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Abstract—It aims to address the problems of low accuracy of
existing road defect detection algorithms and false detection and
missed detection of small cracks. It proposes a road detection
algorithm, YOLOv10n-DSLD, that improves the YOLOv10n
model. The algorithm uses Large Separable Kernet Attention
(LSKA) in the backbone network to improve Spatial Pyramid
Pooling Fast (SPPF) to enhance the ability of multi-scale feature
extraction. Since the size and aspect ratio of cracks vary greatly
in complex backgrounds, Dynamic Snake Convolution (DSC) is
used to improve the sensitivity of identifying the shapes and
boundaries of small road cracks by adaptively adjusting the
shape and size of the convolution kernel. Finally, Dynamic
Sample (DySample) is introduced to improve UpSample in
YOLOv10 to enhance the feature fusion capability of the neck
network and reduce the computational complexity of the model
without reducing the detection accuracy. Experiments show
that the YOLOv10n-DSLD model has achieved remarkable
results. The improved model has improved mAP50 and mAP50-
95 by 2.5% and 1.1%. In addition, the improved model has
higher detection accuracy than other advanced object detection
models, including YOLOv5, YOLOv7, YOLOv8, YOLOv10
series, YOLOv11, and Faster R-CNN. It has demonstrated a
high detection capability, and the ablation experiment further
shows that the improved model is effective in improving the
overall performance.

Index Terms—Deep Learning; Road Detection; YOLOv10;
DSC

I. INTRODUCTION

W ITH the rapid advancement of urbanization and
the continuous increase in vehicle numbers, urban

road infrastructures are under mounting pressure. Traditional
maintenance methods often fail to detect defects such as
cracks and potholes in a timely manner, resulting in frequent
traffic accidents and escalating maintenance costs. In this
context, achieving efficient, accurate, and real-time road
defect detection has become a pressing need for modern
traffic management. Deep learning-based object detection
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techniques have increasingly supplanted conventional ap-
proaches, delivering significant gains in detection accuracy
[1]. Nevertheless, their heavy reliance on computational
resources poses challenges to their deployment in certain
real-time and resource-constrained scenarios [2].

Current deep learning target detection methods are mainly
divided into two categories: two-stage (such as Faster R-
CNN) and single-stage (such as YOLO series) [3]. The
former has high accuracy but slow speed, while the latter
has stronger real-time performance.The YOLOv10 version
still has the problem of insufficient feature extraction in
the detection of small road defects.To improve performance,
Zhang et al. introduced the Swin Transformer module to
enhance the detection of small targets [4]; Ao et al. pro-
posed the dynamic acceleration network DyFasterNet, which
improves feature extraction capabilities through multi-core
adaptive convolution and improves average accuracy by
1.9%. However, DyFasterNet has additional computational
overhead due to its complex structure.Although the above-
ment ioned improvement methods have improved the de-
tection accuracy, they have also brought about a signifi-
cant increase in parameters, which is not conducive to the
lightweight [5]. In order to balance accuracy and efficiency,
Lu et al. introduced lightweight modules GSConv and VoV-
GSCSP to reduce computational costs while maintaining
good feature extraction capabilities [6]. Jin et al. combined
AKConv and VanillaNest to propose AKVanillaNet, which
effectively captures target shape features and significantly
reduces the number of parameters [7]. Wu et al. designed a
lightweight multi-scale detection model GAS-YOLO, which
integrated the GSF-ST architecture, improved BiFPN and
Swin Transformer, improved the small target detection capa-
bility, introduced Wiou loss to optimize the sample imbalance
problem, and improved the detection accuracy by 10.8% [8].

In the road detection model,Liu et al. proposed a fast
improved road detection model MMS-YOLOv10 based on
YOLOv10, adding the multi-co-attention (MCA) mechanism
to the C2f module to enhance the adaptability of objects of
different scales [9]. Secondly, a multi-level feature fusion
(MFF) module is designed to enhance semantic and detail
information and improve the feature expression ability with
different levels of features. Finally, a sample-related weighted
loss function is introduced in the network training process
to solve the sample imbalance problem.Although existing
road detection methods have achieved good results in terms
of accuracy, they are still prone to missed detection or
false detection in complex environments such as occlusion,
lighting changes, and bad weather, affecting the stability and
practicality of the model. To address these challenges, an
enhanced YOLOv10-DSLD model is proposed, which intro-
duces advanced network structure and optimization strategies
to improve detection accuracy and generalization ability,
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and enhance its robustness in complex scenarios. This study
mainly made three improvements:

1) To solve the problem that the standard Large Separable
Attention(LSA) relies too much on texture features and
ignores the global shape of objects, LSKA is introduced.

2) In order to enhance the sensitivity of feature extraction
to small cracks in slender and tortuous local structures, DSC
is introduced in the convolutional layer of the backbone
network.

3) To enhance the detection capability of small targets
and complex scenes and achieve a better balance between
accuracy and speed, the DySample upsampler is used to re-
duce computational and resource overhead while maintaining
performance.

The road defect detection technology based on
YOLOv10n-DSLD has significantly advanced infrastructure
modernization. This method offers the advantages of high
accuracy and lightweight deployment, enabling effective
identification of defects such as cracks and potholes.
Consequently, it enhances road management efficiency,
reduces maintenance costs, and prolongs the service life
of road infrastructure. This technology has achieved the
transformation from manual inspection to data-driven
intelligent management, promoted precise road maintenance
and sustainable development, and become a key supporting
tool in the intelligent transportation system, helping the
automation and modernization of the transportation system
[10].

II. RELATED WORKS

A. YOLOv10 Model

YOLO is one of the most popular real-time target detection
algorithms. YOLOv10 has been lightly optimized in the
backbone network, using Depthwise Separable Convolu-
tions and Bottleneck Layers, which significantly reduces the
amount of computation and memory consumption.YOLOv10
introduced Path Aggregation Network (PAN) and Efficient
Channel Attention (ECA), which improved the small object
detection accuracy and feature fusion capabilities.In terms of
the backbone network, YOLOv10 balances the accuracy and
computational efficiency of the model through lightweight
design and the introduction of a new feature extraction
module, and performs particularly well in small object de-
tection and low-resource environments [11]. YOLOv10 has
five different models, each with different parameter sizes to
meet various application requirements. For the actual needs
of road defect detection, the YOLOv10n model achieves a
good balance between detection speed and accuracy. On this
basis, this paper proposes an improved model YOLOv10n-
DSLD as shown in Fig. 2.

B. LSKA

Traditional LKA performs well in visual tasks, but its
computational and memory overhead caused by the increase
of convolution kernel size limits its application.To solve
this problem, LSKA is proposed, which effectively reduces
computational complexity and memory consumption by de-
composing large kernel convolution into horizontal and ver-
tical one-dimensional convolutions. Experiments show that
LSKA maintains comparable performance to LKA in Visual

Attention Network (VAN), while significantly optimizing
resource usage and enhancing the model’s ability to focus
on object shapes.

The working principle of LSKA is shown in Fig. 2 LSKA
decomposes a large kernel into two depth-wise convolutions
to obtain a wide receptive field with different features, which
helps in the subsequent selection of kernels of different sizes.
Moreover, decomposing a large kernel can effectively reduce
the number of parameters in the model compared to using
a single kernel.In addition, LSKA can dynamically select
the appropriate kernel according to the characteristics of the
input target, thereby adapting to the contextual information
of different target objects.In order to dynamically select the
appropriate kernel [12], LSKA divides the input features into
different sub-feature maps, and then applies different depth
convolutions to these sub-feature maps to obtain different
output feature maps. Then, the features obtained from differ-
ent kernels are cascaded with different receptive field ranges:

Ũ =
[
Ũ1; . . . ; Ũi

]
(1)

Under this operation,denotes the features extracted by
different kernels, capturing spatial relationships through a
combination of channel-wise average pooling and max pool-
ing operations [13]:

SAavg = Pavg(Ũ), SAmax = Pmax(Ũ) (2)

Then, after SA connection, the features are converted into
N spatial attention maps through convolution kernels and
sigmoid processing to ensure that they have the same number
of deep convolutions [14]:

S̃A = F 2→N ([SAcvg;SAmax]) (3)

The final N spatial attention maps are passed through
a sigmoid activation function to obtain different spatial
selection weights, and the final output is the element-wise
product between the input features X and S.

S̃Ai = σ(S̃Ai) (4)

S = F

(
N∑
i=1

(S̃Ai · Ũi)

)
(5)

Y = X · S (6)

C. DSC

Tubular structures are typically elongated and tortuous,
posing challenges for conventional convolutional methods in
capturing their intricate local features. Deep learning-based
image processing approaches like U-Net often fall short in
detecting fine-grained structures, and their loss functions do
not explicitly enforce topological constraints, leading to inad-
equate preservation of topological continuity.A method called
DSC is proposed, which can adaptively focus on elongated
and tortuous local structures. DSCN effectively addresses
the challenges of capturing local features, preserving global
morphological integrity, and maintaining topological conti-
nuity in tubular structure segmentation by innovatively inte-
grating dynamic convolution, feature fusion, and topological
constraint techniques. Extensive evaluations demonstrate that
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Fig. 1. YOLOv10n-DSLD model

this method achieves outstanding performance on both 2D
and 3D datasets, providing a more accurate and continuous
segmentation framework for tubular structures, significantly
improving segmentation accuracy and reliability [15].

D. DySample

Conventional dynamic upsamplers (such as CARAFE,
FADE, and SAPA) typically rely on dynamic convolu-
tions and additional sub-networks to generate dynamic ker-
nels, which incurs significant computational overhead in
terms of parameters, FLOPs, and GPU memory consump-
tion.These methods typically rely on high-resolution input
features, which restrict their applicability in various sce-
narios. DySample overcomes the complexity of dynamic
convolutions by employing a point-sampling approach for
upsampling, effectively avoiding the high computational cost
associated with dynamic convolutions and significantly re-
ducing resource consumption.DySample does not require
custom CUDA packages, significantly reducing the number
of parameters, FLOPs, GPU memory usage, and latency.
Compared to traditional kernel-based dynamic upsamplers,
it offers clear advantages. Therefore, we integrate DySample

into our YOLOv10n-DSLD network, focusing on upsampling
low-resolution images to higher resolutions with minimal
overhead [16].

III. AN IMPROVED ROAD DEFECT DETECTION MODEL
BASED ON YOLOV10

To address the issues of low accuracy, false positives,
and missed detections of fine cracks in existing YOLOv10n-
based road defect detection algorithms, this paper proposes
the YOLOv10n-DSLD model. The proposed approach intro-
duces several technical enhancements to improve algorithm
performance, effectively overcoming limitations in feature
representation and extraction, and enhancing the accuracy
of small-object detection in complex scenarios.First, we in-
tegrate the LSKA module into the SPPF pooling layer of the
YOLOv10n backbone, which facilitates the aggregation of
both local and global features after multi-scale pooling oper-
ations. Second, a dynamic deformable convolution module is
incorporated into the C2f block of the backbone, significantly
enhancing the efficiency and accuracy of feature extrac-
tion, particularly for fine details and multi-scale features in
complex images. Finally, we adopt a lightweight DySample

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3467-3478

 
______________________________________________________________________________________ 



Fig. 2. LSKA working principle diagram

upsampler, which replaces traditional interpolation with a
point sampling approach, improving object detection accu-
racy while reducing computational overhead.

A. SPPF-LSKA

In YOLOv10, the introduced SPPF module significantly
enhances the network’s capability in detecting small and
multi-scale objects while maintaining high computational
efficiency. By employing three consecutive 5×5 max pooling
operations followed by feature concatenation, SPPF expands
the receptive field and accelerates feature extraction. Com-
pared to the traditional SPP, SPPF reduces both computa-
tional cost and memory usage, making it particularly suitable
for efficient object detection. The LSKA module, on the
other hand, reduces computational complexity and memory
overhead by decomposing 2D convolution kernels into 1D
horizontal and vertical kernels. It further enhances feature
extraction through an integrated attention mechanism [17].
The combination of LSKA and SPPF enables YOLOv10
to perform more efficient and accurate multi-scale feature
extraction, especially when dealing with large-scale datasets
and complex visual tasks.

The SPPF-LSKA module is constructed by augmenting
the original SPPF with the LSKA.The architecture of the
module is illustrated in Fig. 3: A schematic diagram of the
LSKA module is shown in Fig. 4 For a given feature map
F, the operation can be formulated as follows:

Fig. 3. SPPF-LSKA

F ∈ RC×H×W (7)

where C denotes the number of input channels, and H

Fig. 4. LSKA

and W represent the height and width of the feature map,
respectively. The output of the LSKA module is defined as
follows:

Z
C
=
∑
H,W

WC
(2d−1)×1 ∗

∑
H,W

WC
1×(2d−1) ∗ F

C

 (8)

ZC =
∑
H,W

WC

[ kd ]×1
∗

∑
H,W

WC
1×[ kd ]

× Z
C

 (9)

AC = W1×1 ∗ ZC (10)

F
C
= AC ⊗ FC (11)

where, the symbols ∗ and ⊗ represent the convolution
operation and the Hadamard product, respectively.Represents
the depthwise convolution output obtained by convolving the
input feature map F with a convolution kernel W of size
k × k. The left side of equation (8) shows the output of the
depthwise convolution with a kernel size of 1 × (2d − 1),
which helps capture local spatial information and, as shown
in equation (9), is used to compensate for the lattice effect
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Fig. 5. Different Convolution Types: (a) Standard Convolution; (b) Dilated Convolution; (c) Deformable Convolution; (d)
DSC.

that may occur in the subsequent depthwise convolution.The
kernel size of the deep convolution is

⌊
k
d

⌋
× 1, where k

denotes the receptive field of the kernel W, and d is the
dilation rate. A 1× 1 convolutional kernel AC is applied to
produce the attention map. The Hadamard product between
the attention map AC and the input feature map FC is
represented by the left-hand side and the middle term of
Equation (11) [18]. In summary, integrating the SPPF-LSKA
module into the YOLOv10n model for road defect detection
significantly improves the model’s performance in complex
road environments. Road defects such as fine cracks and
potholes often appear at varying scales and locations. By
incorporating the SPPF and LSKA modules, the model
gains a more comprehensive understanding of road surface
features, thereby enhancing detection accuracy. Specifically,
the SPPF module reduces the dimensionality of feature maps
through pooling operations, effectively lowering computa-
tional cost. Meanwhile, the LSKA module decomposes large
convolutional kernels into 1D kernels, reducing both compu-
tational complexity and memory usage. The combination of
these two modules enhances the model’s ability to capture
shape-related information, making it particularly effective for
analyzing the geometric characteristics of road defects, and
thus achieving superior detection performance in challenging
scenarios.

B. C2f-DSC
Standard convolution performs poorly when handling

datasets with diverse features (Fig. 5a), particularly for
targets with tubular or fine curved structures, such as road
cracks. To address this limitation, several alternative convolu-
tional approaches have been proposed, including dilated con-
volution and deformable convolution [19]. However, dilated
convolution lacks the ability to adaptively adjust its receptive
field to focus on tubular structures (Fig. 5b). Although
deformable convolution can learn regions of interest adap-
tively based on feature characteristics, it fails to preserve the
connectivity of the focus regions, especially for fine, curved,
tubular targets like road cracks (Fig. 5c).To overcome these
issues, [20] proposed a dynamic snake convolution, which
introduces convolutional kernels capable of dynamically ad-
justing their shape to enhance feature perception. During
feature learning, this method allows the kernel to adapt its
shape to better focus on elongated and tortuous local features
within tubular structures (Fig. 5), thereby enabling more
accurate representation of such structures and significantly
improving detection and segmentation performance.

DSC introduces a deformable offset mechanism to adap-
tively adjust the shape of convolutional kernels, enabling
more precise capture of geometric features in curved or
highly continuous road defects. By iteratively learning op-
timal offsets, this method enhances the flexibility of convo-
lution operations in the 2D spatial domain, improving the
model’s ability to perceive complex object shapes. In road
defect detection tasks, DSC effectively addresses scenarios
involving multi-scale and morphologically diverse defects,
significantly improving both detection accuracy and robust-
ness. The underlying principle of Dynamic Snake Convolu-
tion is as follows [21]:

First, for a standard 2D convolution with a given coor-
dinate K (size N ×N ), the center coordinate is denoted as
Ki = (xi, yi), where i is an integer. For a 3×3 convolutional
kernel with a dilation rate of 1, K is represented as:

K = {(x− l, y − l), (x− l, y), · · · , (x+ l, y + l)} (12)

where, K denotes the standard 2D convolution coordinates,
with x and y representing the horizontal and vertical grid
positions.

To better adapt convolutional kernels to the complex
geometric characteristics of road defects, a deformable offset
∆ is introduced in this study. However, if the model learns
these offsets in a purely random manner, the receptive field
may deviate from the actual defect areas, particularly in cases
involving irregular patterns such as cracks or potholes. To ad-
dress this issue, an iterative strategy is adopted, as illustrated
in Fig. 6, where each defect region is progressively aligned
with its optimal observation point. This approach ensures that
feature attention remains consistently focused, preventing
excessive expansion or displacement of the receptive field
caused by large offset values.

In DSC, the standard convolutional kernel is linearized
along the x-axis and y-axis. For a convolution kernel of size
9, for the x-axis, each specific position Ki ± c is calculated
as: (xi ± c, yi ± c), where c = {0, 1, 2, 3, 4} represents
the horizontal distance from the center grid. The selection
of each grid position Ki ± c within the convolution kernel
follows a progressive strategy: starting from the center, each
subsequent position Ki + 1 is determined based on its pre-
decessor with an incremental offset ∆ = {δ | δ ∈ [−1, 1]}.
This accumulated offset Σ ensures that the convolution kernel
is aligned with the morphological structure of road defect
features along the x-axis. The modification along the y-axis
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Fig. 6. DSC Coordinate Computation Diagram

is expressed in Equation (13) as follows:

Ki±c =

{
(xi+c, yi+c) = (xi + c, yi +

∑i+c
i ∆y),

(xi−c, yi−c) = (xi − c, yi +
∑i

i−c ∆y),
(13)

Equation (14) is modified along the y-axis as follows:

Kj±c =

{
(xj+c, yj+c) = (xj +

∑j+c
j ∆x, yi + c),

(xj−c, yj−c) = (xj +
∑j

j−c ∆x, yi − c),
(14)

Given that the offset ∆ is generally a non-integer bilinear
interpolation is employed as follows:

K =
∑
K′

B(K ′,K) ·K ′ (15)

where, K denotes the fractional positions in Equations (13)
and (14), while K ′ enumerates all integer grid locations.
B represents the bilinear interpolation kernel, which can be
decomposed into two one-dimensional kernels as follows:

B(K,K ′) = b(Kx,K
′
x) · b(Ky,K

′
y) (16)

As illustrated in Fig. 7, due to the two-dimensional defor-
mation, DSC covers a 9×9 region during its transformation,
effectively expanding the receptive field. This adaptability
to dynamic structures better captures the morphological
characteristics of elongated road cracks, thereby enhancing
the perception of critical features. Integrating DSC with the
backbone network C2f significantly enhances segmentation
accuracy, robustness, and real-time performance in road
defect detection tasks. DSConv improves the perception
of elongated and curved defects by employing adaptive
convolutional kernels, while C2f strengthens the model’s
adaptability to complex environments through multi-scale
feature fusion and contextual awareness. The synergy of
these two components enables precise and stable detection of
various road defects, making the approach particularly effec-
tive for complex road surfaces and dynamic environmental
conditions.

C. Dysample

Due to variations in shooting angles and distances, the
size of defects and the texture of the road surface in defect

Fig. 7. Dynamic Structural Diagram of the DSC Module

images may change, leading to pixel distortion and resulting
in blurred defect edges. This makes it difficult for the model
to accurately learn their features [22]. YOLOv10 employs
the UpSample module in the neck network to restore high-
resolution feature maps, thereby enhancing the detection
capability for small defects (such as fine cracks) [23]. At the
same time, it strengthens multi-scale feature fusion, reducing
missed detections and false positives.To further optimize
the upsampling performance, DySample is introduced to
replace the original UpSample module. DySample enhances
the representation of low-resolution or distant defects through
a dynamic point sampling approach, enabling clearer extrac-
tion of defect region features. Moreover, it does not rely
on additional CUDA libraries, which improves the model’s
upsampling efficiency.Fig. 8 illustrates the dynamic sampling
mechanism and structural design of DySample.

Fig. 8 demonstrates the feasibility of the upsampling
method based on dynamic point sampling. The execution
process of DySample can be summarized as follows: first, the
input feature map is passed through a sampling point gen-
erator to produce a sampling set, which contains a group of
sampling locations. Next, a grid sampling operator resamples
the input feature map according to these locations, typically
using bilinear interpolation to obtain the feature value of
each sampling point. Finally, the resampled feature map is
output [3], providing new spatial structural information to
better capture and represent target features. Specifically, this
process can be formalized as:

X ′ = grid_sample(X, δ) (17)

where, X denotes the input feature map, and δ represents
the generated sampling set. The grid_sample() function
operates on X using the locations in δ to perform resampling,
resulting in a new feature map X ′.

Let the upsampling scale factor be s, and the dimensions
of the feature map X be C × H × W .An output offset O
of size 2s2 ×H ×W is generated by a linear layer with C
input channels and 2s2 output channels.Then, the offset O
is rearranged into a shape of 2× sH × sW using the pixel
shuffle algorithm described in [24]. Finally, the sampling set

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3467-3478

 
______________________________________________________________________________________ 



Fig. 8. DySample module

δ is obtained by adding the offset O to the original sampling
grid G. This process is defined as follows:

O = linear(X) (18)

δ = G+O (19)

The reshaping operation is omitted in this section. Fi-
nally, the upsampled feature map X ′, with dimensions
C × sH × sW , is generated using the sampling set and
the grid_sample() function, as shown in Equation (17).
Fig. 8 illustrates the sampling-based dynamic upsampling
technique and the module design of DySample.

IV. EXPERIMENT

A. Datasets and Experimental Setup

We conduct model training using the RDD2020 dataset
from the CrowdAI Road Damage Detection Challenge
(CRDDC2020). The dataset consists of 21,040 road images
collected from Japan, India, and the Czech Republic, with
2,829, 7,705, and 10,506 samples respectively. It includes
nine types of road damage: longitudinal cracks (D00), lon-
gitudinal construction joints (D01), transverse cracks (D10),
transverse construction joints (D11), alligator cracks (D20),
potholes (D40), blurred intersections (D43), blurred white
lines (D44), and manholes (D50).This section presents a
comprehensive overview of the model settings, training pro-
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TABLE II
ABLATION EXPERIMENT

Method SPPF-LSKA C2f-DSC DySample mAP@0.5

YOLOv10n - - - 52.60

Proposed method1 ✓ - - 54.80

Proposed method2 - ✓ - 54.30

Proposed method3 - - ✓ 54.30

Proposed method4 ✓ ✓ - 54.40

Proposed method5 ✓ - ✓ 55.50

Proposed method6 - ✓ ✓ 54.80

YOLOv10n-DSLD ✓ ✓ ✓ 55.10

cess, evaluation metrics, ablation studies, and comparative
experiments. All experiments are conducted on a machine
equipped with a 10GB NVIDIA GeForce RTX 3080 GPU.
The implementation is based on PyTorch 2.0.0 with Python
3.8, CUDA 11.8, and Ubuntu 20.04.

B. Network Training

The images are divided into training and validation sets
with an 80:20 ratio. The maximum number of training
epochs is set to 300. For practical reasons, the input images
are standardized to a size of 640 × 640, representing the
maximum size that the model can accommodate. The initial
learning rate is set to 0.01, and the SGD optimizer is used for
adjustments. To ensure fairness and accuracy, the same set
of hyperparameters is used for both training and ablation
experiments. The parameter configurations are detailed in
Table I.

TABLE I
PARAMETER TABLE

Parameters Setup

Epochs 300

Batch Size 16

Imgsize 640

Learning Rate 0.01

Patience 50

Optimizer SGD

Workers 8

Weight-Decay 0.0005

C. Ablation Study Results Analysis

This paper improves the model by adding modules to
both the backbone and neck networks, which reduces the
model’s parameter count and improves detection accuracy. To
evaluate the impact of each module, comparative experiments
are conducted to validate the effect of different combina-
tions of the SPPF-LSKA, C2f-DSC, and DySample modules

on road defect detection performance. Table II shows that
introducing the combination of the SPPF-LSKA, C2f-DSC,
and DS modules into YOLOv10n results in an increase of
2.2%, 1.7%, and 1.7% in mAP50, respectively. Notably,
the performance improves significantly when the SPPF-
LSKA module is added. The enhanced model exhibits higher
accuracy, with each module contributing positively to the
overall performance. Incorporating the LSKA large-kernel
attention mechanism into SPPF achieves a better balance
between expanding the receptive field and enhancing feature
representation, thereby making the road defect detection
model more accurate. The introduction of the DSC module
enhances the model’s ability to detect small road defects,
improving accuracy. When all three modules are integrated,
a significant increase in mAP50 accuracy is achieved.

Fig. 9 presents the normalized confusion matrix, illustrat-
ing the model’s performance across different categories. The
diagonal elements represent recall rates, with higher diagonal
values indicating better detection performance. The off-
diagonal elements reflect the confusion between categories,
such as when a category is misclassified as background.

The improved road defect detection model demonstrates
excellent accuracy, as shown in Fig. 10 The figure clearly
illustrates the model’s successful identification of various
defect types, significantly enhancing its practicality and
supporting road safety improvements. By accurately detect-
ing different defects, the model aids relevant authorities in
taking timely measures, thereby reducing the risk of traffic
accidents.

D. Comparison Experiment

1) Comparison Experiment with Classic Models:
YOLOv10 offers multiple versions to meet various object
detection requirements, with differences in model size, com-
putational complexity, architecture design, weights, and per-
formance, including YOLOv10n, YOLOv10s, YOLOv10m,
YOLOv10l, and YOLOv10x. Considering that road defect
detection requires both accuracy and a certain detection
speed, this paper selects YOLOv10n as the baseline network
model. The YOLOv10n-DSLD model is then compared with
YOLOv8n, YOLOv10s, YOLOv11n, and other road defect
detection models to validate its effectiveness.
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Fig. 9. Normalized Confusion Matrix of the Model

Fig. 10. Road Defect Detection Results

As shown in Fig. 12, the experimental results indicate that
the performance of YOLOv10n-DSLD and other improved
models stabilizes after 200 training epochs. Based on this,
the training period (Epoch) is set to 300 epochs, with an
early stopping mechanism (Patience=100) applied to effec-
tively prevent overfitting while ensuring sufficient training.
Regarding hardware configuration, empirical testing shows
that with the NVIDIA RTX 3080 GPU, a batch size of 16
maximizes the utilization of GPU memory. The input image
size is set to 640×640 pixels, which meets the real-time
requirements of embedded devices while maintaining good

detection accuracy.
In terms of optimizer parameter settings, the learning

rate is set to 0.01 based on the following consideration:
this value aligns with the characteristics of the Stochastic
Gradient Descent (SGD) optimizer, ensuring stable parameter
updates. Additionally, the number of data loading workers is
set to 8, effectively preventing the GPU from being idle due
to data I/O bottlenecks, thus improving training efficiency.
Furthermore, the weight-decay parameter is set to 0.0005,
which has been validated to strike a good balance between
model capacity and regularization, significantly reducing the
risk of overfitting. This parameter combination has been
systematically optimized to maintain model performance
while considering both training efficiency and generalization
ability.

YOLOv10n-DSLD performs best among lightweight mod-
els, with a mAP50 of 55.1 and a mAP50-95 of 28.7, sur-
passing both YOLOv8n and YOLOv11n. Although its com-
putational complexity is slightly higher than YOLOv11n, it
achieves better detection accuracy, with a parameter count of
only 2.8M, significantly lower than YOLOv10s. Compared to
YOLOv8-DSCFEM and LeYOLOv8, this model outperforms
in terms of accuracy, parameter size, and computational
complexity, making it highly suitable for practical road defect
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Fig. 11. Normalized Confusion Matrix of the Model

detection applications.

2) Impact of Different Attention Mechanisms on Network
Performance: This section focuses on evaluating the role
of LSKA in road detection models and compares it with
other common attention mechanisms. iAFF enhances detec-
tion accuracy by integrating multi-scale channel attention
modules, which fuse features of different scales and semantic
inconsistencies. CBAM combines channel and spatial atten-
tion, improving feature representation while maintaining low
computational cost. CGA improves computational efficiency
and reduces parameter count by segmenting the input features

into distinct parts and independently computing self-attention
maps. Compared to these mechanisms, LSKA achieves a
significant improvement in detection accuracy, as shown in
Table IV.

V. CONCLUSIONS

This study presents a high-precision optimization of the
YOLOv10n model, resulting in the improved YOLOv10n-
DSLD model. The model incorporates the LSKA attention
mechanism in the SPPF module to enhance contextual in-
formation extraction, integrates DSC in the C2f module
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TABLE III
COMPARISON OF DETECTION PERFORMANCE OF DIFFERENT MODELS

Object Detection Algorithm Params(M) GFLOPS mAP0.5 mAP0.5-0.95

YOLOv10n-EMSCP 3.2 8.2 54.1 27.2

YOLOv10n 2.7 8.7 52.6 27.6

YOLOv10s 8.0 24.8 55.2 28.5

YOLOv11n 2.6 6.5 52.3 27.3

YOLOv8-DSCFEM 3.0 8.2 54.7 27.8

LeYOLOv8s 3.1 8.0 54.1 27.8

YOLOv10n-DSLD 2.8 6.7 55.1 28.7

TABLE IV
COMPARISON OF DETECTION PERFORMANCE OF DIFFERENT MODELS

Object Detection Algorithm Params(M) GFLOPS mAP0.5 mAP0.5-0.95

YOLOv10n 2.7 6.7 52.6 27.6

YOLOv10n+iAFF 3.0 8.2 52.5 27.2

YOLOv10s+CGA 2.9 6.7 52.9 27.3

YOLOv10n+CBAM 8.0 24.8 53.6 27.8

YOLOv10n+LSKA 3.2 6.5 54.8 28.3

Fig. 12. Comparison curve of mAP0.5-0.95 and epoch of
the improved YOLOv10n-DSLD models

to improve the perception of complex defects, and em-
ploys DySample to replace traditional upsamplers, thereby
clarifying defect region features. Experimental results show
that YOLOv10n-DSLD demonstrates stronger robustness in
complex environments and small-object detection, improving
detection accuracy, reducing false positive rates, and bal-
ancing both precision and efficiency, making it suitable for
road defect detection. Its application in autonomous driving
and intelligent transportation is significant, contributing to
enhanced road safety and maintenance efficiency. Ablation
experiments further validate the contribution of each module

to performance improvement. Future research can focus on
optimizing model speed while maintaining accuracy to better
meet real-time detection requirements.
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