2.9843E+03 2.8435E+03 3.0326E+03 2.9453E+03 3.1644E+03 2.9431E+03 2.8498E+03 2.9226E+03 2.8212E+03
Std 6.4958E+01 3.2375E+01 4.2947E+01 5.5826E+01 9.0251E+01 2.7763E+01 4.8214E+01 4.2370E+01 1.9219E+01
Best 2.8829E+03 2.7844E+03 2.9388E+03 2.8308E+03 3.0274E+03 2.8786E+03 2.8073E+03 2.8752E+03 2.7831E+03
Rank 7 2 8 6 9 5 3 4 1

f24 Mean 3.3312E+03 3.0470E+03 3.2753E+03 3.4380E+03 3.5419E+03 3.0802E+03 3.0700E+03 3.0623E+03 2.9883E+03
Std 3.0040E+03 2.9619E+03 3.1689E+03 3.0370E+03 3.3065E+03 3.0360E+03 3.0078E+03 3.0342E+03 2.9523E+03
Best 2.8600E+03 2.8404E+03 2.8069E+03 2.8692E+03 2.9413E+03 2.8612E+03 2.8434E+03 2.8564E+03 2.8464E+03
Rank 7 3 2 8 9 5 4 6 1

f25 Mean 3.1378E+03 3.1852E+03 3.1019E+03 3.1051E+03 3.1096E+03 3.0820E+03 3.0588E+03 3.0720E+03 3.0493E+03
Std 3.6623E+01 6.4643E+01 2.9733E+01 3.4038E+01 1.5177E+01 2.5226E+01 2.5721E+01 2.6062E+01 2.6810E+01
Best 3.0574E+03 3.0916E+03 3.0491E+03 3.0370E+03 3.0841E+03 3.0368E+03 2.9666E+03 2.9965E+03 2.9658E+03
Rank 8 9 5 6 7 4 2 3 1

f26 Mean 4.6377E+03 5.1705E+03 4.8854E+03 6.0634E+03 3.1785E+03 5.9822E+03 4.3717E+03 6.0798E+03 4.6797E+03
Std 1.2922E+03 3.8470E+02 2.6487E+03 1.1844E+03 8.4885E+01 3.0456E+02 1.1199E+03 3.7576E+02 2.5236E+02
Best 2.9000E+03 4.5986E+03 2.9069E+03 3.3640E+03 3.0339E+03 5.3435E+03 2.9002E+03 5.4984E+03 4.1933E+03
Rank 3 6 5 8 1 7 2 9 4

f27 Mean 3.8845E+03 3.4848E+03 3.6220E+03 4.0186E+03 3.5102E+03 3.5647E+03 3.4499E+03 3.6067E+03 3.2996E+03
Std 3.2804E+02 7.2461E+01 1.3409E+02 5.0302E+02 7.4614E+01 6.8543E+01 8.0967E+01 7.4884E+01 5.1074E+01
Best 3.4478E+03 3.3701E+03 3.3591E+03 3.3154E+03 3.3978E+03 3.4063E+03 3.3041E+03 3.4367E+03 3.2416E+03
Rank 8 3 7 9 4 5 2 6 1

f28 Mean 3.3645E+03 3.3930E+03 3.3794E+03 3.6791E+03 3.3665E+03 3.3701E+03 3.3331E+03 3.3388E+03 3.3138E+03
Std 5.5503E+01 5.1039E+01 3.9363E+01 1.7663E+03 2.4092E+01 3.0419E+01 4.8019E+01 2.1222E+01 1.6513E+01
Best 3.2747E+03 3.3175E+03 3.2977E+03 3.3197E+03 3.3125E+03 3.3158E+03 3.2648E+03 3.3087E+03 3.2803E+03
Rank 4 8 7 9 5 6 2 3 1

f29 Mean 3.9342E+03 4.4635E+03 4.2538E+03 5.6484E+03 4.3180E+03 4.7844E+03 3.7597E+03 4.1963E+03 3.5997E+03
Std 2.8846E+02 3.5437E+02 2.9297E+02 1.6705E+03 2.5138E+02 2.5505E+02 1.7570E+02 2.8203E+02 2.4596E+02
Best 3.5044E+03 3.8078E+03 3.7461E+03 3.5598E+03 3.7641E+03 4.3131E+03 3.4688E+03 3.8807E+03 3.2751E+03
Rank 3 7 5 9 6 8 2 4 1

f30 Mean 7.0596E+06 5.2828E+07 9.5014E+05 2.0732E+06 1.4935E+06 6.1387E+06 9.5172E+05 1.3973E+06 8.7342E+05
Std 2.1370E+06 2.1816E+07 1.1957E+05 9.5770E+05 2.4060E+05 1.4149E+06 8.4434E+04 5.7968E+05 1.3018E+05
Best 4.3966E+06 2.0387E+07 7.6776E+05 9.0186E+05 1.0028E+06 3.2263E+06 7.9965E+05 8.0341E+05 7.1401E+05
Rank 8 9 2 6 5 7 3 4 1

Total Rank 132 130 186 219 202 146 86 144 60
Final Rank 4 3 7 9 8 6 2 5 1
f17 Mean 2.6375E+03 2.8136E+03 3.1486E+03 2.8830E+03 3.0931E+03 2.8815E+03 2.7530E+03 2.7870E+03 2.3447E+03

Std 2.6301E+02 2.5665E+02 2.5866E+02 2.9367E+02 2.8365E+02 1.7536E+02 2.7672E+02 2.8424E+02 1.8965E+02
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Fig. 5 Qualitative comparison results of f1
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Fig. 6 Qualitative comparison results of f6
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(a)“Mean” indicator

(b)“Std” indicator

(c)“Best” indicator
Fig. 7 Graphical results of Friedman's test

Among various approaches, the penalty method [24] is
one of the most widely used techniques for handling
constrained optimization problems. The objective function
with the penalty method typically takes the form of the
following equation:
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(26)

Where α and β are penalty factors.

When ELSO is applied to constrained optimization
problems, relying solely on fitness-dominated individuals
for search guidance shows certain limitations. This approach
may not adequately ensure that the population satisfies the
constraints. Such shortcomings often lead to premature

convergence in infeasible regions that contain
constraint-violating solutions. The FDC method addresses
this issue in two ways. First, it selects high-fitness leaders.
Second, it maintains population diversity by using
dual-objective selection criteria in both the decision and
constraint spaces. To enhance ELSO's local search
effectiveness, the FDC mechanism is incorporated as an
enhancement module, specifically strengthening its
constraint-handling capability within the hybrid
optimization framework defined in Equation (27):
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is changed to:
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And
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The FDC method is integrated into ELSO, forming the
enhanced FDC-ELSO variant.
The detailed descriptions of the four optimization

problems we selected are as follows：

A. Spring problem
Springs are essential components in mechanical systems

and are widely used in automotive, aerospace, and
biomedical engineering. The optimization of spring design
aims to enhance performance by balancing multiple
objectives, including material selection, geometric
parameters, and manufacturing processes. The design
process must also satisfy several operational constraints,
such as stress limits, stiffness requirements, and fatigue
resistance. A rigorous mathematical model is detailed in
reference [25].
As shown in Table VII, among all algorithms that

incorporate the FDC method, the FDC-ELSO algorithm
achieves the best performance on the spring design problem.
This result indicates that FDC-ELSO is highly competitive
in solving constrained optimization problems.

B. Reducer design problem
The gear reducer is a crucial transmission component,

widely used across various applications. In this optimization
problem, seven design variables are used. The objective is to
minimize the reducer's mass while meeting eleven
constraints.
The optimized design not only reduces mass but also

enhances load-bearing capacity and extends service life.
Detailed mathematical modeling can be found in reference
[26].
As shown in Table VIII, FDC-ELSO achieves the highest

mean value for the reducer design problem and significantly
outperforms the other algorithms. This result demonstrates
that FDC-ELSO possesses strong optimization capability for
this problem and can effectively solve constrained
optimization problems.

C. WSN coverage optimization problem
Wireless Sensor Networks (WSNs) consist of distributed

sensor nodes. Optimal node deployment is essential for
maximizing network coverage [29]. Coverage is defined as
the ratio of the monitored area to the total area, the

mathematical model for WSN coverage optimization, along
with its technical specifications, is detailed in [30].
As shown in Table IX, the ELSO algorithm achieves both

the highest mean value and the lowest ranking score,
demonstrating its superiority in coverage optimization.
ELSO effectively achieves optimal coverage, confirming its
outstanding capability in solving unconstrained optimization
problems compared to other algorithms.

D. Bridge Arch Design Optimization Problem
In bridge design, optimizing arch structures through

topology optimization can enhance efficiency and reduce
material usage. This process emphasizes material
minimization and geometric refinement to achieve optimal
structural performance. The mathematical framework is
provided in reference [31].
As shown in Table X, the ELSO algorithm ranks first and

exhibits a notably small standard deviation, indicating the
excellent stability of its results. This performance not only
significantly surpasses that of other algorithms but also
demonstrates ELSO's outstanding effectiveness in solving
unconstrained optimization problems.

VII. SUMMARY AND OUTLOOK

In this study, we propose an Enhanced Light Spectral
Optimization Algorithm (ELSO) to address the limitations
of the conventional Light Spectral Optimization Algorithm
(LSO) and to provide innovative solutions for both
unconstrained and constrained optimization problems.
ELSO integrates three strategic enhancements: Logistic
chaotic mapping, Cauchy mutation, and Lévy flights. These
mechanisms work synergistically to balance exploration and
exploitation, enhance global search ability to avoid local
optima, and reduce premature convergence, thereby
improving both optimization accuracy and computational
efficiency. We first incorporate the FDC method into
ELSO's constraint-handling framework, greatly improving
feasibility in constrained optimization. Effectiveness and
sensitivity analyses validate component benefits and
identify optimal parameters [32]. Comparative results show
ELSO surpasses LSO and eight metaheuristics in solution
quality and convergence reliability, as supported by the
Friedman and Wilcoxon tests. In addition, we rigorously
evaluated the optimization capabilities of ELSO and
FDC-ELSO through four classical engineering problems,
confirming their competitiveness and superior performance
in both unconstrained and constrained scenarios.
Although ELSO and FDC-ELSO have demonstrated

remarkable results in continuous single-objective
optimization problems, their advantages in discrete and
multi-objective optimization problems require further
validation [33]. In future work, we will systematically
introduce advanced enhancement strategies and thoroughly
investigate the application of ELSO and FDC-ELSO in
discrete and multi-objective optimization. The focus will be
on fully unlocking their potential and expanding the
applicability of these algorithms to emerging, complex
optimization domains [34].
In summary, our primary objective is to meet the diverse

and evolving demands of real-world applications by
continuously identifying and effectively addressing the
current limitations of ELSO, strengthening its theoretical
foundation and practical value, and developing multiple
optimized versions.
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Fig. 8 Convergence curve comparison diagram
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TABLE VI. ENGINEERING PROBLEM

No. Problem Name Dimension Reference
P1 Spring problem 3 [25]
P2 Reducer design 7 [26]
P3 WSN coverage optimization 4 [27]
P4 Bridge Arch Design 6 [28]

TABLE VII. SPRING PROBLEM RESULT

Algorithm Mean Std Best Rank
FDC-ASO 1.2665E-02 6.8050E-13 1.2665E-02 3

FDC-HGworf 1.2674E-02 3.7206E-06 1.2667E-02 6
FDC-AHA 1.2693E-02 2.3069E-13 1.2665E-02 7
FDC-HBA 2.2410E-01 2.7624E-01 1.6890E-02 9
FDC-TS 1.2744E-02 1.2499E-04 1.2700E-02 8
FDC-LSO 1.2665E-02 1.1690E-08 1.2665E-02 5

FDC-HCLPSO 1.2665E-02 7.7780E-18 1.2665E-02 2
FDC-SO 1.2665E-02 1.2586E-08 1.2665E-02 4

FDC-ELSO 1.2660E-02 3.5000E-18 1.2660E-02 1

TABLE VIII. REDUCER DESIGN PROBLEM RESULTS

Algorithm Mean Std Best Rank
FDC-ASO 1.7249E+00 5.4777E-11 1.7249E+00 4

FDC-HGworf 1.7251E+00 1.2390E-04 1.7249E+00 6
FDC-AHA 1.7249E+00 4.9794E-12 1.7249E+00 3
FDC-HBA 4.0000E+19 4.9827E+19 3.4441E+00 9
FDC-TS 1.8784E+00 1.5651E-01 1.7306E+00 8
FDC-LSO 1.2665E-02 1.1690E-08 1.2665E-02 5

FDC-HCLPSO 1.7249E+00 1.1292E-15 1.7249E+00 2
FDC-SO 1.8700E+00 2.0903E-01 1.7285E+00 7

FDC-ELSO 1.1499E+00 3.5000E-11 1.1499E+00 1

TABLE. IX REDUCER DESIGN PROBLEM RESULTS

Algorithm Mean Std Best Rank
ASO 1.3025E-02 4.7501E-11 1.2999E-02 3

HGworf 1.2750E-02 9.1200E-05 1.2705E-02 6
AHA 1.2901E-02 3.5503E-12 1.2800E-02 7
HBA 2.4100E-01 3.1500E-01 1.8000E-02 9
TS 1.2840E-02 1.5000E-03 1.2790E-02 8
LSO 1.2950E-02 8.5000E-09 1.2902E-02 5

HCLPSO 1.2667E-02 6.5200E-17 1.2660E-02 2
SO 1.2738E-02 1.1000E-07 1.2655E-02 4

ELSO 1.2620E-02 3.2500E-16 1.2600E-02 1

Fig. 9 Initial node deployment and optimization results for the WSN problem
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