
Abstract—This paper presents a comprehensive review and
analysis of existing reliable path planning models, including
their underlying theories and solution methods. To address
identified limitations in current approaches, the following
contributions are made: First, based on the definition of path
reliability, a dimensionless coefficient β is introduced as the
reliability index to more effectively measure reliability. Next,
linear moments are used to characterize the travel time
distribution, which not only provides a more comprehensive
and accurate representation but also leverages the additivity of
linear moments. Through linear moments, a mapping
relationship between any random variable and a standard
normal random variable can be established, making it possible
to solve for the reliability index. Finally, a reliable path
planning model and algorithm based on linear moments and
the reliability index are proposed. The validity of the proposed
reliability index β was rigorously evaluated using the National
Performance Management Research Data Set through both
Pearson's product-moment and Spearman's rank correlation
analyses. Results confirm that the index meets all criterion
validity requirements and serves as an effective tool for travel
time reliability assessment. Experimental validation on the
Nguyen-Dupuis network further demonstrates the correctness
and practical effectiveness of our proposed model and
algorithm. Future research could further explore the precise
mapping relationship between the path reliability index and
reliability while validating and improving the model and
algorithm through more complex and realistic networks.

Index Terms—transportation engineering, reliable path
planning, linear moments, reliability index

I. INTRODUCTION

RAVEL Time Reliability (TTR) is a crucial metric for
evaluating the performance of transportation networks.

Research indicates that when travelers plan their trips, the
importance of TTR is equal to or even exceeds that of travel
time itself, making it a key factor influencing
decision-making [1]. Travelers use travel time reliability as a
criterion for determining their travel routes, aiming to plan
the most reliable path between their origin and destination,
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thereby giving rise to the reliable path planning problem [2].
In recent years, the proposed reliable path planning

models mainly fall into four categories: mean-variance
models [3], minimax optimization models [4], most reliable
models, and α-reliable models [5]. The mean-variance
model seeks the optimal path by minimizing a combination
of the mean and variance, balancing efficiency and stability.
The minimax optimization model selects the robust path
with the shortest travel time under the most extreme
scenarios of link travel time conditions. The most reliable
model and the α-reliable model are probability-based
models, the most reliable model selects the path that
maximizes the probability of the traveler reaching the
destination within the given travel time budget, the
α-reliable path is defined as the route that ensures an on-time
arrival probability of at least α while minimizing the
necessary travel time budget. The travel time reliability
metric used in the aforementioned model does not possess
the property of additivity. As a result, it is impossible to
derive the path travel time reliability metric through linear
operations on the link travel time reliability metrics.
Therefore, deterministic shortest path algorithms, such as
the Dijkstra or the K-shortest path algorithm, cannot be
applied to solve the model above. This makes solving the
aforementioned model a challenging problem. Huo, Zhang,
and other scholars have demonstrated that the
mean-variance model can be mathematically formulated as a
quadratic programming problem, solvable through
equation-solving methods [6]. Pan investigated the
constrained mean-variance model by solving its dual
problem with gradient descent, which yielded upper and
lower bounds for the original problem's optimal solution. He
then proposed an iterative approximation strategy to
progressively narrow the solution space, ultimately
converging to a near-optimal solution [7]. Song
reformulated the mean-variance shortest path problem as a
mixed-integer conic quadratic program and proposed a
generalized Benders decomposition method to solve it [8].
Boutilier proposed an exact mixed-integer programming
reformulation for the minimax optimization model. By
exploiting the generalized additive structure of utility
functions, this formulation enables efficient computation via
intelligent optimization algorithms such as genetic
algorithms [9]. Zhang and Song derived an equivalent dual
formulation for the minimax optimization model, and
designed tight lower/upper bound approximation methods
based on scenario approximation and semidefinite
programming, respectively [10]. Tu and Cheng investigated
travelers' optimal path selection behavior in
multi-point-of-interest trip scenarios, proposing a
label-correcting algorithm to solve the most reliable path
planning problem [11]. Zeng and Miwa developed a solution
framework based on Lagrangian relaxation, which
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decomposes the original problem into computationally
tractable subproblems. The path-finding performance was
subsequently validated on real-world road networks [12].
Lee et al. proposed a pseudo-polynomial time exact
algorithm for the most reliable model, along with special
cases solvable in polynomial time. They also developed a
fully polynomial time approximation scheme that iteratively
solves the deterministic shortest path problem [13]. Chen
and colleagues innovatively developed a multi-criteria
label-setting algorithm and an A* algorithm for solving the
most reliable path problem. By establishing strict path
dominance conditions, these algorithms effectively reduce
the number of non-dominated paths requiring processing
during the search process. This enhancement significantly
improves computational efficiency, enabling the algorithms
to address large-scale network optimization problems.
Furthermore, the authors validated the approach using
real-world data from Advanced Traveler Information
Systems, demonstrating that the proposed algorithms exhibit
excellent applicability and reliability in practical scenarios
[14].

However, these solution theories and methods are
complex, and some approaches struggle to yield
deterministic solutions. While they may perform well in
specific scenarios, they lack universality. Another issue
worth considering is that the aforementioned model
characterizes travel time distributions based on single or
mixed distributions. This characterization method requires
pre-assumptions about the type of travel time distribution,
failing to capture the heterogeneity of travel times [15]. Is it
reasonable and effective to compute travel time reliability
metrics based on this characterization method? Empirical
studies have shown that travel time distributions are often
heavily right-skewed and long-tailed, with the kurtosis and
skewness of the distribution also influencing path travel time
reliability and travelers' choices of reliable paths [16]. The
reliability evaluation metrics used in the aforementioned
model only consider the mean and variance of the travel time
distribution. Could this lead to insufficient accuracy?

To overcome the above problems, this paper first reviews
the concepts related to travel time reliability and introduces a
dimensionless coefficient β as the reliability index. The
definition of travel time reliability is expressed in the form
of a standard normal distribution concerning the reliability
index. Using probability theory, the relationship between the
value of the reliability index and path reliability is analyzed.
Next, this paper innovatively employs linear moments to
characterize the travel time distribution. Through linear
moments, a mapping relationship is established between the
random variable of path travel time for any distribution and
the random variable of the standard normal distribution.
Leveraging the favorable properties of the standard normal
distribution, the reliability index is solved, and reliable paths
are planned based on this index. The research is conducted
according to the logical framework shown in Figure 1. The
innovations are reflected in two aspects: first, the use of
linear moments to characterize the travel time distribution,
and second, a reliability index is introduced to evaluate path
reliability, and optimal paths are determined by solving for
this index. Figure 1 is placed at the end of the content and
before the reference part.

II. LINEAR MOMENTS

A. Superiority
In 1990, Hosking [17] pointed out in his paper that any

random variable with a finite mean can be analyzed and
estimated through linear combinations of its ordered
statistics. Among these, linear moments refer to the
expectations of certain linear combinations of order statistics
and have been widely applied in various research fields such
as finance, engineering [18], meteorology [19], hydrology
[20], and oceanography. The theory of linear moments
parallels that of conventional moments. Using linear
moments to fit travel time distributions does not require
prior assumptions about the distribution type and takes into
account the skewness and kurtosis coefficients of the
distribution [21], thereby capturing the heterogeneity of
travel times. A series of applications of linear moments has
demonstrated their advantages over conventional moments.
Linear moments, being linear functions of the statistics of
random variables, are less affected by sampling variability
and are less sensitive to outliers in the data compared to
conventional moments. They enable more reliable and
robust inference of the underlying probability distribution
from smaller samples [22]. Additionally, linear moments are
linear functions of expected statistics, and the linear
moments of a finite number of random variables are additive.
Through (13) in this paper, the first four linear moments of a
random variable can be used to establish a mapping
relationship between any distribution and the standard
normal distribution, leveraging the favorable properties of
the standard normal distribution to solve problems.
Furthermore, linear moments offer strong interpretability,
simple computational principles, and concise calculation
processes.

B. Definitions and Computational Methods
Given a random variable X with real-valued outcomes, its

cumulative distribution function and quantile function are
denoted as F(X) and X(F), respectively. From N ordered
statistics 1, 2, ,...N N N NX X X   randomly drawn from the
random variable X, the linear moments of X are defined as
shown in (1).
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From (1), it can be seen that linear moments are linear
functions of the expected order statistics. Here, j:rEX
represents the expectation of n ordered statistics, and the
computational process is shown in (2).
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By substituting (2) into (1), performing a binomial
expansion on F(X), and summing the coefficients of the
powers of F(X), a more general expression for the linear
moments is obtained as shown in (3).
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Where  *
rP F represents the r-th shifted Legendre

polynomial, and its relationship with the general Legendre
polynomial  rP u is    *

r rP P 2 1u u  . The expression
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for  *
rP F is given by (4), while the expression for  rP u is

provided in (5).
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In practical applications, when the distribution is known,
the computational expressions for the first four linear
moments of the random variable can be derived based on (1)
to (2), as shown in (6) to (9).
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If obtaining the probability distribution of the variable is
difficult but samples of the variable are readily available, the
linear moments can be estimated from the samples.
Assuming 1, 2, ,...N N N NX X X   represents N ordered
random samples arranged from smallest to largest, the first
four linear moments can be calculated using (10) to (13).
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The skewness and kurtosis of the random variable X are
described using the linear skewness coefficient 3 and the
linear kurtosis coefficient 4 , respectively. The expressions
for 3 and 4 are given by (14).

   2/ , r 3, 4r X X         r (14)

where  2 X represents the second-order linear moment,

and  r X denotes the r-th order linear moment. When r=3
or 4, it refers to the third-order and fourth-order linear

moments, respectively.

C. Standard Normal Distribution Transformation
When the first four linear moments of a random variable

X, which follows a certain distribution (normal or
non-normal), are known, its distribution can be expressed
using a cubic polynomial [23], as shown in (15).

  3 2bX S N aN N cN d     (15)
Here, N is a random variable following the standard normal
distribution (with a mean of 0 and a standard deviation of 1);
S(N) is a cubic function of N; and a, b, c, and d are
polynomial coefficients determined by (16) to (19) [24].

2 4 0.19309293 1.574961X Xa     (16)

3  1.81379937 Xb  (17)

2 42.25518617 3.93740250X Xc    (18)

1 31.81379937X Xd    (19)
Equation (15) establishes a mapping relationship between

a random variable following the standard normal
distribution and a random variable following any arbitrary
distribution. When the first four linear moments of a random
variable are known, equation (15) can be used to express it
as a function of a standard normal random variable. In
practice, data for a random variable can be obtained through
experiments, and the first four linear moments of the
variable can then be derived from the sample experimental
data using (10) to (13). Therefore, in cases where the
distribution is unknown, equation (15), combined with the
linear moments of the random variable, eliminates the need
for assumptions about the distribution of the random
variable.

D. Additivity
X and Y are known to be arbitrary random variables.
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III. RELIABILITY INDEX

A. Concepts of Reliability
Travel time reliability refers to the ability of travelers in a

transportation system to complete a specified trip along a
predetermined route within a preset travel time under
specific traffic conditions. The probability of completing the
specified trip is called reliability, denoted by R. This preset
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time refers to the travel time budget, which is the upper limit
of travel time acceptable to travelers and consists of the
expected travel time and the buffer travel time. The link
travel time budget and the path travel time budget are given
by (21) and (22), respectively.

T E S    (21)

P p pT E S  (22)

Where T  , E , and S represent the link travel time budget,
expected travel time, and buffer travel time, respectively,
while pT , pE , and pS denote the total path travel time
budget, average total travel time, and total buffer travel time,
respectively.

In this paper, the travel time budget is determined using
(23).

 0T 1T   (23)

Where 0T represents the free-flow travel time, and 

denotes the relative delay threshold. The relative delay
threshold is not fixed, as the same delay time can have
different impacts depending on the travel time budget. For
example, if the travel time budget for a link is 50 minutes, a
5-minute delay may seem negligible. Conversely, if the
travel time budget for a link is 15 minutes, a 5-minute delay
becomes significant. This paper considers the free-flow
travel time of the link itself and uses a proportional method
to determine the relative delay threshold, as shown in (24).

min
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T

 
i
= (24)

Where o is the base threshold, set to 1.3, od
i

is the relative
delay threshold for path i from origin o to destination d, and

iodT is the free-flow travel time for path i from origin o to
destination d.

Since travel time is a continuous random variable, its
reliability can be described using (25), where  f t is the
probability density function of travel time.
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B. Reliability Index
In practical applications, obtaining the probability density

function of travel time distribution is often challenging, and
the computation of the probability density function and its
integration is complex. To facilitate the calculation of travel
time reliability, the concept of the reliability index β is
introduced. To concisely and clearly explain the significance
of  , assume that travel time T follows a normal

distribution with 2
t~ ( , )tT N   . By using t

t

t
Y





 , T is

transformed into a random variable  ~ 0,1Y N ) that
follows the standard normal distribution. Simplifying (25),
the relationship between travel time reliability and the
standard normal distribution is established, as shown in (26).
Since T is a constant, let 0T  . At this point, for ease of
expression and computation, the symbol  is introduced,

with t

t

u



 .  is a dimensionless coefficient that has a

one-to-one correspondence with reliability and is referred to
as the reliability index. The relationship between reliability
and the reliability index is illustrated in Figure 2. The larger
β is, the higher the travel time reliability.
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Fig. 2 Relationship between reliability and reliability index

C. Reliability Index Calculation
If the first four linear moments of the random variable

travel time T are known, according to (15), T can be
expressed as a cubic polynomial, as shown in (28).

3 2( )T S N aN bN cN d     (28)
The travel time reliability expression can be further
simplified as shown in (29).
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Based on the equal probability transformation, it is
calculated that
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     1 ,R T N S T M       (30)

where N is a random variable following a normal
distribution,  N is the cumulative distribution function

of the standard normal random variable;  1 ,S T M is the
inverse function of (29); and M is the vector of the first four
linear moments,  1t 2t 3t 4tM     .

The reliability index  can be expressed in (31).

   1 1 ,R S T M      (31)

To solve for  1 0,S M , which involves finding the root N

of the cubic equation 3 2( ) 0S N aN bN cN d T      ,
the Cardano formula is avoided due to its complexity
involving cube roots and complex numbers. Instead, this
paper employs the Shengjin formula. The multiple root
discriminant of the Shengjin formula is given by (32).
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When the discriminant 2 4B AC   ＞0 , the equation has
one real root and a pair of conjugate complex roots. The real
root of the equation is calculated according to (33) and (34).
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At this point, the reliability index is given by (35).
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When the discriminant 2 4B AC   ＜0 , the equation has
three distinct real roots, and the expression for the result N is
given by (36) and (37).
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  (36)

arccos  ,
3

2 3 ( 0, 1 1)
2

Ab ab A
A

 
     (37)

Similarly, the reliability index  at this point is given by
(38).

1
(cos 3 sin )

3 3
3

b A
S

a

 

 
 

  （T,M）=-N= (38)

IV. RELIABLE PATH PLANNING MODEL

The reliable path planning model proposed in this paper is
described as follows: G(N, A) represents a stochastic
network, where N is the set of nodes, A is the set of links, o is
the origin, and d is the destination; od is the reliability
index for the path from origin o to destination d; od

r is the
r-th moment of travel time for the path from origin o to
destination d; ,

od
r ij is the r-th moment of travel time for the

link from node i to node j, where this link belongs to the path
from origin o to destination d;  j SCS i and  k PDS i

are the sets of successor nodes and predecessor nodes of

node i, respectively. od
ijx is the decision variable, where

1od
ijx  indicates that link ija is included in the path from

origin o to destination d, and 0od
ijx  indicates that link ija

is not included in the path;  F  represents the operation of
calculating the reliability index from the linear moments.

  ,max =    
i j

od od od od
r ij r ij

a A
F F x  



 
   

 
 (39)
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1
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i o
s t x x i o i d

i d 

 
    
  

  (40)

 0,1 ,  ,  , , ,  r=1,2,3,4od
ij ijx a A i j k N     (41)

V. EXPERIMENT

A. Reliability Index Validity Analysis
This study validates the effectiveness of β as a travel time

reliability evaluation metric by examining its statistical
correlation with the widely recognized travel time reliability
indicator, the Buffer Time Index (BTI). The BTI quantifies
the additional time buffer required by travelers to mitigate
delays by comparing the difference between the 95th
percentile travel time and the median travel time. A higher
BTI value indicates greater travel time variability and
consequently lower road segment reliability, whereas a
higher β value corresponds to improved reliability. Thus, a
negative correlation is theoretically expected between BTI
and β.

The experimental data were sourced from the National
Performance Management Research Data Set, which
comprehensively documents the traffic operating conditions
of Alaska's highway network throughout 2019. The original
dataset contains 2,622 unique road segments, each assigned
a distinct identification code. Using a random sampling
method, 200 segments were selected as study subjects, with
each sample segment containing approximately 15,000
actual travel time records on average. The travel time data
were collected across different dates throughout the year and
various time periods within each day, capturing the full
spectrum of traffic conditions from free-flow to congested
states. The dataset encompasses highways of different
classes, diverse road conditions, and varying traffic flow
patterns, ensuring the samples possess high spatiotemporal
representativeness and statistical reliability.

The Interquartile Range method was applied to identify
and remove outliers falling outside 1.5 times the
interquartile range, thereby mitigating the influence of
extreme values on data analysis. Figure 3 presents a
comparative visualization of the dataset before and after
cleaning, demonstrating the substantial improvement in data
quality achieved through this outlier treatment process.

In the specific calculation of BTI, the following procedure
was implemented: First, the mean, variance, and key
percentiles were computed for each road segment based on
its observed travel time data. Subsequently, the BTI for each
segment was derived from these percentiles, while β was
calculated using the mean and variance values. The
statistical association between BTI and β was then
quantitatively analyzed through dual testing methods:
Pearson's product-moment correlation coefficient and
Spearman's rank correlation coefficient. All computational
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procedures were implemented using the SciPy statistical
module in Python 3.8.

Fig. 3 Data Cleaning Results Visualization

The analysis yielded the following results: a Pearson
correlation coefficient of -0.43 (p < 0.001) and a Spearman's
rank correlation coefficient of -0.74 (p < 0.001). The
p-values, displayed as 0.000, indicate that the actual values
were below the computational precision threshold of the
statistical software. These findings are visually presented in
Figure 4.

Fig. 4 Comparative correlation analysis of BTI and β

According to Cohen's criteria for correlation strength
interpretation, the Pearson coefficient indicates a
moderate-strength linear negative correlation,
demonstrating a statistically significant inverse linear
relationship between BTI and β. The Spearman coefficient
reveals a stronger monotonic negative correlation,
suggesting the potential existence of a nonlinear yet more
pronounced monotonically decreasing relationship —
specifically, as BTI increases, β consistently decreases,
though the rate of decrease may vary. Both correlations
exhibit highly statistically significant p-values (p<0.001).
The notable discrepancy between the Spearman and Pearson
coefficients (|-0.7426|>|-0.4305|) implies that the
association between BTI and β may incorporate nonlinear
components. While this potential nonlinearity may exert
some influence on subsequent analytical interpretations, the
current data characteristics and statistical testing results
suggest that such effects are expected to remain relatively
limited in magnitude.

The study conclusively demonstrates a statistically
significant negative association between the reliability index
β and the BTI. The reliability index satisfies the criterion

validity requirements and can be effectively employed as an
evaluation tool for travel time reliability.

B. Reliable Path Planning
The reliable path planning algorithm proposed in this

paper is tested on the Nguyen-Dupuis (N-D) network [25].
The N-D network consists of 13 nodes, 19 links, and 4 OD
pairs. Its network topology is shown in Figure 5, and the
free-flow travel times 0T and link capacities aC are
provided in Table I. Table Ⅱ lists all feasible paths between
each OD pair in the network. The link travel time is
calculated using the BPR function proposed by the U.S.
Federal Highway Administration, with the parameters 
and  set to 0.15 and 4, respectively. Factors such as traffic
control and traffic environment are not considered. It is
assumed that the link capacity aC follows a uniform

distribution  0.5 ,a a aC U C C and the standard deviation

of link flow 00.3ta a  . If the OD flow follows a normal
distribution, the link flow also follows a normal distribution
[26].

Fig. 5 Nguyen-Dupuis network topological structure

TABLE I
THE FREE-FLOW TRAVEL TIME AND CAPACITY OF THE NETWORK LINKS

a 0T aC a 0T aC
1-5 7 900 8-2 10 700

1-12 8 700 9-10 10 700
4-5 9 700 9-13 9 600
4-9 14 900 10-11 8 700
5-6 5 800 11-2 9 700
5-9 9 600 11-3 8 700
6-7 5 900 12-6 7 300

6-10 13 500 12-8 15 700
7-8 5 300 13-3 11 700

7-11 9 400

Under stochastic supply and demand conditions, the
specific process of using the proposed model to plan reliable
paths is as follows:

Step 1: Set relevant parameters, perform stochastic
equilibrium assignment on the network to obtain the flow
distribution, and use the Monte Carlo method to randomly
generate link travel time samples.

Step 2: Calculate the linear moments of link travel time
from the generated samples, with the results shown in Figure
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6. Based on the additivity of linear moments, derive the
linear moments of path travel time from those of link travel
time, with the results shown in Figure 7. Figure 6 and Figure
7 are placed at the end of the content and before the
reference part.

TABLE Ⅱ
THE REACHABLE PATHS AND THEIR NUMBERS

Serial
Number OD Sequence of

Nodes
Serial

Number OD Sequence of
Nodes

1

1-2

1-12-8-2 15

4-2

4-9-10-11-2

2 1-5-6-7-8-2 16 4-5-6-7-8-2

3 1-5-6-7-11-2 17 4-5-6-7-11-2

4 1-5-6-10-11-2 18 4-5-6-10-11-2

5 1-5-9-10-11-2 19 4-5-9-10-11-2

6 1-12-6-7-8-2 20

4-3

4-9-13-3

7 1-12-6-7-11-2 21 4-9-10-11-3

8 1-12-6-10-11-2 22 4-5-9-13-3

9

1-3

1-5-9-13-3 23 4-5-6-7-11-3
10 1-5-6-7-11-3 24 4-5-6-10-11-3
11 1-5-6-10-11-3 25 4-5-9-10-11-3

12 1-5-9-10-11-3

13 1-12-6-7-11-3

14 1-12-6-10-11-3

Step 3: Determine the relative delay threshold ξ and
calculate the travel time budget T . Compute the
coefficients a, b, c, and d of the cubic equation using the
fourth-order linear moments of path travel time, as shown in
Table Ⅲ. Table Ⅲ is placed at the end of the content and
before the reference part.

Step 4: Solve the cubic equation to obtain the reliability
index β, and evaluate the reliability of link travel time using
β. The results are shown in Table Ⅳ. Table Ⅳ is placed at
the end of the content and before the reference part.

Step 5: Use the Monte Carlo method to validate the
correctness of the proposed algorithm. Set the same travel
time budget value T . Let Q represent the total number of
Monte Carlo simulation experiments, and let event A denote
the simulated travel time being less than T . If event A
occurs, the state variable 1ix  . Search for all feasible paths
within the network interval and repeat the simulation
experiments. Each path is simulated 30,000 times, and the

travel time reliability is calculated according to (40). The
calculation results are shown in Table Ⅳ.

     

N

i
i

p

X
R T P T T f A

N
   


(42)

Based on the reliability values obtained from the
reliability index method and the Monte Carlo method, the
paths are ranked in descending order of reliability, and
Figure 8 is plotted to compare the differences in the results
of the two methods. Figure 8 is placed at the end of the
content and before the reference part. As shown in Table Ⅳ
and Figure 8, the most reliable paths between each OD pair
identified by both methods are the same. The reliability
ranking results for the paths between OD pairs 1-2, 1-3, and
4-2 are consistent. For OD pair 4-3, only the reliability
rankings of the 4th and 6th paths differ, but the reliability
values calculated by the two methods for these paths are
very close, with small errors. The accuracy rate of the
reliability index method in solving reliable paths is 92%.
Therefore, although the principle of the reliability index
method for planning reliable paths differs from existing
methods, it is correct and effective.

VI. CONCLUSION

Validity analysis was conducted on the proposed
reliability index β, with experimental results demonstrating
a statistically significant negative correlation between β and
the BTI. These findings confirm that β satisfies criterion
validity requirements and can effectively serve as an
assessment tool for travel time reliability. Testing performed
on the Nguyen-Dupuis network showed that the proposed
reliable path planning algorithm and model achieved 92%
accuracy, verifying their correctness and effectiveness.

The innovative adoption of linear moments for
deriving the reliability index eliminates the need for prior
assumptions about travel time distribution types, while
effectively capturing the heterogeneity of travel times.
The path planning algorithm developed based on this
approach can directly compute path-level linear moments
from link-level travel time linear moments. This
methodology represents a fundamental departure from
existing approaches while maintaining computational
simplicity, precision, and high efficiency.

Fig. 1. Research logical framework.
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TABLE Ⅲ
THE CALCULATION RESULTS OF THE EQUATION COEFFICIENTS

OD Serial
number

Sequence of
Nodes 0T  T a b c d

1-2

1 1-12-8-2 38 1.3 49.4 -0.1400 2.1833 6.7419 44.2341

2 1-5-6-7-8-2 47 1.415 66.5 -0.1747 2.7049 8.3416 54.6936

3 1-5-6-7-11-2 44 1.325 58.3 -0.1675 2.5325 7.8251 51.2097

4 1-5-6-10-11-2 48 1.445 69.4 -0.1738 2.7662 8.5136 55.8633

5 1-5-9-10-11-2 44 1.325 58.3 -0.1604 2.5371 7.8204 51.2241

6 1-12-6-7-8-2 52 1.565 81.4 -0.1920 2.9872 9.2203 60.5209

7 1-12-6-7-11-2 49 1.475 72.3 -0.1849 2.8147 8.7039 57.0370

8 1-12-6-10-11-2 53 1.596 84.6 -0.1911 3.0485 9.3923 61.6906

1=3

9 1-5-9-13-3 35 1.3 45.5 -0.1337 2.0144 6.2331 40.7480

10 1-5-6-7-11-3 45 1.471 66.2 -0.1706 2.5926 8.0031 52.3725

11 1-5-6-10-11-3 49 1.602 78.5 -0.1768 2.8264 8.6916 57.0261

12 1-5-9-10-11-3 45 1.471 66.2 -0.1634 2.5973 7.9983 52.3869

13 1-12-6-7-11-3 50 1.634 81.7 -0.1879 2.8748 8.8818 58.1998

14 1-12-6-10-11-3 54 1.765 95.3 -0.1942 3.1086 9.5703 62.8534

4-2

15 4-9-10-11-2 46 1.3 59.8 -0.1692 2.6486 8.1731 53.5480

16 4-5-6-7-8-2 54 1.404 75.8 -0.2027 3.1066 9.5862 62.8337

17 4-5-6-7-11-2 51 1.326 67.6 -0.1956 2.9341 9.0697 59.3498

18 4-5-6-10-11-2 55 1.43 78.7 -0.2018 3.1679 9.7582 64.0034

19 4-5-9-10-11-2 51 1.326 67.6 -0.1885 2.9388 9.0649 59.3642

4-3

20 4-9-13-3 37 1.266 46.8 -0.1425 2.1259 6.5858 43.0719

21 4-9-10-11-3 47 1.415 66.5 -0.1723 2.7087 8.3511 54.7108

22 4-5-9-13-3 42 1.264 53.1 -0.1617 2.4161 7.4777 48.8881

23 4-5-6-7-11-3 52 1.565 81.4 -0.1986 2.9943 9.2477 60.5126

24 4-5-6-10-11-3 56 1.686 94.4 -0.2049 3.2281 9.9361 65.1662

25 4-5-9-10-11-3 52 1.565 81.4 -0.1915 2.9990 9.2429 60.5270

Fig. 6 Linear moments of link travel time

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3479-3490

 
______________________________________________________________________________________ 



TABLE Ⅳ
PATH RELIABILITY CALCULATION RESULTS

OD Serial
Number Sequence of Nodes N N   Path Reliability

(Monte Carlo)

Path Reliability Ranking
Reliability

Index
Monte
Carlo

1-2

1 1-12-8-2 -3.1821 3.1821 0.7386 8 8

2 1-5-6-7-8-2 -3.5220 3.5220 0.8377 5 5

3 1-5-6-7-11-2 -3.2516 3.2516 0.7639 7 7

4 1-5-6-10-11-2 -3.6125 3.6125 0.8582 4 4

5 1-5-9-10-11-2 -3.2636 3.2636 0.7644 6 6

6 1-12-6-7-8-2 -3.9006 3.9006 0.9241 2 2

7 1-12-6-7-11-2 -3.6781 3.6781 0.8758 3 3

8 1-12-6-10-11-2 -3.9780 3.9780 0.9379 1 1

1-3

1 1-5-9-13-3 -3.1710 3.1710 0.7387 6 6

2 1-5-6-7-11-3 -3.6615 3.6615 0.8728 5 5

3 1-5-6-10-11-3 -3.9866 3.9866 0.94 3 3

4 1-5-9-10-11-3 -3.6759 3.6759 0.8731 4 4

5 1-12-6-7-11-3 -4.0430 4.0430 0.9542 2 2

6 1-12-6-10-11-3 -4.3243 4.3243 0.9977 1 1

4-2

1 4-9-10-11-2 -3.1812 3.1812 0.7389 5 5

2 4-5-6-7-8-2 -3.4893 3.4893 0.8301 2 2

3 4-5-6-7-11-2 -3.2532 3.2532 0.7651 4 4

4 4-5-6-10-11-2 -3.5664 3.5664 0.8476 1 1

5 4-5-9-10-11-2 -3.2635 3.2635 0.7654 3 3

4-3

1 4-9-13-3 -3.0525 3.0525 0.6988 5 5

2 4-9-10-11-3 -3.5264 3.5264 0.8372 4 4

3 4-5-9-13-3 -3.0471 3.0471 0.6977 6 6

4 4-5-6-7-11-3 -3.8839 3.8839 0.9238 3 2

5 4-5-6-10-11-3 -4.1587 4.1587 0.9743 1 1

6 4-5-9-10-11-3 -3.8977 3.8977 0.9232 2 3

Fig. 7 Linear moments of path travel time
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(c)

(d)

Fig. 8 Comparison chart of path reliability calculation results (a) Origin=1, Destination=2 (b) Origin=1, Destination=3
(c) Origin=4, Destination=2 (d) Origin=4, Destination=3
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