Engineering Letters

Design of Monitoring System for Coke Quenching
Lifting Machine Based on Deep Learning

Xinzhong Yu, Shaochuan Xu, Ting Wang

Abstract—In an effort to evolve dry quenching coke can
hoists from conventional monitoring practices to a more
sophisticated intelligent dynamic monitoring system, this
paper presents a novel approach based on deep learning
methodologies. Initially, it introduces an advanced instance
segmentation framework, You Only Look Once version 11
Nano with compact local instance segmentation, which
represents an enhancement of the existing You Only Look
Once version 11 Nano with compact local instance
segmentation framework. You Only Look Once version 11
Nano with compact local instance segmentation achieves a
lighter model footprint through modifications in the backbone
network and feature fusion techniques, further reinforced by
the integration of a local feature attention mechanism to
enhance its ability to discern local features. Subsequently,
utilizing the improved model as the foundation for instance
segmentation, this paper defines eight distinct operational
states of the hoist, informed by the detailed insights generated
by the model. The research culminates in the design of a
comprehensive dry quenching monitoring system, achieved by
synthesizing multi-source information to establish state
discrimination criteria, complemented by the incorporation of
temporal analysis. Experimental findings underscore the
system’s exemplary performance in terms of accuracy,
real-time efficiency, and lightweight design, demonstrating its
capability to precisely and promptly ascertain the hoist’s
operational status, thereby providing robust technical support
for the safe production processes in dry quenching.

Index Terms—Dry Quenching Coke Can Hoist, Deep
Learning, Multi-Source Data Fusion, Intelligent Dynamic
Monitoring System.

I. INTRODUCTION

HE dry quenching hoist plays a pivotal role in the dry

quenching process, responsible for lifting fully loaded
red coke cans from the ground to the top of the dry quenching
furnace and ensuring precise unloading [1]. The operational
stability and reliability of this hoist are paramount, as they
directly influence the overall efficiency, product quality, and
safety of the dry quenching system. Consequently, effectively
monitoring the hoist’s condition and rapidly responding to
any anomalies is crucial for optimizing the efficiency of the
entire dry quenching process.

The conventional approach to monitoring dry quenching
coke can hoists has relied on manual inspection and basic
sensors. However, this method is constrained by the skill
level, experience, and subjective judgment of the operators,
making it challenging to provide real-time, comprehensive
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monitoring and prone to missing hidden faults. Although
simple sensors like temperature and vibration sensors can
offer real-time data on certain parameters, they provide
only a one-dimensional view, which is not enough for a
thorough and precise evaluation of the hoist’s operational
state. With advancements in computer technology, deep
learning, a significant subset of AI, has achieved
remarkable progress in areas such as target detection,
semantic segmentation, and instance segmentation[2]-[4].
Its ability to learn features and recognize patterns provides
an innovative solution for hoist condition monitoring.

The field of object detection aims to pinpoint and
categorize specific objects within images or videos. Deep
learning-based object detection emerged in 2014 with the
introduction of R-CNN by Girshick and colleagues,
marking the first use of CNNs in this context. The method
involved using Selective Search to propose regions,
AlexNet to extract features, and SVM for classification[5].
YOLO, introduced by Redmon and team in 2016, was a
game-changer, treating detection as a regression issue and
enabling real-time detection[6]. In 2020, Facebook
developed the first completely end-to-end detection model,
leveraging Transformer to understand global contexts and
eliminating the need for NMS post-processing[7].
YOLOvV10, presented by Wang and co-authors in 2024,
further advanced the field by achieving end-to-end,
real-time detection[8]. Object detection has since become a
mature and widely applied technology across various
domains. Notably, in 2025, Xiaoliang Zhu and his team’s
LPST-GCN model excelled in infrared action recognition,
while Haiying Qi and others’ IC-YOLOvS algorithm
demonstrated high accuracy in vehicle recognition under
complex scenarios[9]-[10].

Semantic segmentation is a key task in computer vision,
where each pixel in an image is categorized. The field has
seen a major transition from traditional approaches to deep
learning, evolving towards more efficient, accurate, and
end-to-end methods. In 2015, the U-Net model, introduced
by Ronneberger and colleagues, set a standard in medical
image segmentation with its innovative encoding-decoding
and skip connection architecture[11]. In 2017, Zhao et al.
introduced PSPNet, utilizing a Pyramid Pooling Module
(PPM) to effectively integrate global contextual
information[12]. In 2023, SegmentAnything, which was
trained on a dataset containing a billion items and functions
as a promptable base model, advanced semantic
segmentation into a new, more mature stage [13]. Semantic
segmentation has become a well-established technology
across various domains. A case in point is the I-U-Net
model introduced by Yun Bai in 2025, which demonstrated
remarkable precision in identifying road cracks[14].

Instance segmentation involves identifying not just the
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Fig. 1: Hoist Malfunction Diagram

type of object in an image, but also distinguishing between
separate instances of the same object. The field is moving
towards creating systems that work from start to finish in
real-time. A key milestone was set in 2017 when He and
his team built upon the Faster R-CNN framework to create
Mask R-CNN, which seamlessly combines object detection
with instance segmentation[15]. In the year 2020, a
significant advancement in instance segmentation was made
by Wang et al. with the introduction of the SOLO
framework. This framework employs an innovative
“instance category grid” to facilitate anchor-free,
end-to-end instance segmentation, marking a notable
development in the field [16]. In 2022, the Mask2Former
model was introduced by Bowen Cheng and his team,
utilizing masked attention to effectively perform panoptic
segmentation[17]. Instance segmentation finds applications
across various fields and has reached a relatively mature
stage of development. A case in point is the EIS-YOLO
model introduced by Xu Tan in 2025, which demonstrates
remarkable precision in identifying surface damage on
vehicles[18].

In the context of dry quenching coke can elevator
operations, the nuanced changes in the elevator’s state are
not effectively detectable through conventional target
detection technologies, which are limited to approximate
object localization and categorization. Although semantic
segmentation provides pixel-level category determination, it
lacks the capability to differentiate between distinct
instances within the same category. Instance segmentation,
however, offers a comprehensive approach by incorporating
both semantic classification and individual instance
recognition. This enables precise identification of the
elevator’s hanging ears, a critical factor in assessing the
grab’s condition. Consequently, instance segmentation
emerges as the optimal technique for monitoring the state
of dry quenching coke can elevators.

Despite advancements in model simplification and
performance enhancement within the field of instance
segmentation, practical applications continue to encounter
limitations. The objective of this study is to facilitate
accurate detection of the coke can elevator’s operational
status, aligning with specific practical requirements. The
contributions of this study are as follows:

The research introduces a novel instance segmentation
framework, YOLOvI1n-CL-seg, which builds upon the
YOLOvVI11n-seg architecture. It achieves a more streamlined
model through the substitution of the backbone network
and feature fusion techniques. Furthermore, the

incorporation of a local feature attention mechanism
enhances the model’s capacity to effectively capture and
concentrate on local feature details. This optimization
strategy has been demonstrated to significantly improve the
model’s focus and analytical precision regarding the
intricate aspects of elevator steel structures, thereby
substantially enhancing overall detection performance.

The research defines eight distinct operational states of
the dry quenching coke can elevator, encompassing the
entire operational workflow. Utilizing the mask map
characteristics derived from instance segmentation, the
study integrates multiple data sources, including the
quantity and location of the ears and encoder parameters, to
establish a robust framework for state discrimination.
Furthermore, incorporating a temporal dimension allows for
the analysis of state duration and transition logic,
culminating in the design of a comprehensive dry
quenching monitoring system. This system enables
real-time, precise determination of the elevator’s operational
state, thereby providing significant technical support for the
safe production processes in dry quenching operations.

II. RELATED WORK
A. Dry Quenching Coke Drum Work Process

In the operational workflow of dry quenching, the coke
can elevator initially deposits an empty can onto the
production line. It subsequently retrieves a can filled with
red coke and transports it to a predetermined location.
Upon the precise positioning of the filled can by the
conveyor system, the elevator’s grab mechanism gradually
lowers and securely attaches to the can’s ear. Following a
successful grab, the elevator elevates the can for further
processing. Throughout this procedure, it is imperative to
continuously monitor the status of the dry quenching coke
can elevator to ensure operational safety and efficiency.
Particular attention is paid to the successful release and
acquisition of the grab hook, as any detection of failure in
these actions necessitates an immediate alarm to prompt
rapid response from the operational personnel.

B. Analysis of Hoist Malfunction

In the practical application of dry coke quenching
processes, the hoist machinery is susceptible to three
predominant failure modes. The first category of failure
involves an irregular descent of the hook during the empty
coke drum release, resulting in an inability to effectively
disengage from the pendant, as depicted in Figurela. Due
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to the identical visual characteristics with the normal
unseparated state, this malfunction cannot be discerned
through static imagery or individual video frames. Accurate
identification necessitates the application of time-series
analysis in conjunction with established thresholds for
action duration. The second category of failure is
characterized by the hook initiating the grasping procedure
prematurely, before the pendant has reached the targeted
positioning zone. Referencing Figurelb, the system is
equipped to rapidly diagnose issues by establishing a
predefined region of interest (ROI) for the pendant,
ensuring real-time precision in its placement. The third
category of failure involves the hook’s misalignment,
resulting in it grasping only the outer portion of the
pendant, as depicted in Figurelc. For the intelligent
diagnosis of such failures, a multidimensional approach is
essential. This entails not only analyzing the relative
positioning of the hook and pendant within individual
frames but also considering their motion trajectories within
the broader context of the operational process. The accurate
identification of these three failure types is paramount to
ensuring the safety and stability of the dry quenching coke
production process.

C. Difficulty Analysis in Detection

This article centers on the dry quenching coke can elevator
and its integral hanging ears. The system is designed for the
real-time monitoring of the elevator’s status. Upon detection
of a fault, an alarm is activated to enable manual intervention.
The focal points in the scenario are the elevator’s hook and
the coke can’s hanging ear, with all other information being
superfluous to the background. Although the implementation
of instance segmentation for detection purposes is viable, it is
pertinent to note that existing instance segmentation models
encounter numerous challenges:

1) The research is laser-focused on specific areas, but
current models struggle to zoom in on these targets across
the whole picture without getting bogged down by
background details.

2) Dealing with tricky lighting is a big hurdle in image
detection. The target’s outdoor setting and around-the-clock
operation mean coping with really varied lighting. Too much
or too little light can wipe out key features of objects, and it
also makes the background look more like the target, leading
to mix-ups.

3) Limited datasets pose a challenge as they often fail to
encompass the full spectrum of scenarios, particularly those
that are extreme. This can lead to models making inaccurate
predictions when faced with unfamiliar situations.

4) The dry quenching coke elevator operates with
periodic changes in the hook and hanging ear status.
During actions like hooking the ear, these changes occur
rapidly. To keep up with these dynamic shifts and respond
promptly, the detection system must operate at a high
frequency. A slow-reacting system can’t keep pace with
real-time changes, risking misinterpretation of normal
operations as faults. This not only triggers unnecessary
shutdowns and hikes operational costs but might also
obscure genuine issues, compromising both productivity
and equipment safety.

5) Detecting detailed changes within the elevator’s steel
structure is crucial for monitoring its operational status.
During the key phases of hook opening and closing, the
internal gaps in the steel structure undergo minute
alterations. These subtle changes are vital for assessing the
condition of the steel structure. However, current instance
segmentation models often fail to accurately capture these
fleeting and essential features, leading to missed or
misidentified characteristics. The misjudgment of these
critical features can disrupt the accurate assessment of the
elevator’s operational status, potentially causing unexpected
production halts.

These challenges make detection much harder and often
result in missed details during actual inspections.

This paper presents an innovative instance segmentation
framework, YOLOvVI1n-CL-seg, designed to address the
challenges of uncertain illumination and dataset constraints
through the implementation of an image data augmentation
strategy. To enhance the detection of intricate details, the
Local Region Self-Attention (LRSA) mechanism is
incorporated to focus on localized target regions. To
accelerate the detection process, the main network employs
GhostConv in place of conventional Convolutional layers,
and the Cross-scale Feature Fusion Module (CCFM) is
utilized for efficient feature integration. These modifications
result in a reduction of computational complexity and
parameter count, thereby enhancing the detection speed.

III. THREE ALGORITHM IMPROVEMENTS
A. Overall Network Structure

The revised YOLOvlln-seg features a streamlined
network architecture, as depicted in Figure 2. It comprises
an enhanced backbone network, a neck network, and the
original model’s detection head. Within the backbone,
GhostConv replaces traditional Conv in layers 1, 3, 5, and
7. GhostConv innovates by creating “ghost feature maps”
through unique linear transformations, which allows it to
generate a diverse array of feature maps using fewer
convolutional kernels. This approach not only reduces the

parameter count but also boosts the network’s
efficiency[19]. It is proposed to substitute the C3k2
modules within the original model architecture with

C3Ghost modules at the 4th, 6th, and 8th layers, with the
objective of further diminishing the model’s computational
complexity[20]. Furthermore, the neck  network
incorporates the CCFM feature fusion method, a strategy
that not only contributes to the model’s lightweight design
but also enhances its ability to discern and integrate
meaningful information across multiple scales. This
refinement significantly amplifies the model’s proficiency in
extracting features within complex scenes[21]. In response
to the accuracy degradation associated with the model’s
optimization for lightweight performance, the system has
implemented a strategic modification. Specifically, the
C3k2 module, originally positioned at layers 15, 20, and 23
of the network, has been substituted with the C3Ghost-L
module to enhance overall precision. The C3Ghost-L
module is designed with an integration of the LRSA (Local
Region  Self-Attention) mechanism, enhancing the
network’s capability to discern pivotal local features and
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Fig. 2: YOLOv11n-CL-seg network structure

direct the system’s focus towards essential areas. This
design ensures the system sustains superior performance
even under the constraints of lightweight optimization [22].

B. Main Network Improvements

In scenarios characterized by the constraints of
embedded devices, the pivotal challenge lies in the
optimization of fast inference, reduced energy consumption,
and minimal memory usage for intelligent applications.
This research introduces the Ghost module as a
fundamental lightweight component, thereby enhancing the
model’s compatibility with embedded devices. The Ghost
module employs a novel two-step convolutional approach
to achieve lightweight architecture. In the initial phase,
traditional convolutional operations are utilized to generate
fundamental feature maps, thereby accomplishing
preliminary feature extraction. Subsequently, linear
transformations are applied to these base feature maps to
produce an extended set of feature maps. This distinctive
design effectively mitigates computational expense and
complexity, enabling the model to execute feature
extraction tasks with reduced resource consumption in
embedded device environments. Figure3 provides a clear
illustration of the lightweight operational mechanism and
computational optimization rationale.

The Ghost module has given rise to the Ghost bottleneck
layer, which is specifically engineered for smaller
convolutional neural networks. This layer is constructed by
cascading two Ghost modules. As depicted in Figure 4,
when the stride is 1, the initial Ghost module expands the
channel dimension to augment feature representation, while
the subsequent module reduces the channel count to
correspond with the output of the direct connection. The

Output

Fig. 3: Ghost Module

output of the first module undergoes batch normalization
and ReLU activation to facilitate faster convergence and to
intensify non-linearity. The second module employs batch
normalization solely for the purpose of data stabilization.
In cases where the stride is 2, the direct connection
incorporates a downsampling layer to modify the data
dimensions. Furthermore, a depthwise convolution with a
stride of 2 is introduced between modules to bolster the
extraction of multi-scale features. This structure also
employs pointwise convolution to mitigate computational
expenses. In the context of network optimization, this study
implements a substitution of the conventional convolutional
modules in layers 1, 3, 5, and 7 with the advanced
GhostConv modules. Furthermore, it refines the bottleneck
layer of the C3 module, transitioning it into a Ghost
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bottleneck layer, thereby constructing the C3Ghost module.

This novel C3Ghost module is then utilized to replace the
original C3K2 module. Referencing Figure 5, the
replacement of the initial C3K2 module with the newly
designed structure is illustrated. This design strategy is
implemented to minimize computational load and memory
usage, thereby optimizing the model’s efficiency in
operationally constrained settings, such as embedded
environments.

C. CCFM Feature Fusion

In the neck network, the CCFM (Cross-Scale Feature
Merger) method is implemented for feature fusion,
comprising a series of structured operational units. The
initial phase involves the adjustment of input feature
channels and dimensions via a 1x1 convolutional layer.
This is followed by upsampling to enhance the feature
map’s resolution. The subsequent step entails the
integration of information across various scales through
element-wise addition, facilitating the capture of contextual
cues. After fusion, a 1x1 convolutional layer is employed
for further refinement of the features. The process is
finalized with additional upsampling and fusion, thereby
reinforcing the multi-scale feature integration. By
integrating upsampling and downsampling, the CCFM
enables bidirectional fusion of features across different

scales, effectively leveraging the informative content of
each scale. The CCEFM structure is illustrated in Figure 6.

. Fusion 0@
UpSample I 1
J 'DownSample] |

Fig. 6: CCFM Structural Diagram

D. LRSA Attention Mechanism

The current system is exclusively focused on enhancing
elevator hooks and their associated components, making
local information processing critical for its objectives. To
augment the network’s capacity to manage local feature
intricacies, we have incorporated the LRSA (Local Region
Self-Attention) mechanism. This mechanism comprises
LayerNorm, WindowAttention, and ConvFFN, with
WindowAttention serving as the central component. It
segmentizes the input features into discrete local windows,
executing self-attention computations within these confines.
This strategy ensures a precise capture of local feature
interdependencies while fostering information exchange
across adjacent regions. The LRSA is specifically attuned
to the feature extraction demands of hooks and ears. The
ConvFFN is structured from convolutional and fully
connected layers. Figure 7 delineates the LRSA module’s
architecture, elucidating the interconnections and data flow
among its elements, and elucidating its operational
methodology and performance advantages.

E. C3Ghost-L module

In order to enhance the model’s performance and
mitigate the accuracy degradation associated with its
lightweight design, this research integrates the LRSA
attention mechanism into the C3Ghost module, thereby
constructing the C3Ghost-L module. The structure of this
module is depicted in Figure 8. The C3Ghost-L module
exhibits two principal advantages. Firstly, LRSA is adept at
precisely identifying local feature dependencies, thereby
enhancing the model’s sensitivity to intricate details such as
steel structures and ears. Secondly, LRSA employs a local
window-based approach for attention calculation, which
significantly reduces computational complexity. This
method aligns exceptionally well with the lightweight
design principles of C3Ghost. Within the C3Ghost-L
module, the GhostBottleneck employs a two-step
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convolution strategy to minimize computational load while
generating comprehensive feature maps. Concurrently,
LRSA focuses on facilitating local feature interaction,
thereby delving deeper into the analysis of output features.
The synergistic operation of these components further
reduces computational demands. Moreover, the features
processed by LRSA introduce an additional dimension to
feature fusion, augmenting the model’s cognitive and
representational capacities, and effectively counteracting the
accuracy loss incurred by the lightweight design.

!

Conv
[ ]

4
Conv

|

GhostBottleneck

|

Local Region Self-Attention

|

» Conact

|

Conv

Fig. 8: C3Ghost-L Structural Diagram

IV. EXPERIMENT AND RESULTS ANALYSIS
A. Experimental Dataset

This study built a dataset using 24-hour monitoring
videos from Feng’an Steel Company’s dry quenching coke
production line. The video resolution is 2560*1440. Two
frames per second were extracted from the collected
videos, as shown in Figure 9. The suitable images were
then manually selected and annotated.

The equipment comprises an HIKVISION outdoor
surveillance camera, a fixed LED lighting system for

nocturnal illumination, and an integrated digital video
recorder (DVR) for the storage of acquired data. The
support pole is strategically positioned at a fixed location,
no more than 2 meters from the exterior of the elevator.
The camera, mounted atop this pole, is angled to capture
real-time imagery from above. As depicted in Figure 9,
these data collectively form the dataset utilized in this
study.

In the data preprocessing phase, this study segmented the
collected data into seven distinct operational intervals,
reflecting the continuous production cycle of a steel
manufacturing facility. These intervals are categorized as
follows: nighttime (00:00-05:00), dawn (05:00-08:00),
morning  shift (08:00-11:00), midday (11:00-13:00),
afternoon (13:00-17:00), dusk (17:00-19:00), and evening
(19:00-24:00). This classification system is designed to
account for wvariations in lighting intensity, ambient
temperature fluctuations, and equipment operational load,
which are critical parameters in the production process.
Utilizing an equal-interval sampling strategy, the study
systematically captured the key operational stages of the
elevator’s working cycle, including descent, preparation for
hook opening, hook opening, completion of hook opening,
preparation for hook engagement, hook engagement,
completion of hook engagement, and ascent. For each
operational interval, 50 image samples were selected to
provide a comprehensive representation of the process
characteristics. The compiled dataset of 400 valid images
was divided into training, validation, and test sets in a ratio
of 7:2:1, ensuring an equitable distribution for model
training and evaluation purposes.

In order to further improve the model’s generalization
capability, a variety of data augmentation techniques were
implemented during the training phase. These techniques
encompass random translation, random rotation, random
grayscale conversion, and random cropping, among others.
These augmentation procedures effectively emulate
variations encountered in practical scenarios, thereby
enhancing the model’s robustness to fluctuations in lighting
conditions, orientation, and scale.

B. Experimental Platform

The hardware and software environment for this
experiment are as follows: The hardware setup includes a
desktop computer running the Windows 11 operating
system, equipped with an NVIDIA GeForce RTX 4060 Ti
GPU (16GB GDDR6 VRAM), 32GB DDR5 RAM, and a
1TB NVMe solid-state drive. The software environment is
built using Python 3.9.0, PyTorch 2.6.0, and the CUDA
12.6 framework.

To enhance the model’s generalization capability, a
multi-scale data augmentation strategy is adopted, which
includes random translation (£15% range), rotation (-30°
to +30°), grayscale transformation (probability 0.2), and
cropping (minimum retention rate of 0.7).

The training parameters are set as follows: 200 training
epochs, a batch size of 32, an initial learning rate of 0.001,
and the Adam optimizer (51=0.9, $2=0.999) combined with
cosine annealing learning rate scheduling (7,=20). This
scheduler helps the model avoid local optima and improves
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generalization. The loss function used is the Dice-CE
combined loss with a weight ratio of 1:1, balancing
attention to foreground and background and improving
instance segmentation accuracy.

These configurations contribute to enhancing the model’s
training speed, accuracy, and generalization capabilities,
providing robust support for accurate status monitoring of
the coke dry quenching lifting equipment.

C. Evaluation Metrics

The research selects mean Average Precision (mAP) to
assess the overall performance of the model. Its calculation
formula is as follows:

N 1
1
mAP = Zl/o P(R) dR x 100% (1)
P
P=Tp+Fp @
TP
R=Tp+FN )

In this context, P denotes precision and R denotes recall.
Recall is defined as the ratio of actual positive samples
within the total predicted samples. TP (True Positives)
refers to the count of instances that are correctly classified
as positive, specifically those instances that are genuinely
positive and labeled as such by the classifier. FP (False
Positives) represents the count of instances incorrectly
classified as positive, encompassing instances that are
actually negative but misclassified as positive by the
classifier. FN (False Negatives) indicates the count of
instances incorrectly classified as negative, referring to
instances that are truly positive but erroneously labeled as
negative by the classifier.

The degree of model lightweighting is measured by three
indicators: the number of parameters, the amount of
floating-point operations, and the size of model weights;
FPS represents the number of images (frames) that can be
processed per second, which is used to assess the real-time
segmentation speed of the model.

D. Comparative Experiment

In order to conduct a comprehensive and unbiased
evaluation of the YOLOvI1n-CL-seg model’s performance
advantages in the context of coke quenching elevator image
segmentation, a comparative analysis was performed with a
selection of leading instance segmentation models, namely
Mask R-CNN, YOLACT, BlendMask, YOLOvS5-seg,
YOLOvS8n-seg, YOLOv9c-seg, and YOLOv12n-seg. The
experiment was conducted under uniform conditions,
utilizing the same dataset and hyperparameter
configurations (including a learning rate of 0.001, batch
size of 16, and 80 epochs) on an RTX4060Til6GB
graphics card. To ensure the integrity and reliability of the
comparative results, the training process was replicated five
times. The experimental setup included CUDA 12.6,
Python 3.9, and PyTorch 2.6.0, with all training strategies
consistent with the current study.

Table 1 shows how various models did on the task of
segmenting images of coke dry quenching hoists. The
YOLOvV11n-CL-seg model we came up with in this study
really did a great job, outperforming popular instance
segmentation models like Mask R-CNN, YOLACT,
BlendMask, YOLOv5-seg, YOLOv8n-seg, YOLOvV9c-seg,
and YOLOvV12n-seg across the board. To be more specific,
the YOLOv11n-CL-seg model really shines when it comes
to important things like how accurate it is at drawing the
boxes around objects (precision), how good it is at finding
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TABLE I: COMPARISON

OF DIFFERENT MODELS

Module — box — mask Params/M FPS(frame s~ 1)
Precision Recall mAP@0.5 Precision Recall mAP@0.5

Mask R-CNN 0.881 0.863 0.952 0.877 0.831 0.947 46.4 42.7
YOLACT 0.874 0.852 0.931 0.865 0.814 0.924 32.1 53.4
Blend Mask 0.891 0.872 0.957 0.884 0.837 0.954 54.6 38.5
YOLOV5-seg 0.912 0.884 0.961 0.891 0.852 0.958 2.51 96.1
YOLOvVS8n-seg 0.986 0.973 0.981 0.983 0.971 0.979 2.94 91.1
YOLOV9c-seg 0.971 0.964 0.968 0.965 0.961 0.963 23.67 67.4
YOLOvVI1 1n-seg 0.993 0.982 0.985 0.989 0.98 0.982 2.84 94.2
YOLOVI12n-seg 0.979 0.968 0.978 0.973 0.965 0.971 2.82 93.1
YOLOv11n-CL-seg  0.991 0.98 0.983 0.99 0.976 0.981 1.47 120.5

TABLE II: RESULTS OF ABLATION STUDY PERFORMED

Order GhostConv  C3Ghost CCFM  C3Ghost-L mAP@0.5 Params/M  FLOPs/G  Weight(MB)
0X mas
1 0.985 0.982 2.84 10.4 5.73
2 v 0.971 0.970 2.60 9.7 5.29
3 v v 0.961 0.959 2.26 9.0 4.66
4 v v v 0.956 0.953 1.41 8.0 3.16
5 v v v v 0.983 0.981 1.47 8.2 3.21
all the objects it should (recall), and its overall average performance, with mAP@0.5(box) of 0.985,

performance score (mAP) for both the boxes and the
detailed outlines (masks). The data demonstrates that the
model exhibits high precision in object boundary
localization, achieves comprehensive object identification,
and delivers segmentation results for object contours that
align closely with actual conditions. Although the
YOLOv11n-CL-seg model introduced in this research
exhibits a marginal decrease in accuracy relative to the
YOLOv1lIn-seg model, it demonstrates a substantially
lower parameter count compared to both YOLOvIIn-seg
and the other benchmarked models. A comprehensive
assessment indicates that the YOLOv11n-CL-seg model
developed in this research fulfills the accuracy requirements
for industrial scene detection. Concerning real-time
performance, the model achieves an FPS value of 120.5
frames per second. The model’s actual detection response
time demonstrates significantly superior performance
compared to alternative models. Consequently, the proposed
model offers highly efficient technical support for the
dynamic monitoring of industrial equipment.

E. Ablation Experiment

To precisely dissect the specific contribution of each
module to the overall performance in the improved
YOLOvVI11n-CL-seg model, module-level ablation studies
were conducted. A variety of variant models were
constructed by sequentially removing or replacing certain
modules based on the fully improved model, and tested
under the same experimental dataset and environment. The
results are shown in Table 2. The four improved modules
included GhostConv, C3Ghost, CCFMand C3Ghost-L.

Based on the results of the ablation experiment, the
baseline model (sequence number 1) showed initial

mAP@0.5(mask) of 0.982, 2.84M parameter volume, and
FLOPs of 10.4G. When gradually introducing improved
modules, the performance exhibits different changes. After
introducing the GhostConv module (sequence number 2),
the model parameter volume and FLOPs decreased
somewhat, but the accuracy also decreased, with
mAP@0.5(box) dropping to 0.971 and mAP@(.5(mask)
dropping to 0.970, indicating that this module affects
accuracy while being lightweight. Further introduction of
the C3Ghost module (sequence number 3), both the
parameter volume and computation volume continue to
decrease, but the loss of accuracy is exacerbated. The
addition of the CCFM module (sequence number 4),
significantly reduces the parameter volume to 1.41M and
FLOPs to 8.0G, but the drop in accuracy is significant.
When all improved modules including the C3Ghost-L
module (sequence number 5) are introduced, the model
achieves a good balance of performance and resource
consumption while maintaining its lightweight advantage,
with mAP@0.5(box) reaching 0.983 and mAP@0.5(mask)
reaching 0.981, which are close to the accuracy of the
baseline model. This highlights the critical importance of
the synergy of various modules for model optimization.
Please help me translate.

V. FAULT MODEL CONSTRUCTION FOR COKE BUCKET

HoisT
A. State Analysis of Coke Bucket Hoist
Instance segmentation technology is employed to

precisely isolate the components of a hoist amidst complex
backgrounds through the identification of spatial locations
and frame motion instance features. Nonetheless, a solitary
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static image is limited to capturing a fleeting state,
insufficient for depicting the full operational dynamics of
the hoist or serving as a dependable criterion for process
validation. The hoist is susceptible to three predominant
faults: anomalous hook descent during the discharge of
empty coke drums, premature hook engagement when the
ear has not attained the designated zone, and deviations in
hook engagement position. The detection of these faults
necessitates the analysis of temporal attributes, dynamic
procedures, and sequential actions, rendering a single frame
image inadequate for the task.

The present study introduces an innovative method to
address the challenges outlined. This method leverages the
feature-rich information derived from instance segmentation
techniques. In the operation of the hoist, periodic gaps
within the steel framework are discernible, represented as
black areas enclosed within the blue structure in the
segmentation mask image (refer to Figure 10 for
visualization, where the hook is depicted in blue and the
lug in cyan). Furthermore, the instance segmentation mask
image exhibits a unique pattern of change in the number of
lugs. During the no-load phase, typically, a single lug is
visible. However, during the coke drum grasping action, the
mechanical occlusions cause the single lug to be segmented
as two in the mask. Utilizing this information, the hoist’s
operational process is delineated into eight distinct time
periods. By integrating the image data and characteristic
features of each period, a comprehensive,
multi-dimensional dynamic analysis system is constructed.
This system empowers computers to make intelligent and
precise judgments regarding the hoist’s operational status,
significantly enhancing the timeliness and accuracy of fault
detection.

Fig. 10: Instance Segmentation Mask Map

B. Division and Qualitative Analysis of Lifting Machine
Working States

The precise differentiation of operational phases in the
dry quenching coke can hoist is essential for the effective
surveillance of its operational status. This research employs
instance segmentation technology, mask feature analysis,
and encoder information from the hoist to accurately
demarcate the various operational states. The classification
of these states is based on an extensive statistical analysis
of operational data gathered from real-world applications.
The study has involved prolonged monitoring of the hoist,
compiling data on the operational durations of key actions
such as opening and closing hooks, as well as during

different operational stages. The findings indicate a high
level of stability and regularity in these actions and stages
under normal operational conditions. Hence, the temporal
parameters for each phase in this study are derived from
these statistical data, ensuring a scientifically rigorous and
accurate categorization of time periods. This data provides
a solid foundation for the precise monitoring of the hoist’s
operational status. Details are as follows:

Descending phase: The encoder installed on the hoist is
designed to provide positional feedback. In instances where
the encoder registers a consistent downward movement of
the hoist, this period is classified as the hoist’s descending
phase.

Hook opening preparation phase: Upon reaching the
lowest point as indicated by the encoder feedback, a
transition in the number of hanging ears from two to one is
observed through instance segmentation. Concurrently, the
mask map depicts the emergence of a black area within the
steel structure, signifying the hoist’s transition to the
preparation phase for hook opening. As shown in Figure
11, this phase is consistently observed to have a duration of
4 seconds. This duration has been established through a
comprehensive statistical analysis of extensive operational
data of the hoist. Long-term monitoring has indicated that
under standard operating conditions, the duration of this
phase remains stable at approximately 4 seconds, thus
serving as the reference for time setting in this phase.

Duration of the hook opening process: The analysis of
the instance segmentation mask map reveals a sequential
increase, followed by a minor decrease, and eventual
stabilization of the internal gap area within the steel
structure. This period is classified as the hoist’s hook
opening process. As shown in Figure 12, this phase lasts
for 9 seconds.

Hook Completion Phase: The analysis of the mask
diagram indicates a consistent internal gap area within the
steel structure, sustained for a period of one second. This
duration is classified in the research as the phase of
completion for the hoist’s hook opening process.As
depicted in Figure 13, this phase of completion is observed
to last for one second.

Upon the hanging ear’s arrival at the pre-established ROI
area, the hook initiates its descent. Simultaneously, the
mask diagram indicates a progressive enlargement of the
internal gap area within the steel structure. This period is
designated within the study as the preparation phase for the
hoist’s grappling mechanism. As shown in Figure 14, this
phase lasts for 4 seconds.

Hook Engagement Phase: During the continuous descent
of the hook, the mask diagram indicates a progressive
decrease in the internal gap area of the steel structure. This
period is classified within the study as the phase during
which the hoist is engaged in the act of grasping. As
shown in Figure 15, this phase lasts for 6 seconds.

Gripper Completion Period: The mask map indicates the
disappearance of internal voids within the steel framework.
Instance segmentation has identified a transition from a single
hanging ear to two. This period is classified as the completion
phase of the hoist’s grappling operation. As shown in Figure
16, this period lasts for 5 seconds.

Ascension Period: The encoder has observed a sustained
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upward trend in the hoist’s location. This period is classified
as the hoist’s ascending phase. Upon reaching this stage, the
hoist has accomplished a full workflow cycle.

C. Design of Hoist Monitoring System

The current study elucidates a novel methodology for the
surveillance of dry quenching coke can hoists. Central to
this methodology is the utilization of temporal constraints
across various intervals, coupled with the assurance of
operational process integrity for anomaly detection. In
normal operational circumstances, the hoist’s sequential
stages must adhere rigorously to predefined temporal
parameters, with each stage exhibiting a full spectrum of
critical actions and state transitions. As shown in Figure
17, the operational phases are delineated as follows: 0-tl
for descent, tl1-t2 for hook opening preparation, t2-t3 for
the hook opening process, t3-t4 for hook opening
completion, t4-t5 for a waiting interval, t5-t6 for hook
closing preparation, t6-t7 for the hook closing process,
t7-t8 for hook closing completion, and t8-t9 for ascent.
Should the surveillance system ascertain that the actual
operational duration of a specific phase transcends the
established temporal threshold and fails to progress
seamlessly into the subsequent phase, it is indicative of
operational stagnation or malfunction during said phase.
Promptly, the system activates an alarm mechanism,
facilitating expeditious intervention to rectify the issue,
thereby safeguarding the continuity and stability of the dry
quenching coke production process. Furthermore, the
continuous monitoring of operational integrity across each
phase significantly amplifies the system’s preemptive
capabilities in identifying potential hoist failures. This
encompasses the surveillance of key components’ action
states, lug quantity and positional variations, and the
dynamic evolution of mask map features. This multifaceted
monitoring approach ensures the secure and efficient
operation of the dry quenching coke process.

D. Industrial Scenario Verification

The dry quenching coke production line at Ansteel Iron
and Steel Company has successfully implemented a deep
learning-based monitoring system, which underwent a
continuous one-month operational test. Throughout the

testing phase, the system demonstrated robust performance
with no interruptions due to software malfunctions. It
effectively exchanged data with other equipment control
systems to acquire real-time operational data of the coke
can hoist, enabling detailed analysis and comparison. The
system’s ability to precisely track the hoist’s operational
status remained consistent, irrespective of the production
load, thereby ensuring stable detection performance under
varying operational conditions.

The system incorporates three key mechanisms, which
are continuous state evaluation, time-duration limitations,
and historical data analysis, to ensure comprehensive
monitoring of the hoist. In the context of monitoring state
transitions of the hoist, the enhanced model necessitates
three consecutive and consistent detection results for
confirmation. Leveraging a foundational accuracy rate of
98.1% and prioritizing the detection of intricate details
within steel structures, the model effectively resolves the
steel structure detail detection issue posed in Chapter 2. As
shown in Figure 18, the enhanced model successfully
mitigates the risk of erroneous state interpretations resulting
from the abnormal disappearance of black areas within the
steel structure on the mask graph. With a frame rate of
120.5 frames per second (fps), this model exhibits superior
responsiveness and stability under complex operational
conditions, outperforming alternative models. The system’s
enhanced precision in monitoring the steel structure phase
is attributed to the improved model’s higher fps. It
automatically retrieves and compares data from the
preceding eight work cycles during the monitoring process.
In the event of an anomaly, the system undergoes a
secondary review. The system’s ability to more accurately
correct deviations is a direct consequence of the improved
model’s higher initial accuracy compared to other models.
These three pivotal mechanisms substantially enhance the
reliability of the monitoring system within complex
industrial environments.

VI. SYSTEM OVERVIEW
A. System Architecture

The system incorporates a camera for the acquisition of
images and employs the OpenCV library for the decoding
of video streams. It is designed to process two frames per
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second for semantic segmentation tasks. The comprehensive
system flow is depicted in Figure 19.
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Fig. 19: System Workflow Diagram

1) The initial phase involves the application of traditional
machine vision techniques for the preprocessing of acquired
images. Subsequently, these processed images are input into
an instance segmentation model for the detection process.

2) The system integrates the analysis of state changes to
ascertain the condition of the coke can hoist. It evaluates
the presence of significant disturbances in the operational
environment based on the detection status. In the event of
detected interference, the system activates a delayed
response. This process leverages the mechanisms of
continuous state evaluation, state time constraints, and
historical data retrospective analysis to guarantee the
precision and reliability of the judgments.

3) The system, developed utilizing LabVIEW software,
incorporates a comprehensive human-machine interface.
This interface facilitates real-time monitoring of the coking
drum elevator’s operational status and segmentation

outcomes. In the event of an anomaly, the system is
designed to activate an immediate alarm. This integrated
solution is pivotal in ensuring the prompt detection and
resolution of potential faults in the elevator, thereby
enhancing overall system reliability and safety.

B. Human-Machine Interface

The system is designed to provide timely information
regarding the status of the dry quenching coke drum
elevator. The login interface requires users to enter their
credentials and passwords to ensure secure access. Once
logged in, users are presented with a detection interface
that includes a detailed curve chart. This chart visually
represents the elevator’s operational status, with the
horizontal axis indicating various states and the vertical
axis denoting positions. In instances where the elevator’s
operational cycle is within acceptable parameters, the
detection system remains in its standard operational state.
Conversely, if the cycle deviates from the established
norms, the system enters a cautionary state, initiating an
abnormal alarm procedure. The surveillance video feed
offers a direct visual assessment of the coke drum
elevator’s condition, accompanied by a set of indicator
lights and alarm signals located beneath the display. The
parameter configuration interface is primarily utilized for
adjusting the alarm threshold settings. The alarm log
function is designed to document all instances of warnings
and irregularities pertaining to the elevator, with these
records being securely stored for subsequent inquiry. Figure
20 provides a schematic illustration of this setup.

The human-machine interface system integrates the
following functional modules:

1) Login interface: User verification is conducted through
password-protected access.

2) Detection interface: Work detection curve for the coke
bucket hoist. Normal: The coke bucket hoist’s work cycle
is normal. Warning: The hook warning is triggered when
the lug position does not reach the designated ROI area and
the hoist enters the grab hook state. Abnormal: An
exception is triggered if the coke bucket hoist’s work cycle
is abnormal. All statuses are visually represented using
indicator lights. If a light is on, it signifies that the system
is in the corresponding state.
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Fig. 20: System Workflow Diagram

3) Real-time Monitoring: Real-time display of the
surveillance area’s visuals.

4) Configuration Panel: Adjustable alarm thresholds and
lag parameters.

5) Alarm records: Timestamp records of operational
anomalies.

6) Start and Stop System: Controls the normal operation
and stoppage of the detection system.

VII. CONCLUSION

The present study has successfully developed an
advanced deep learning-based monitoring system for dry
quenching hoists, substantially mitigating the challenges
associated with conventional monitoring methodologies.
Through a comprehensive analysis of the hoist’s operational
dynamics and the categorization of its various states, the
system achieves high precision in recognition utilizing
state-of-the-art instance segmentation techniques. In
response to the identified limitations of the YOLOv11n-seg
model, an innovative enhancement, the YOLOVI11n-CL-seg
model, has been proposed. This model demonstrates
significant improvements in terms of lightweight design
and operational efficiency. It maintains detection accuracy
comparable to the original model while reducing the
number of parameters, memory consumption, and
computational requirements to 51.7%, 56%, and 78.8% of
the original model, respectively. With a frame rate of 120.5
FPS, the model is highly suitable for real-time industrial
monitoring  applications. The experimental dataset,
augmented through advanced data augmentation techniques,
highlights the model’s superior performance in accuracy,
training efficiency, and complexity management. The
YOLOvVI11n-CL-seg model’s metrics for box and mask in

terms of Precision, Recall, and mAP@0.5 are nearly
equivalent to those of the YOLOvlln-seg model, yet it
boasts significantly lower Params and a considerably higher
FPS. The system’s employment of the YOLOvVI1n-CL-seg
model as the instance segmentation model ensures high
accuracy and rapid response capabilities. It guarantees
accurate identification of the hoist’s operating state through
continuous state evaluation and historical data review, thus
ensuring production safety and reliability. The system has
been successfully integrated into the production line of
Feng’an  Steel = Company. @ The  LabVIEW-based
human-machine interface facilitates real-time monitoring,
segmentation result display, abnormal alarm notification,
and information recording, substantially enhancing the
system’s user experience and practical utility. This study
represents a significant advancement in the field of
intelligent hoist monitoring, with the developed methods
and models holding extensive potential for future
applications. Future research directions may include the
integration of the Internet of Things and big data analytics
for comprehensive intelligent production management, as
well as the continuous optimization of models to enhance
their performance in complex industrial environments.
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