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Abstract—This study proposes a Luenberger observer-based
structure incorporating residual generation for detecting var-
ious attack strategies, including Denial-of-Service (DoS) and
False Data Injection (FDI), targeting the sensors and actuators
of discrete-time Cyber-Physical Systems (CPS). The proposed
approach improves upon existing methods by enhancing con-
vergence properties and increasing robustness against realistic
attack scenarios. The observer design introduces additional
decision variables into the synthesis constraints, resulting in
less conservative conditions. Sufficient stability criteria are
formulated as Linear Matrix Inequalities (LMIs), which are
addressed using block-matrix decomposition and a slack vari-
able technique. Furthermore, Markovian distribution logic is
employed to simulate the behavior of attack signals, improving
the realism of the threat model. The effectiveness of the
proposed method is validated through a case study involving a
three-tank interconnected system, with numerical comparisons
demonstrating its advantages over existing approaches.

Index Terms—Cyber-Physical System, Markovian Stochastic
Processes, Luenberger observer, Denial of Service attack(DoS),
False Data Injection attack(FDI)

I. INTRODUCTION

IN recent years, Cyber-Physical Systems (CPS) have
emerged as transformative innovations in engineering,

seamlessly integrating digital and physical domains to create
highly interconnected and intelligent systems [1]-[2]. These
systems have revolutionized various industries by leveraging
advances in engineering, communication networks, and the
automated control of physical processes. Their ability to sup-
port real-time monitoring and control while processing large
volumes of data has fundamentally reshaped process manage-
ment and system analysis. This integration has enabled the
deployment of advanced control strategies and robust security
mechanisms to ensure operational continuity and system
integrity [3], [4], [5], [6]. Despite their immense potential,
CPS face significant challenges. Their inherent complexity
and reliance on open communication networks make them
highly susceptible to cyber threats. The interconnected nature
of CPS creates multiple entry points for malicious actors to
exploit vulnerabilities, disrupt operations, compromise data
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integrity, and extract sensitive information [7]-[9]. Conse-
quently, the development of resilient detection and protection
mechanisms is essential to maintaining reliability and safe-
guarding these systems against cyber-attacks. In the field of
automatic control, considerable research has focused on high-
impact threats such as Denial-of-Service (DoS) and False
Data Injection (FDI) attacks due to their particularly disrup-
tive effects [10], [11]. Stochastic Markovian modeling has
emerged as an effective approach in this context, providing
a realistic framework to capture the probabilistic and time-
varying behavior of such attacks. Furthermore, advanced
detection techniques, such as observer banks and residual
generation methods, are increasingly employed to monitor
system performance, detect anomalies in key variables, and
trigger timely alerts to mitigate or prevent intrusions [12]-
[14].
The pervasive use of communication networks in CPS in-
creases their vulnerability to cyber threats, prompting the
development of various attack detection strategies to enhance
system security. These include Unknown Input Observer
(UIO)-based methods [15]-[16], [17], zonotope-based ob-
server schemes [18], sliding mode observers with adaptive
thresholds [19], robust adaptive sliding mode observers [20],
disturbance observers for unmanned aerial vehicles (UAVs)
[21], nullspace-based residual filter designs [22], centralized
and distributed observers [23], and hybrid observer-based
anomaly detection frameworks [24]. While many studies
have addressed cyber-attack detection in CPS, relatively few
have considered the simultaneous modeling of system faults
within the observer synthesis framework, particularly when
combined with a stochastic Markovian model that realisti-
cally captures the distribution of these attacks. Motivated by
the work presented in [23], this paper introduces a detec-
tion framework based on a Luenberger-type observer. The
observer synthesis is formulated using the S-procedure and
block matrix decomposition, leading to sufficient stability
conditions expressed as Linear Matrix Inequalities (LMIs).
Although the observer structure itself may appear conven-
tional, it provides a solid foundation for future research on
resilient and robust control strategies. The insights gained
from this design are expected to contribute to more advanced
developments in CPS security. The feasibility of the proposed
method is demonstrated through numerical simulations in-
volving a three-tank interconnected system [25]-[26].
To highlight the main contributions of this paper, the im-
provements over existing methods are summarized as fol-
lows:

• The integration of stochastic Markovian modeling of
cyber-attacks into the observer design, along with the
explicit consideration of system faults, constitutes a
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novel contribution that has not been extensively ad-
dressed in the existing literature.

• The proposed approach introduces additional decision
variables into the convex formulation, providing in-
creased degrees of freedom and enhanced flexibility in
the observer design process.

• In contrast to many existing methods that treat faults
and attacks as unknown inputs [15]-[16], [17], the pro-
posed synthesis explicitly incorporates fault and attack
dynamics within the system model.

• A simplified yet effective application of block-matrix
decomposition and the S-procedure is adopted to im-
prove the tractability and flexibility of the synthesis
framework.

The remainder of this paper is organized as follows.
Section 1 introduces notations and preliminary concepts.
Section 2 presents the problem formulation. Section 3 de-
tails the observer synthesis procedure based on a stochastic
Markovian model. Section 4 provides simulation results on
a three-tank system to demonstrate the effectiveness and
robustness of the proposed observer. Notation: The following
notation will be used throughout this paper:

• In a matrix, the notation (?) is used for the blocks
induced by symmetry.

• Q̄T is the transposed matrix of Q̄.
• Ir represents the identity matrix of dimension r.
• Q is a square matrix then the notation Q > 0 (Q < 0)

means that Q is positive definite (negative definite).

II. PROBLEM FORMULATION

Consider the following discrete-time cyber-physical sys-
tem (1), where both the input and output are assumed to be
transmitted remotely:

xk+1 = Axk +Bũk + F̄ fk,

yk = Cxk +W2d
s
k,

(1)

where the actual control input ũk is defined as:

ũk = uk +W1d
a
k, (2)

with xk ∈ Rnx denoting the system state vector, yk ∈ Rny

the measured output, and ũk ∈ Rnũ the control input
effectively received by the plant. The vector fk ∈ Rnf

represents system faults, while uk ∈ Rnu is the nominal
(intended) control input. Matrices A, B, C, and F̄ are
constant and of appropriate dimensions. The matrices W1

and W2 are coupling matrices that define the structure
of actuator and sensor attacks, respectively. The vectors
dak ∈ Rr and dsk ∈ Rm represent actuator and sensor attack
signals.

A Luenberger-type observer for the system in (1) is
proposed as follows:

x̂k+1 = Ax̂k +Buk + L(yk − ŷk),

ŷk+1 = Cx̂k,
(3)

where x̂k ∈ Rnx denotes the estimated state vector, ŷk ∈ Rny

the estimated output, and L ∈ Rnx×ny the observer gain
matrix.

The estimation error is defined as ek = xk − x̂k, and its
dynamics evolve according to:

ek+1 = xk+1 − x̂k+1. (4)

Substituting (1) and (3) into (4) yields:

ek+1 = (A− LC)ek + F̄ fk +BW1d
a
k − LW2d

s
k. (5)

To ensure that each type of cyber-attack leads to a distinct
detection signature, the residual signal rk, defined as the
difference between the actual and estimated outputs, is given
by:

rk = yk − ŷk
= C(xk − x̂k) +W2d

s
k.

(6)

Thus, the compact expressions for the estimation error and
residual signals can be rewritten as:

ek+1 = Ãek + F̄ fk + W̃1d
a
k − W̃2d

s
k,

rk = Cek +W2d
s
k,

(7)

where Ã = A− LC, W̃1 = BW1, and W̃2 = LW2.

III. FORMULATION OF ATTACK SCHEMES

This section introduces the types of cyber-attacks consid-
ered in this study, each designed to compromise the integrity
and performance of the target Cyber-Physical System (CPS).

A. Denial of Service (DoS) Attacks

The goal of a Denial-of-Service (DoS) attack is to disrupt
the transmission of control or measurement data, typically
by saturating the communication network, interfering with
signal transmission, or causing packet loss. Under a DoS
scenario, the actuator and sensor attack signals are modeled
as follows:

dak = −m1
kuk,

dsk = −m2
kxk,

(8)

where m1
k and m2

k are discrete-time stochastic Markov
processes that take values in {0, 1} [27]. Incorporating the
expressions in (8) into the system dynamics (1) results in the
following modified model:

xk+1 = Axk +Buk + F̄ fk −m1
kBW1uk,

yk = Cxk −m2
kW2xk.

(9)

B. False Data Injection (FDI) Attacks

In a False Data Injection (FDI) attack, an adversary
injects falsified data into the system to deliberately mislead
the controller or sensor measurements, effectively replacing
legitimate values with corrupted ones. The corresponding
actuator and sensor attack signals are modeled as follows:

dak = −m1
kuk +m1

ks
a
k,

dsk = −m2
kxk +m2

ks
s
k,

(10)

where sak and ssk denote the falsified (malicious) signals
introduced at the actuator and sensor levels, respectively.
Substituting (10) into the original system (1) yields the
updated system model:

xk+1 = Axk +Buk + F̄ fk −m1
kBW1uk +m1

kBW1s
a
k,

yk = Cxk −m2
kW2xk +m2

kW2s
s
k.

(11)
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IV. OBSERVER STABILITY ANALYSIS

To ensure the asymptotic stability of the observer system
described in equation (3), the following theorem is proposed:
Theorem 1.
he observer associated with systems (1) and (3) is stable
if, for a scalar parameter α > 0, there exist constants
τ1, τ2, τ3, δ1 > 0, and matrices P = PT > 0 and R of
appropriate dimensions such that the following optimization
problem is satisfied: [

M1 M2

M2
T M3

]
< 0 (12)

where:

M1 =

−P + τ1I ATPW̃1 − CTRW̃1 ATP − CTR

∗ −τ1I + W̃T
1 PW̃1 0

∗ 0 −P

 (13)

M2 =

 −τ2I ATPF̄ − CTRF̄ ATP − CTR

−W̃T
1 R

TW2 −τ2I + W̃T
1 PF̄ 0

RTW2 0 −P

 (14)

M3 =

−(δ − τ3)I −W2
TRF̄ WT

2 R
∗ −(τ3 − δ1)I + F̄TPF̄ 0
∗ ∗ −P

 (15)

Then, the observer gain matrix is given by L = P−1RT .
Proof:
Consider the following quadratic Lyapunov function:

V (ek) = ek
TPek (16)

where P > 0. The variation of V (ek) along the solutions of
(16) is:

∆Vk = V (ek+1)− V (ek)

∆Vk = ek+1
TPek+1 − ekTPek

(17)

Replacing ek+1 from equation (7), gives:

∆Vk = eTkMek (18)

with :

eTk =
[
ek, d

a
k, d

s
k, fk

]T (19)

M =


ÃTPÃ− P ÃTPW̃1 −ÃTPW̃2 ÃTPF̄

W̃T
1 PÃ W̃T

1 PW̃1 −W̃T
1 PW̃2 W̃T

1 PF̄

−W̃T
2 PÃ −W̃T

2 PW̃1 W̃T
2 PW̃2 −W̃T

2 PF̄

F̄TPÃ F̄TPW̃1 −F̄TPW̃2 F̄TPF̄


(20)

Secondly, using the notion of bloc-matrix [28] in (18), this
is leads to:

M =

[
M1 M2

M2
T M3

]
(21)

with:

M1 =

[
ÃTPÃ− P ÃTPW̃1

W̃T
1 PÃ W̃T

1 PW̃1

]
(22)

M2 =

[
−ÃTPW̃2 ÃTPF̄

−W̃T
1 PW̃2 W̃T

1 PF̄

]
(23)

M3 =

[
W̃T

2 PW̃2 −W̃T
2 PF̄

−F̄TPW̃2 F̄TPF̄

]
(24)

The use of the block matrix notion [28] and the S-procedure
technique [29] aims to facilitate the resolution of constraints
by transforming them into a structured form suitable for
the application of Schur’s complement [30]. Specifically,
the constraint M < 0 can be rewritten as: M1 < 0 and
M1 −M2M

−13MT 2 < 0.
However, when the diagonal elements of these matrices have
singular values, the S-procedure technique ensures feasibility
by introducing positive scalars τ1,2,3 > 0,δ1 > 0 into the
matrix structures M1,2,3.
The S-procedure principal is applied, for example [31] as
follows :
Consider the following Matrix inequality :[

ÃTP + PÃ P
∗ 0

]
(25)

Then, to avoid the problem of singularity or to introduce a
parameter τ to ensure that a term is negative, the use of the
S-procedure leads to:[

ÃTP + PÃ+ τI P
∗ −τI

]
(26)

This combination enhances numerical stability and
guarantees the validity of the transformation.
Now, applying the S-procedure [31]-[29], matrices
M1,M2,M3 becomes:

M1 =

[
ÃTPÃ− P + τ1I ÃTPW̃1

W̃T
1 PÃ −τ1I + W̃T

1 PW̃1

]
(27)

M2 =

[
−ÃTPW̃2 + τ2I ÃTPF̄

−W̃T
1 PW̃2 −τ2I + W̃T

1 PF̄

]
(28)

M3 =

[
−(δ1 − τ3)I + W̃T

2 PW̃2 −W̃T
2 PF̄

−F̄TPW̃2 −(τ3 − δ1)I + F̄TPF̄

]
(29)

Using the Schur complement lemma [30] leads to the fol-
lowing BMIs:

M1 =

−P + τ1I ÃTPW̃1 ÃTP

W̃T
1 PÃ −τ1I + W̃T

1 PW̃1 0

PÃ 0 −P

 (30)

M2 =

 −τ2I ÃTPF̄ ÃTP

−W̃T
1 PW̃2 −τ2I + W̃T

1 PF̄ 0

PW̃2 0 −P

 (31)

M3 =

−(δ − τ3)I −W̃T
2 PF̄ W̃T

2 P

−F̄TPW̃2 −(τ3 − δ1)I + F̄TPF̄ 0
∗ 0 −P

 (32)

Finally, considering the variable change R = LTP , the
LMIs (30)-(31)-(32)results given by Theorem 1 are obtained
and consequently provides the observer gain L = P−1RT ,
ensuring the asymptotic stability of the observer.

V. SIMULATION RESULTS

In the field of chemical process engineering,
interconnected tank systems play a crucial role. For
the considered example, the system is composed of three
tanks that are interconnected by means of pipes and valves
[11].
The various parameters and variables of this system are as
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follows:

xk =

h1kh2k
h3k

, uk =

[
Q1

k

Q2
k

]
, yk =

h1kh2k
h3k

;

where Q1,2
k are the flow rates of the two pumps and h1,2,3k

are the level of liquid in each tank. The dynamic, input,
output and cyber-attacks distribution matrices are:

A =

1 0 0
0 1 0
0 0 1

, B =

0.0649 0
0 0.0649
0 0

 , C = I3 .

W1 =

[
1 0 0
0 1 0

]
,W2 =

1 0 0
0 1 0
0 0 1

,F̄ =

 0
0

0.26

,f = 1.

The initial conditions are: xk(0) =
[
0.4 0.2 0.3

]T
,

x̂k =
[
−0.32 −0.16 −0.24

]T
.

Attacks signals: sak =

 0.83
1.5
−0.45

, ssk =

−0.2
0.65
0.85

.

Solving the observer synthesis problem (12) via
Y ALMIPr in MATLABr yields the gain matrix:

L =

 0.7760 −0.0086 −0.0363
0.0086 1.0257 −0.0014
−0.0363 −0.0014 0.9944


with optimization parameters τ1 = 2.7, τ2 = 1.9,τ3 = 1.5,
δ1 = 2.

A. Baseline Scenario: System Behavior without Attacks

Figures 1-2 illustrate the system performance in the ab-
sence of any cyber-attacks or faults. The estimation errors
converge rapidly to zero, and the residual signals remain
within nominal bounds, confirming the correct functioning
of the observer.
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Fig. 1. Evolution of estimation errors ei in the absence of cyber-attacks
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Fig. 2. Evolution of residual signals rk in the absence of cyber-attacks

B. Sequential Attacks: Fault, DoS, and FDI
The observer’s response is evaluated under sequential

attacks applied over different time intervals: a system fault
in the interval [400k, 600k], a DoS attack in [800k, 1000k],
and an FDI attack in [1200k, 1400k]. Figures 3-4 present
the corresponding estimation errors and residuals (ek and
rk). The residuals exhibit clear responses during each attack

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3x 10
−3

Iterations (k)

Estimation error : Tank 1

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3x 10
−3 Estimation error : Tank 2 

Iterations (k)

0 200 400 600 800 1000 1200 1400 1600 1800
−10

−5

0

5x 10
−4 Estimation error : Tank 3 

Iterations (k)

Fig. 3. Estimation errors ek under sequential cyber-attacks.

window, enabling accurate identification of anomalies in both
actuator and sensor channels.
To provide a comprehensive evaluation, an exhaustive set of
attack scenarios is tested, and a corresponding signature table
is constructed. Table I summarizes the observer’s detection
capability for various combinations of attacks on system
states and control inputs, with the following notation:

• (∗) indicates the detection of an anomaly.
• For attack schemes in Sensor, m1

k = 0 ; m2
k: random

variation.
• For attack schemes in Actuator, m1

k: random variation
; m2

k = 0.
• For combined attack schemes, both m1

k and m2
k exhibit

random variation.
Table I presents the simulation results for various attack
schemes and logic patterns targeting the system. It highlights
the impact of each attack combination on the residuals,
represented by either zero or nonzero values. These results
demonstrate that the proposed observer structure reliably
detects a wide range of attacks affecting different system
components-states, actuators, and sensors-regardless of the
attack configuration.
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Fig. 4. Residuals signals rk under sequential cyber-attacks.

C. Sustained DoS Attack Scenario

To evaluate long-term resilience, a permanent DoS attack
is injected from k=800 onwards. Figures 5-6-7 show the
behavior of state estimation, residuals and error respectively.
The figures 5-6-7 clearly show that, even with a permanent

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

Iterations (k)

 

 

real x
3

estimated x
3

800 820 840 860

0.276

0.278

0.28

 

 

Fig. 5. State trajectories and estimation (x3, x̂3) during a permanent DoS
attack.

DoS attack, the estimated states converge towards the real
states by reducing the effects of the attacks in terms of ampli-
tude of variation. In addition, the residuals remain responsive
and the estimation error remains bounded, indicating the
robustness of the observer in cyber-attack conditions.

VI. COMPARATIVE ANALYSIS AND ROBUSTNESS
EVALUATION

This section compares the proposed approach with sev-
eral state-of-the-art methodologies for attack detection and

TABLE I
COMBINATIONS OF ATTACK SCHEMES WITH DIFFERENT APPLICATION

LOGICS

r1 r2 r3 e1 e2 e3

Sensor

x1 * 0 0 * 0 0
x2 0 * 0 0 * 0
x3 * 0 * 0 0 *
x1, x2 * * 0 * * 0
x1, x3 * 0 * * 0 *
x2, x3 0 * * 0 * *
x1, x2, x3 * * * * * *

Actuator
u1 * 0 0 * 0 0
u2 0 * 0 0 * 0
u1, u2 * * 0 * * 0

Combined

x1, u1 * 0 0 * 0 0
x2, u1 0 * 0 0 * 0
x3, u1 0 0 * 0 0 *
x1, x2, u1 * * 0 * * 0
x1, x3, u1 * 0 * * 0 *
x2, x3, u1 0 * * 0 * *
x1, x2, x3, u1 * * * * * *
x1, u2 * 0 0 * 0 0
x2, u2 0 * 0 0 * 0
x3, u2 0 0 * 0 0 *
x1, x2, u2 * * 0 * * 0
x1, x3, u2 * 0 * * 0 *
x2, x3, u2 0 * * 0 * *
x1, x2, x3, u2 * * * * * *
x1, u1, u2 * 0 0 * 0 0
x2, u1, u2 0 * 0 0 * 0
x3, u1, u2 0 0 * 0 0 *
x1, x2, u1, u2 * * 0 * * 0
x1, x3, u1, u2 * 0 * * 0 *
x2, x3, u1, u2 0 * * 0 * *
x1, x2, x3, u1, u2 * * * * * *

mitigation in cyber-physical systems (CPS). The evaluation
highlights key benefits of the proposed method, including im-
proved resilience to attacks, faster convergence, and clearer
fault signatures. Table II summarizes the main differences.
While [1] provides a foundational perspective on CPS in-
tegration, it lacks considerations for attack detection and
robustness. The method in [2] targets DoS attacks but does
not incorporate an observer-based framework. In contrast, the
proposed approach integrates a dynamic observer enabling
real-time detection and mitigation of diverse attacks. The
review in [3] covers multiple detection techniques but does
not propose a unified mitigation strategy. The proposed
method overcomes this by employing a single adaptive
observer for both tasks. Although [10] presents a rigorous
solution grounded in linear algebra, its computational com-
plexity increases significantly with system size, unlike the
synthesized observer, which remains scalable. Reference [16]
is limited to predefined models for autonomous vehicles,
whereas the proposed design accommodates nonlinear and
time-varying systems. Similarly, the sensor-attack defense in
[17] suffers from linearity assumptions and ambiguous fault
signatures. The proposed strategy ensures distinguishable
signatures even under large-scale attacks, with reduced com-
putational load. The zonotope-based tool in [18] effectively

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3491-3498

 
______________________________________________________________________________________ 



0 200 400 600 800 1000 1200 1400 1600 1800

−2

0

2

4

x 10
−3   Residual signal  : Tank 1 

Iterations (k)

800 850
−2

0

2x 10
−3

0 200 400 600 800 1000 1200 1400 1600 1800
−5

0

5
x 10

−3  Residual signal : Tank 2 

Iterations (k)

800 820 840
−2

0
2

x 10
−3

0 200 400 600 800 1000 1200 1400 1600 1800

−2

0

2

x 10
−4  Residual signal : Tank 3 

Iterations (k)

800 820 840

−2
0
2

x 10
−4

Fig. 6. Variation of Residual signals rk under a permanent DoS attack.

addresses uncertainties but becomes less tractable in large
networks. The proposed method achieves higher efficiency
and simplicity. While [11] focuses on attack-tolerant trajec-
tory tracking, it struggles with high-dimensional dynamics,
which the proposed observer handles effectively. Finally, the
null-space filter approach in [22] lacks scalability, unlike the
proposed framework, which is tailored for large-scale CPS
with minimal computational overhead and rapid convergence.
In this comparison, the proposed approach demonstrates

TABLE II
COMPARISON OF CONVERGENCE TIME, ATTACK TYPES, AND FAULT

SIGNATURE CLARITY

Method Convergence Time Attack Types Fault Signature
Proposed Method 4 DoS, FDI Clear, Unique

[17] 50 DoS False Signatures
[2] N/A DoS N/A
[3] N/A Various N/A
[10] N/A DoS, FDI Moderate

several significant advantages. It exhibits a notably reduced
convergence time, requiring only four iterations as opposed
to up to fifty iterations for other methods such as [17].
Furthermore, it provides unique and clearly distinguishable
attack signatures, even in complex scenarios, whereas exist-
ing methods often suffer from biased results and false detec-
tions. In addition, the proposed solution is more flexible and
computationally efficient, maintaining its effectiveness for
nonlinear and large-scale systems, unlike alternative strate-
gies that rely heavily on linearity assumptions or predefined
models. These aspects collectively confirm that the proposed
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Fig. 7. Evolution of estimation errors ek in the presence of a permanent
DoS attack.

observer-based strategy not only enhances detection and
mitigation performance but also ensures superior robustness
and adaptability to a wide range of cyber-attacks in CPS.
To further highlight the advantages of the proposed method,
Table III presents a comparative overview with respect to
several state-of-the-art observer-based detection approaches.
The comparison considers key criteria, including the types
of cyber-attacks addressed, the inclusion of stochastic mod-
eling (e.g., Markov chains), the ability to explicitly handle
system faults, the nature of the observer structure, and the
associated computational complexity. Unlike many existing

TABLE III
COMPARISON WITH STATE-OF-THE-ART OBSERVER-BASED DETECTION

METHODS

Approach Attack Types Observer Type Computation Time
Proposed Method DoS, FDI Luenberger Low

[1] None Conceptual CPS N/A
[2] DoS Resilient Controller Moderate
[3] Various Observer Variable
[10] DoS, FDI Algebraic Detection High
[16] FDI Unknown Input Observer Moderate
[17] Sensor Attacks State Feedback Based High
[18] Sensor Attacks Zonotope Observer High
[22] DoS Null-space Filter High

approaches that either overlook stochastic behavior or treat
faults as unknown disturbances, the proposed method offers a
unified framework that models both faults and cyber-attacks
explicitly within the system dynamics. It further employs a
discrete-time stochastic model to simulate more realistic at-
tack patterns, thereby enhancing detection robustness. While
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some recent studies achieve attack detection using advanced
but computationally intensive observers (e.g., zonotopes or
null-space filters), our method relies on a simplified Lu-
enberger observer structure combined with Linear Matrix
Inequality (LMI) formulations, resulting in a lightweight and
efficient implementation. This comprehensive comparison
underlines the originality of the proposed approach, which
balances robustness, modeling accuracy, and implementation
simplicity: three essential factors for scalable cyber-attack
detection in practical Cyber-Physical Systems (CPS).
Now, to complement the previous comparison with existing
approaches, this section further analyzes the performance of
the proposed observer-based scheme by addressing two key
aspects: (i) a direct structural comparison with the observer
design from [17], and (ii) the robustness of the fault signature
with respect to increasing the amplitude of cyber-attacks with
a scaling parameter θ which is introduced in the DoS attack
formulation as follows:

xk+1 = Axk +Buk − θm1
kBW1uk,

yk = Cxk − θm2
kW2xk.

(33)

Results in Table IV confirm consistent detection signatures
even with θ = 100. The effectiveness of the observer
remains intact across all test scenarios, establishing it as a
reliable detection mechanism for resilient CPS. A targeted

TABLE IV
COMBINATIONS OF DOS ATTACK SCHEMES WITH DIFFERENT

AMPLIFICATION FACTORS

r1 r2 r3 e1 e2 e3

θ = 2
x2, x3, u1, u2 0 * * 0 * *
x3, u1 0 0 * 0 0 *

θ = 10
x2, x3, u1, u2 0 * * 0 * *
x3, u1 0 0 * 0 0 *

θ = 100
x2, x3, u1, u2 0 * * 0 * *
x3, u1 0 0 * 0 0 *

comparison with the observer approach proposed in [17]
reveals key differences in terms of convergence performance
and sensitivity to cyber-attacks. As shown in Figure 8, the
proposed method enables accurate estimation of the system
states within only four iterations, whereas the observer in
[17] requires approximately fifty iterations to achieve a
similar level of accuracy. In addition, Table V illustrates the
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Fig. 8. Comparison of State trajectories (x3 and their estimates x̂3)

residual and error patterns generated by the method from
[17] under various DoS and FDI attack combinations. The
results indicate that this approach, which does not incorporate
control synthesis, yields biased and nonspecific responses,

TABLE V
COMBINATIONS OF ATTACK SCHEMES WITH THE METHOD FROM [17]

Method of [17] r1 r2 r3 e1 e2 e3

DoS
x1, x2, x3, u1, u2 * 0 0 * 0 0
x1, u1, u2 * 0 0 0 0 0
x1, x2, x3, u1 * * * 0 0 *

FDI
x1, x2, x3, u1, u2 * * * * * *
x1, u1, u2 * * * * * *
x1, x2, x3, u1 * * * * * *

failing to clearly isolate the source of the attack. In contrast,
the proposed observer not only reduces convergence time
but also provides precise, discriminative signatures across
different attack types, as confirmed by the results in Table I.
The results discussed above clearly confirm the effectiveness
and robustness of the proposed observer-based approach.
In comparison with other methods such as those in [17],
[1], [2], [3], and [10], the suggested method demonstrates
significantly faster convergence in state estimation and higher
accuracy in detecting and isolating cyber-attacks, even un-
der conditions of increased attack intensity. These findings
strongly support the suitability of the proposed architecture
for secure and resilient supervision of cyber-physical systems
operating in adversarial environments.

VII. CONCLUSION

This paper presents a simplified Luenberger observer de-
sign incorporating residual generation for the detection of
sensor and actuator attacks, specifically Denial of Service
(DoS) and False Data Injection (FDI), in discrete-time Cyber-
Physical Systems (CPS). By introducing additional decision
variables into the observer synthesis constraints, the proposed
method enhances convergence guarantees while accommo-
dating more realistic and complex attack scenarios. System
stability is established through Linear Matrix Inequalities
(LMIs), addressed using block-matrix decomposition and the
S-procedure. To emulate realistic cyber threats, the attack
signals are modeled using a Markovian probabilistic frame-
work. The effectiveness of the approach is validated through
a case study involving a three-tank interconnected system,
demonstrating its capacity to detect and isolate various types
of cyber-attacks. Future work may focus on extending the
synthesis framework to nonlinear systems and generalizing
the detection scheme to achieve more robust identification
and resilience in highly dynamic or uncertain environments.

AUTHOR CONTRIBUTIONS

Conceptualization and methodology, Eya Hassine and As-
sem Thabet; software, Eya Hassine, Assem Thabet and Ghazi
Bel Haj Frej; supervision and validation, Assem Thabet
and Noussaiba Gasmi; writing original draft preparation,
Eya Hassine and Assem Thabet; writing review and editing,
Ghazi Bel Haj Frej. and Eya Hassine. All authors have read
and agreed to the final version of the manuscript.

REFERENCES

[1] Rajkumar, R., Lee, I., Sha, L., and Stankovic, J. (2010). Cy-
berphysical systems: The next computing revolution. 731–736.
doi:10.1145/1837274.1837461.

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3491-3498

 
______________________________________________________________________________________ 



[2] Yuan, Y., Zhu, Q., Sun, F., Wang, Q., and Baasar, T. (2013). Resilient
control of cyber-physical systems against denial-of-service attacks.
In 2013 6th International Symposium on Resilient Control Systems
(ISRCS), 54–59. doi:10.1109/ISRCS.2013.6623750.

[3] M. Kordestani and M. Saif, ”Observer-Based Attack Detection and
Mitigation for Cyberphysical Systems: A Review,” in IEEE Systems,
Man, and Cybernetics Magazine, vol. 7, no. 2, pp. 35–60, April 2021,
doi: 10.1109/MSMC.2020.3049092.

[4] W. L. Duo, M. C. Zhou, and A. Abusorrah, ”A survey of cyber
attacks on cyber physical systems: Recent advances and challenges”,
IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 784–800, May 2022.
doi:10.1109/JAS.2022.105548.

[5] E. Hassine, A. Thabet, N. Gasmi, G. B. H. Frej, and H. Thabet,
”Reconfiguration and Cyber-Attack Tolerant Control for Nonlinear
Multi-Agent Systems,” In 2023 IEEE International Workshop on
Mechatronic Systems Supervision (IW-MSS), Hammamet, Tunisia,
2023, pp. 1–6, doi:10.1109/IW-MSS59200.2023.10369717.

[6] Meng Li and Libing Wu, ”Event-Triggered Adaptive Fault-Tolerant
Control for Linear Multi-Agent Systems with Actuator Faults and
Time Delays,” IAENG International Journal of Applied Mathematics,
vol. 55, no. 5, pp. 1028–1034, 2025.

[7] Orojloo, H. and Azgomi, M. A. (2015). ”Evaluating the complexity
and impacts of attacks on cyber-physical systems”. In 2015 CSI
Symposium on Real-Time and Embedded Systems and Technologies
(RTEST), pp. 1–8. doi:10.1109/RTEST.

[8] Bordel Sanchez, B., Alcarria, R., Robles, T., and Martı́n, D. (2017).
”Cyber-physical systems: Extending pervasive sensing from control
theory to the internet of things”. Pervasive and Mobile Computing,
40. doi:10.1016/j.pmcj.2017.06.011.

[9] William R. Simpson, ”Zero Trust Philosophy versus Architecture,”
Lecture Notes in Engineering and Computer Science: Proceedings of
The World Congress on Engineering 2022, 6-8 July, 2022, London,
U.K., pp. 89–94.

[10] Li, Y., Voos, H., Darouach, M., and Hua, C. (2016). ”An application of
linear algebra theory in networked control systems: stochastic cyber-
attacks detection approach”. IMA Journal of Mathematical Control
and Information, 33(4), 1081–1102. doi:10.1093/imamci/dnv026.

[11] Bezzaoucha Rebai, S., Voos, H., and Darouach, M. (2018).
”Attack-tolerant control and observer-based trajectory tracking
for cyber-physical systems”. European Journal of Control, 47.
doi:10.1016/j.ejcon.2018.09.005.

[12] Shames, I., Teixeira, A., Sandberg, H., and Johansson, K. (2011).
”Distributed fault detection for interconnected second-order systems
with applications to power networks”. Automatica, Vol. 47, No. 12,
pp. 2757–2764. doi:10.1016/j.automatica.2011.09.011.

[13] Joo, Y., Qu, Z., and Namerikawa, T. (2021). ”Resilient control of
cyber-physical systems using nonlinear encoding signal against system
integrity attacks.” IEEE Transactions on Automatic Control, 66(9),
4334–4341. doi:10.1109/TAC.2020.3034195.

[14] Haoyu Wang, Xinyu Hu, Zhilian Yan, and Yebin Chen, ”Event-
Driven Stabilization for Markov Jump Systems Based on Disturbance
Observer,” IAENG International Journal of Computer Science, vol. 52,
no. 5, pp. 1378–1384, 2025.

[15] M. Taheri, K. Khorasani, I. Shames, and N. Meskin, ”Cyberat-
tack and Machine-Induced Fault Detection and Isolation Methodolo-
gies for Cyber-Physical Systems,” in IEEE Transactions on Con-
trol Systems Technology, vol. 32, no. 2, pp. 502–517, March 2024,
doi:10.1109/TCST.2023.3324870.

[16] Mengfan Ma, Shijian Luo, Shenghui Guo, ”Unknown Input Estimation
and FDI Attack Detection for Autonomous Vehicles”, in 2024 IEEE
13th Data Driven Control and Learning Systems Conference (DDCLS),
10.1109/DDCLS61622.2024.10606925, (pp. 1549–1554), 2024.

[17] Cambita, L. F., Quijano, N., and Cardenas, A. (2023). ”Defending
State-Feedback Based Controllers Against Sensor Attacks”. Inge-
nierea, 28(2), e20094. https://doi.org/10.14483/23448393.20094.

[18] Xiangming Zhang, Fanglai Zhu, ”Observer-Based Sensor Attack Di-
agnosis for Cyber-Physical Systems via Zonotope Theory”. Asian
Journal of Control, Volume 23, Issue 5, September 2021, pp. 2444–
2458.

[19] Xu D., Zhu F., Zhou Z., Yan X. ”Distributed fault detection and
estimation in cyber-physical systems subject to actuator faults”. ISA
Trans., 2020 Sep; 104:162–174. doi:10.1016/j.isatra.2019.12.002.

[20] Jian Li, Defu Yang, Qingyu Su, ”Reliable control strategy based
on sliding mode observer against FDI attacks in smart grid”, Asian
Journal of Control, 10.1002/asjc.2839, 25(2), pp. 910–920, 2022.

[21] Kunpeng Pan, Feisheng Yang, Yang Lyu, Zheng Tan, Quan Pan,
”Observer-based attack detection and security control for UAVs against
attacks on desired trajectory”, Journal of the Franklin Institute, Vol.
361, Issue 11, 2024. doi:10.1016/j.jfranklin.2024.106920.

[22] Daniel Ossmann, ”Attack detection in cyber-physical systems via

nullspace-based filter designs”, IFAC-PapersOnLine, Vol. 58, No. 4,
2024, pp. 526–531. doi:10.1016/j.ifacol.2024.07.272.

[23] Tan, S., Guerrero, J. M., Xie, P., Han, R., and Vasquez, J. C.
(2020). ”Brief Survey on Attack Detection Methods for Cyber-
Physical Systems.” IEEE Systems Journal, 14(4), 5329–5339.
doi:10.1109/JSYST.2020.2991258.

[24] Nicholas Jeffrey, Qing Tan, Jose R. Villar, ”A hybrid methodology for
anomaly detection in Cyber-Physical Systems”, Neurocomputing, Vol.
568, 2024. doi:10.1016/j.neucom.2023.127068.

[25] Tahir, Z., Khan, A. Q., and Asad, M. (2019). ”Attack detection
and identification in cyber-physical systems: An example on a three-
tank system”. In 2019 15th International Conference on Emerging
Technologies (ICET), doi:10.1109/ICET48972.2019.8994635.

[26] Janueario, F., Cardoso, A., and Gil, P. (2019). ”A distributed
multi-agent framework for resilience enhancement in
cyber-physical systems”. IEEE Access, 7, 31342–31357.
doi:10.1109/ACCESS.2019.2903629.

[27] Angel R. Guadarrama, Gloria L. Osorio-Gordillo, Rodolfo A.
Vargas-Mendez, Juan Reyes-Reyes, and Carlos M. Astorga-Zaragoza,
”Cyber-Physical System Attack Detection and Isolation: A Takagi-
Sugeno Approach”, Math. Comput. Appl., 2025, 30(1), 12.
doi:10.3390/mca30010012.

[28] Biswa Nath Datta, Chapter 2, ”A Review of some Basic Concepts
and Results from Theoretical Linear Algebra”. Numerical Meth-
ods for Linear Control Systems, Academic Press, 2004, pp. 19–32.
doi:10.1016/B978-012203590-6/50006-9.

[29] I. Polik and T. Terlaky, ”A Survey of the S-Lemma”, SIAM Review,
Vol. 49, 2007, pp. 371–418.

[30] S. Boyd, L. E. Ghaoui, E. Ferron, and V. Balakrishnan, ”Linear Matrix
Inequalities in Systems and Control Theory”. 15th ed., Philadelphia:
Studies in Applied Mathematics SIAM, 1994.

[31] V. A. Yakubovic, As-procedure in nonlinear control theory. Vestnik
Leningrad Univ, pp. 62–77, 1971.

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3491-3498

 
______________________________________________________________________________________ 




