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Abstract—Colonoscopy is considered the most important
technique for detecting polyps and facilitating early screening
and prevention of colorectal cancer. In a clinical setting,
segmenting polyps from colonoscopy images is of critical impor-
tance, as it preserves key diagnostic and surgical information.
Although deep learning has achieved significant success in polyp
segmentation, existing models often suffer from performance
degradation on unknown datasets due to the morphological
diversity of polyps. Specifically, traditional architectures make
handling multi-scale feature characterization and boundary
ambiguity difficult. To address this problem, we propose a
novel network architecture called M“CSFormer to solve the
challenges in polyp segmentation. The model uses a Pyramid
Transformer to establish inter-layer multiscale associations
through differentiated sensory fields to obtain rich multiscale
disparity information. In addition, channel and spatial attention
mechanisms are used to determine the location of polyps effi-
ciently. In addition, we use shape blocks to enhance the edge seg-
mentation accuracy through geometric constraints. According
to M?CSFormer experiments on five publicly available datasets,
the present method achieves state-of-the-art performance. In
cross-domain evaluation, our model achieves an average Dice
coefficient of 0.935/0.949 on Kvasir-SEG and CVC-ClinicDB
datasets, which is a 4% and 1.3% improvement over PraNet and
SSFormer, respectively. The optimized architecture processes
256x256 images at 42 FPS on RTX 3090 GPU with 12.5%
faster inference and higher accuracy than SSFormer.

Index Terms—colonoscopy, M>CSFormer, multi-scale fea-
tures, polyp segmentation.

I. INTRODUCTION

OLORECTAL Cancer (CRC) is a significant cause

of death worldwide. In the United States, it is the
third most common cause of cancer-related fatalities, with
approximately 151,030 new cases and 52,580 deaths in
2022[1]. In 2022, CRC was the third most prevalent disease
in China, with 592,232 new cases and 309,114 deaths[2].
Currently, endoscopy is the most effective technique for
the diagnosis and management of abnormalities; however,
there are certain restrictions associated with this procedure.
Initially, the effectiveness and precision of the colonoscopy
examination can be influenced by the experience, skill, and
attention of a specialized physician who is responsible for the
operation and judgment. Secondly, colonoscopy is a lengthy,
laborious, and costly process that is a burden for both patients
and physicians. Third, colonoscopy is associated with the risk
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of underdiagnosis, misdiagnosis, and overdiagnosis, which
may result in superfluous or delayed treatment.

The clinical acumen and experience of the endoscopist,
as well as the reliance on manual manipulation, have been
highlighted in recent reports, resulting in missed lesions in
approximately 26% of colonoscopies[3]. This may result in
treatment that is either unnecessary or delayed. The pro-
gression of colonoscopic polyp image segmentation can pro-
vide clinicians with supplementary diagnostic and decision-
making support, improve the efficiency, accuracy, and objec-
tivity of examinations, and promote early identification and
management of colorectal carcinoma. Nevertheless, polyp
image segmentation continues to encounter certain obstacles
and complications[4]. There are three primary reasons why
the automatic and precise segmentation of polyps remains
a difficult undertaking. Initially, there are substantial varia-
tions in polyp size, color, texture, and other characteristics
within each cohort. Secondly, there are minor interclass
distinctions between polyp lesions and the surrounding tissue
components, particularly folds. Lastly, the identification of
polyps can be perplexing due to fluctuations in illumination,
motion blur, low-contrast areas, and gastrointestinal contents
during image acquisition[5]. These factors may exist not just
within specific sections of the same polyp but also among
various types of polyps, leading to fragmentation stability
and unpredictability.

Traditional polyp segmentation methods predominantly
depend on a small amount of characteristics, including
texture[6], geometric features[7], and basic linear iterative
clustering of hyperpixels[8], to address the aforementioned
issues and challenges. Unfortunately, these techniques fre-
quently result in subpar segmentation accuracy and restricted
generalization capabilities. Deep learning techniques offer a
precise and efficient solution for polyp segmentation through
their implementation in medical image analysis. Numerous
image division models utilizing convolutional neural net-
works (CNNs) have demonstrated outstanding performance
in recent years. The U-shaped topology of U-Net[9] has been
adopted as a classical network structure for medical image
segmentation. It extracts feature information through convo-
lutional layers in the encoding path and spatial information
in the symmetric decoding path. Furthermore, to mitigate the
semantic disparity between the encoder and decoder of the
U-shaped network and generate satisfactory outcomes, U-
Net++[10] and ResUNet++[11] have been implemented in
polyp segmentation.

A variety of innovative methods have been suggested
by researchers. For instance, ColonSegNet[12], which is
comparable to UNet, constructs a lightweight model for
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polyp image segmentation by employing skip connections,
residual blocks, and transposed convolutions. It achieves
the segmentation speed of about 180 FPS on the Kvasir
dataset, providing an outstanding basis for actual time polyp
segmentation of pictures tasks. To effectively localize polyp
boundary regions, PraNet[13] employs a reverse attention
mechanism. This is accomplished by incorporating boundary
attention blocks and advanced feature aggregation into the
network architecture, which aid in the alignment of unaligned
predictions and the enhancement of the overall segmentation
accuracy. Hardnetmseg[14] is a simplified encoder-decoder
architecture that is based on PraNet. In particular, they
replace the original Res2Net backbone with Hardnet[15] and
eliminate the attention mechanism to facilitate speedier, more
precise polyp segmentation. H and eliminate the attention
mechanism to facilitate the more precise and rapid segmenta-
tion of polyps. The Information Context Enhancement (ICE)
technique and the Adaptive Feature Aggregation (AFA)
module, as well as the use of edge and structural coherence
perceptual loss (ES-CLoss) for training, are introduced by
HRENet[16]. This results in exceptional model performance.
The primary method by which DeepLabv3+[17] enhances
the accuracy is by altering the structure of the encoder-
decoder. This modification introduces a decoder module that
enables the reconstruction of segmentation results from the
underlying features, thereby enhancing the detail and accu-
racy of the segmentation. The computational and memory
footprint of the model is significantly reduced by utilizing
depth-separable convolution, which enhances the model’s
practicality and real-time characteristics.

SANet[18] implements probabilistic correction and color
migration strategies to resolve the obstacles of scale imbal-
ance and color distribution that are a result of the objective
size. MSNet[19] implements a multiscale subtraction net-
work to mitigate redundancy and complementarity in multi-
scale features. In the same vein, MSRFNet[20] implements
a cross-scale fusion mechanism to disseminate both high-
level and low-level features, as well as a shape-flow network
to refine polyp boundaries. TGANet[[21] employs a text-
guided approach to assimilate the distinctive characteristics
of polyps of varying sizes, with the ultimate objective of
improving the network’s capacity to generalize across polyps
of varying sizes.

The decoder is provided with information on the difference
at the pixel and structure level by the basic intralayer multi-
scale subtraction unit SU, which is designed by M2SNet[22].
The method achieves interlayer multiscale feature aggrega-
tion and the acquisition of comprehensive multiscale dis-
parity information by providing varying receptive fields to
various levels of multiscale SUs. Another model, MCSF-
Net, uses a multi-scale channel spatial fusion network[23].
The design suggested effectively fuses multidimensional
multiscale features by combining a multiscale union section
with positional and channel-focused attention mechanisms. A
characteristic enhancement algorithm is also implemented for
effectively obtaining outline signals about low-dimensional
attributes, thereby ensuring computational complexity and
improving segmentation speed. The same issue is resolved
by a different approach, Polyp-PVT[24], which employs non-
local modules to tacitly adjust the anticipated map with
features at the lowest level. Furthermore, the accuracy of

polyp segmentation is enhanced by the utilization of the
GCN network for feature map closeness merging in this
framework. The segmentation prediction maps of polyps
are iteratively updated by LDNet[25], which employs a
segmentation header that is derived from the general ambient
traits of the input image. This is achieved by utilizing the
taken-out lesion properties of the polyps.

A bottom-up model architecture was initially proposed
in the Natural Language Processing (NLP) community as
a Transformer[26]. A Vision Transformer (ViT)[27] was
proposed by Dosovitskiy et al to optimize image classifi-
cation tasks. The transformer adaptively extracts and blends
features between all blocks by calculating the dot product
between block vectors based on the similarity of all block
pairings. This reduces the model’s sensing bias and provides
the Transformer with a global sense field that is effective.
Consequently, Transformer possesses more potent general-
ization capabilities than multilayer perceptron architectures
and CNN5s[28]. SSformer[29] suggests a novel method for
improving the encoder by enhancing the structure. The
methodology comprises the execution of an individual at-
tention mechanism and an ordered character consolidation
mechanism that performs local detailed feature processing
with efficiency.

Although these techniques exhibit encouraging outcomes
in the segmentation of polyp images, they often neglect
important factors that involve the intricate nature of the
model and the simplicity of deployment in favor of en-
hancing segmentation accuracy. Precise error bounds en-
hance the reliability of these networks, especially in safety-
critical applications where dependability is essential[30] .
The model’s capacity to localize polyp boundaries is im-
proved by PraNet’s use of reverse attention; however, its
capacity to obscure polyp boundaries remains unsatisfactory.
Nevertheless, CNNs frequently experience the loss of some
critical information during downsampling and have restricted
sensory domains, which impedes their capacity to establish
global contextual semantic relations. Because of this, conven-
tional CNN methods typically demonstrate restricted general-
ization capabilities when implemented on polyp images from
various patients[31]. Multi-scale feature maps are processed
by MCSF-Net to resolve this limitation; however, it fails
to consider the semantic information that exists between
pixels. TGANet utilizes text-directed attention to concentrate
on the characteristics of polyps of varying diameters, there
by improving its generalizability. Nevertheless, additional
enhancements are required in the local detail segmentation
of TGANet.

To resolve these concerns, we suggest the development of
a novel polyp segmentation of pictures model, M ?CSFormer,
that effectively balances immediate performance with accu-
racy. Initially, we introduce Transformer v2 (PVTv2) as an
image encoder. This model, in contrast to conventional con-
volutional neural networks, employs a self-attention mecha-
nism that allows it to encompass a broader effective receptive
field. The Transformer can better capture global contextual
semantic information by learning the dependencies between
different positions in the sequence through self-attention for
long sequence data. Nevertheless, the Transformer may be
unable to effectively extricate local feature information and
may also encounter the issue of distraction. Consequently,
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Fig. 1: The proposed M?CSFormer architectures.

we have developed the Local Emphasis (LE) block, which
employs three convolutional kernels of varying sizes, fusion
channels, and spatial attention mechanisms to generate a
variety of sensory field sizes that can capture features at
varying scales and re-condense the disordered attention from
new along key details such as contours and boundaries.

In this paper, a multi-scale module in multiscale reduc-
tion (M2SM) is developed to enhance the textures and
boundaries of polyps. This approach guarantees the precise
maintenance of tumor limitations, minimizes the loss of
critical information, and enhances the model’s separation
efficiency. Furthermore, we implemented a straightforward
shape block to highlight the form of bounding data within
the outcomes of segmentation. The lesion is distinguished
from the background by utilizing the difference between
various levels of characteristic data in this block, which
is controlled by employing BinaryCross EntropyLoss (BCE
Loss). M2CSFormer is not just highly efficient but also
highly accurate in the segmentation of polyp images. The
main findings of this work have been as follows:

(1)We suggest the development of a novel immediate
time segmentation method for papilloma pictures, known as
MZ2CSFormer. It comprises LE blocks and MZ2SM blocks, as
well as a further shape block that supervises the form and
perimeter features inside the polyps to enhance the model’s
generalization and localized feature extraction capabilities.

(2)M2CSFormer transfers the extracted multi-scale fea-
tures, which are abundant in global information, through
LE into M2SM. The utilization of this block emphasizes
the valuable difference information and eliminates the in-
terference of the sunken sections, thereby enriching the
representation of the local features and, in the end, generating
a reliable segmented image that offers excellent current
performance.

(3)The reliability of M2CSFormer was successfully ver-

ified by means of thorough studies on five publicly
available datasets: Kvasir-SEG[32], CVC-ClinicDB[33],
Endoscene[34], CVC-ColonDB|[35], and ETIS[36]. The find-
ings indicate that our proposed M2CSFormer outperforms
the majority of the most recent advances in techniques in a
variety of metrics used for evaluation.

II. METHOD

The M2CSFormer introduces a novel framework for seg-
menting polyps in colonoscopy images by implementing
multiscale fusion across channels and dimensions. This
framework incorporates a pyramid Transformer encoder
known for its strong generalization capabilities, enabling
efficient feature extraction and processing with fewer param-
eters. Leveraging the inherent focus of M2SM on extracting
depth information, the model enhances the delineation of
edge details and structural cues. Additionally, it integrates
channel-attention and spatial-attention[37] mechanisms to
further enhance the identification of these features. The
overall architecture of M2CSFormer, as depicted in Fig. 1(a),
consists of an encoder module, an LE module, an M2SM
module, a shape module, and a decoder module. Detailed
explanations of the functions and structures of these modules
are provided below.

A. Encoder module

By employing the Pyramid Vision Transformer v2
(PVTv2) that has been pre-trained by ImageNet, the
M?2CSFormer functions as an image encoder. The B3 variant
of the PVTV2 is employed, and it contains 45.2M parameters.
The PVTV2 backbone network extracts the feature maps from
four distinct channels, which are denoted as {E1: 64,64x64},
{E2: 128,32x32}, {E3: 320,16x16}, and {E4: 512,8x8}.
The data includes the resolution and number of channels.
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In order to effectively model the global context, PVTv2
possesses a multi-scale feature processing capability and a
potent global receptive field. Furthermore, PVTv2 enhances
parameter efficiency and can achieve comparable accuracy to
other larger-scale models while retaining a reduced number
of parameters. In particular, we employ features LE1-LE4 to
improve the feature representation of M2SM. This enhances
the complementarity between various levels of features,
allowing for more precise localization and the identification
of tumor borders.

B. M2SM and LE block

The characteristics of level features are weakened, re-
sulting in the generation of redundant information and the
failure to balance accurate localization and subtle boundary
refinement. Typically, features at different levels contain rich
local features, but the different information between different
levels is not given the same level of attention. Consequently,
we introduce M2SM to enhance the representation of local-
ized features by highlighting valuable difference information
and eliminating the interference of sunken redundancy. The
attention-enhanced features LE1, LE2, LE3, and LE4 are
transmitted into M2SM, as illustrated in the Fig. 2. MS
represents the 3 x 3 convolution functioning, which follows
routine normalization and ReLU, and CAM represents the
channel of attentive mechanism. Initially, this module will
be employed to perform feature mapping for each encoder
block individually, thereby reducing the number of channels
to 64 and, as a result, the number of parameters required for

subsequent operations. Next, the features of adjacent layers
will be processed by a potent intra-layer multiscale subtract
space unit (M CSU). The feature mapping of neighboring
layers is represented using F4 and F'p, as illustrated in
the Fig. 3(b). This allows the M CSU to be represented as
follows Eq.(1).

Where Filter(-),x» denotes a comprehensive one-
dimensional filter of size n x n. We employ multi-scale
convolutional filters with fixed all-1 weights of sizes 1 X
1, 3 x 3, and 5 x 5 to calculate detail and structural
differences based on pixel-pixel and region-region patterns.
Subsequently, the attention map is inferred together each of
the channel lengths using a channel attention module. To
automatically improve the significance of attributes, focus
mapping are combined with feature maps. The MCSU can
then capture the complementary information of CAM (F,4)
and C AM (F'p) and emphasize the differences between them
in terms of texture and structure, thereby providing the
decoder with more comprehensive information. We compute
a series of differential features with different orders and
receptive fields by horizontally and vertically connecting
multiple MC'SUs in order to obtain higher-order comple-
mentary information at multiple feature levels.

F4 and Fp are feature maps that match distinct widths
and sizes. The primary components of narrow characteristics
are localized information, including colors, textures, outlines,
and edges. Nevertheless, the field of reception widens as
the depth of the network increases, allowing the system to
gather deeper features in the image, such as things, situa-
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Fig. 3: The details of shape block, MCSU and decoder.

tions, and geographic data. Consequently, we calculate the
discrepancies among the characteristics of the maps that were
extracted at the proximal point in the network’s structure. The
separation of material that exists between colonies and the
surroundings is emphasized by optimizing these distinctions
employing multichannel concentration.

Fig. 2 contains the multiscale details of the multiscale re-
duction mechanism. We derive complementary enhancement
characteristics (/M S%) by combining scale-related features
(M S?%) and cross-scale difference measures (M S!) among
the level in question and any other level. This procedure
may be articulated as follows:

6—1

MSi_Conv(<ZSAM(MSfL)>, i=1,2,3,4). (2)

n=1

SAM constitutes a spatially targeted attention generator
that can infer interest models in the spatial domain by utiliz-
ing channel concentration with an emphasis on key feature
mapping channels. The spatial geographical data of the mid-
polyp is obtained by utilizing spatial attention between the
same layers. Ultimately, the MSi n is supplemented with the
feature disparity index through an additive fusion process.
The disparity information between feature maps at different
resolutions was captured and the critical information of
feature maps at different scales was merged. This method
enables the exchange of different information and produces
more informative and accurate polyp feature maps to assist
the decoder in predicting the final segmentation maps.

The LE module’s detailed structure is illustrated in Fig.
1(b). The LE module is fed the features, and three distinct
convolutional kernels are employed to enhance the local
receptive fields. This boosts the macro-weights in the blocks
surrounding the request, thereby refocusing the focus on
the adjacent aspects and reducing the distraction. In the
following manner, the LE is represented:

LE; = Cat(CAM ({Conv(input),,r = 1,3,5})). (3)

Where LE;, Conv denotes the temporal inversion the
kernel r denotes the magnitude of the compression kernel,
and input denotes the features extracted via the encoder at
varying scales of distraction. The information is combined
utilizing a cascade functioning to enable the disordered
attention to be attracted by the polyp location, denoted as
L E7, after going through three different scales of convolution
operations and utilizing the channel attention to focus on
the important feature channels. This process is capable of
efficiently removing clutter noise and emphasizing the criti-
cal local features. The disordered attention is recondensed
around critical details, including outlines and limits, fol-
lowing the element streaming goes by the LE. Afterward,
spatial attention is employed to further emphasize the precise
location of the polyp, and additive fusion of LE and input
is conducted so that all of the feature data is extracted from
the encoder. L E7 may be expressed in the following way, as
illustrated in Fig. 1(b):

LEi = {UP(SAM(LEi + input)),i = 1,2,3,4}.  (4)

C. shape block and decoder

A shape block is constructed in Fig. 3(a) to derive informa-
tion about shapes to elements at varying dimensions. Char-
acteristic reduction procedures take place across LE1 to LE4
to generate feature contrast vectors at varying scales, similar
to the concept of multi-scale subtraction. The information
about the local features of the polyp is distinguished from
the background by these matrices. Following this, the various
feature representations undergo processing using channel
focus to emphasize the most significant channels in the
characteristic maps. Then, a stitching procedure is conducted
on all of the map features, and spatial focus is utilized to
extract detailed positional information about the boundaries.
This fusion facilitates the features extracting through channel
and spatial attention strategy, augmenting the capacity to
identify subtle details[38]. This leads to feature maps that are
replete with detailed information regarding the morphologies
and boundaries of polyps. The feature difference map may
be depicted as follows:

S; = {CAM(MS(E,) - MS(Ei1)]).i = 4,3,2). (5)

The shape boundary data of the polyps is supervised
using the BCE loss. The resulting shape information is then
combined with the decoder module’s output to produce a
more precise tumor split image.

The step-by-step summation operation is employed in the
decoder in Fig. 3(c). This operation is basic and effective,
and it effectively integrates the differential features extracted
from each layer, thereby significantly reducing the compu-
tational expenses of the resulting model. The final result of
encoder D is displayed as follows:

D = Conv(MS1+MS(MS2+ MS(MS3+MS4))). (6)

D. Loss function

The application of the binary cross entropy (BCE) loss
and dice loss is a component of our model supervision
approach[39]. BCEloss is a loss function that is specifically
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TABLE I: Datasets used in this study.

TABLE II: Quantitative results on Kvasir-SEG datasets.

Dataset Images  Input size  Train Valid Test Method Backbone mDice  mloU  Recall Precision
Kvasir-SEG 1000 Variable 800 100 100 Dataset: Kvasir-SEG
CVC-ClinicDB 612 384 x 288 488 62 62 U-Net[9] - 0.821 0.753 0.816 0.895
Endoscnene 912 574 x 500 — — 60 U-Net++[10] - 0.832 0.767 0.862 0.896
CVC-ColonDB 380 574 x 500 — — 380 DeepLabV3+[17] Xception 0.891 0.832 0.887 0.917
ETIS 196 1225 x 966  — — 19 PraNet[13] Res2Net50  0.899 0.849 0.897 0.922
SANet[18] Res2Net50  0.905 0.852 0.897 0.928
TGANet[21] Res2Net50  0.900 0.843 0.895 0.932
MCSF-Net[23] ResNet101 0911 0.861 0.908 0.936
. . . L. SSFormer[29] Transformer 0.923 0.867 0.915 0.935
designed to quantify the discrepancy between the objective M2CSFormer(Ours) ~ Transformer 0.935  0.873  0.926  0.940

and anticipated results in binary categorization tasks. Its
calculation is as follows:

Lpcg = —w (Y -log(X) + (1 —Y) -log(1 - X)). (7)

Where X represents the model’s forecast value, Y rep-
resents the designation of the reality value, and w is the
weighting value, which has a standard setting of 1.

The dice loss function was introduced to resolve the issue
of a disparity between both negative and positive samples
in the collected data. The BCE loss function only would
generate a model that predominantly predicts every single
type, as the colonoscopic polyp dataset’s collecting approach
is restricted and the positive and negative samples frequently
exhibit substantial disparities. The dice loss function was
employed to quantify the degree of resemblance among both
examples, with scores extending from O to 1. Higher numbers
suggest a greater degree of similarity between the data points.
The precision and reliability of the cutoff are enhanced by
the complementary use of the BCE loss and the dice loss.
The dice loss algorithm works as follows:

21X NY|
X+ Y|

Therefore, the last loss function employed for the decoder
outcome is as follows:

Lpice = 1 (8

Loss = Lpcg + Lpice- 9

III. EXPERIMENTS
A. Datasets

Kvasir-SEG, CVC-ClinicDB, Endoscene, CVC-ColonDB,
and ETIS were the five openly accessible colonoscopic tumor
databases on which the recommended M2CSFormer model
was assessed. The following is a comprehensive description
of the five public datasets.

(1) Kvasir-SEG: The Kvasir-SEG dataset comprises 1000
coral pictures and their associated comments. The present
set is distinguished from the others by the variability of the
polyps’ size and morphology in the images. The dimensions
of the pictures vary from 332 x 487 to 1920 x 1072. 48
tiny colonies fewer than 64 x 64, 700 giant colonies larger
compared to 160 x 160, and 323 medium in size colonies
are included in the dataset. 900 images were utilized for
training and validation, while 100 images were employed
for assessment.

(2)CVC-ClinicDB: The dataset CVC-ClinicDB comprises
612 pictures taken from 25 endoscopy films, from which 29
segments were chosen. The dimensions of the image are 384
x 288. 550 images are employed for validation and training
purposes, while 62 images are employed for assessment.

TABLE III: Quantitative results on CVC-ClinicDB datasets.

Method Backbone mDice mloU Recall Precision

Dataset: CVC-ClinicDB

U-Net[9] - 0.837 0.786 0.861 0.889
U-Net++[10] - 0.850 0.807 0.904 0.884
DeepLabV3+[17] Xception 0.891 0.843 0.893 0.924
PraNet[13] Res2Net50  0.898 0.854 0911 0.890
SANet[18] Res2Net50  0.915 0.862 0.933 0.915
TGANet[21] Res2Net50  0.926 0.874 0.936 0.922
MCSEF-Net[23] ResNet101 0.941 0.895 0.956 0.932
SSFormer[29] Transformer 0.932 0.870 0.944 0.942
MZ2CSFormer(Ours) Transformer 0.949 0.893 0.949 0.950

(3)Endoscene: The Endoscene dataset comprises 912 pic-
tures taken from 44 endoscopic segments of 36 individuals.
We employed CVC-300 as the test set, which comprises an
overall 60 pictures, as the Endoscene dataset is an amalgam
of CVC-ClinicDB and CVC-300.

(4)CVC-ColonDB: A total of 380 images were acquired
from 15 distinct colorectal segments. Testing was conducted
on all 380 pictures.

(5)ETIS: The ETIS dataset comprises 196 images that
were gathered from 34 endoscopy recordings. The dimen-
sions of the image are 1225 x 966. This dataset presents a
significant challenge due to the fact that the tumor forms are
more varied than those within the remaining datasets, and
the majority of them are tiny and tricky to identify. Testing
was conducted on all 196 images in the data set.

The initial training configuration was identical to that of
PraNet, and 80% of the pictures from Kvasir-SEG and CVC-
ClinicDB were selected at random for training objectives.
Furthermore, 10% of the images were employed for valida-
tion purposes. The remaining 10% of the images, as well
as Endoscene, CVC-ColonDB, and ETIS, were utilized for
testing. Table I illustrates the precise data division.

TABLE IV: Quantitative results on endoscene datasets.

Method Backbone mDice  mloU Recall Precision

Dataset: Endoscopy

U-Net[9] — 0.709 0.630 0.709 0.878
U-Net++[10] — 0.761 0.691 0.784 0.861
DeepLabV3+[17] Xception 0.862 0.789 0.925 0.850
PraNet[13] Res2Net50  0.868 0.796 0.903 0.882
SANet[18] Res2Net50  0.879 0.809 0.936 0.851
TGANet[21] Res2Net50  0.872 0.798 0.963 0.820
MCSF-Net[23] ResNet101  0.901 0.834 0.966 0.859
SSFormer[29] Transformer 0.895 0.838 0.960 0.862
M2CSFormer(Ours)  Transformer 0910  0.851  0.959  0.878
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TABLE V: Quantitative results on CVC-ColonDB datasets.

TABLE VII: The average speed of different methods (FPS).

Method Backbone mDice  mloU  Recall Precision Method Average speed  Method Average speed
Dataset: CVC-ColonDB DeepLabV3+ 62 MCSF-Net 45
U-Net[9] — 0.629 0.547 0.654 0.804  SSFormer 48 TGANet 34
U-Net++[10] — 0.628 0.567 0.720 0.726  PraNet 40 MZ2CSFormer(Ours) 42
DeepLabV3+[17] Xception 0.732 0.651 0.757 0.824
PraNet[13] Res2Net50  0.676 0.610 0.676 0.754
SANet[18] Res2Net50  0.745 0.680 0.775 0.845
TGANet[21 Res2Net50  0.752 0.674 0.790 0.790 ..

MCSF—eN[et[%:%] RZZNeteIOI 0765 0692 0782 o0.84g &reater cost and mloU, separately. In the ClinicDB dataset,
SSFormer[29] Transformer 0788 0708  0.820 0828 MZ2CSFormer obtains the second-best mIoU and increases
M2CSFormer(Ours) Transformer 0.812 0.890 0.831 0.837 mice by 08%’ Surpassing the most Competitive MCSF-Net.

TABLE VI: Quantitative results on ETIS datasets.

Method Backbone mDice  mloU Recall Precision

Dataset: ETIS

U-Net[9] — 0.629 0.547 0.654 0.804
U-Net++[10] — 0.628 0.567 0.720 0.726
DeepLabV3+[17] Xception 0.732 0.651 0.757 0.824
PraNet[13] Res2Net50  0.676 0.610 0.676 0.754
SANet[18] Res2Net50  0.745 0.680 0.775 0.845
TGANet[21] Res2Net50  0.752 0.674 0.790 0.790
MCSF-Net[23] ResNetl01  0.765 0.690 0.831 0.756
SSFormer[29] Transformer 0.770 0.685 0.851 0.763
M2CSFormer(Ours)  Transformer 0.781 0.702 0.841 0.771

B. Evaluation metrics and implementation details

The model was constructed with PyTorch and accelerated
with an NVIDIA RTX3090 GPU. The AdamW optimizer
was employed with a batch size of 16 and an initial learning
rate of 0.0001. A grand total of 300 periods of training were
conducted. Our loss function is a hybrid of BCE loss and
dice loss. We supplement the data with arbitrary vertical and
horizontal turns, rotations, and cutting operations, and resize
the pictures to 256 x 256 during the process of training. We
employ several standard metrics for quantitative evaluation,
including recall, precision, average IoU, FPS, and average
dice.

C. Experiments on the public polyp benchmarks

TIn recent years, a variety of methods have been applied
to the adenoma division, such as UNet, UNet++, DeepLabV
3+, PraNet, SANet, TGANet, MCSF-Net, and SSFormer. We
conducted a comparison between the M2CSFormer and these
methods.

D. Quantitative analysis

Tables II-IX present the efficacy evaluation of each method
across various metrics. The results in Tables II-IX were
derived by reapplying the openly accessible algorithms of
these methods or algorithms utilizing the same dataset seg-
ments as our methods. For clarity, we have highlighted the
most favorable results for each metric. Our M2CSFormer
demonstrates superior performance across the majority of
efficiency metrics compared to the other methods.

The findings of M2CSFormer along with additional meth-
ods applied to the Kvasir-SEG and ClinicDB datasets are
presented in Tables II and III. M2CSFormer obtains 0.935
mDice and 0.873 IoU with the Kvasir-SEG dataset, which
are 1.2% and 0.6% larger than SSFormer concerning of
mDice and mloU, accordingly. Furthermore, in compari-
son to MCSF-Net, M2CSFormer has a 2.4% and 1.2%

MZ2CSFormer’s mDice and mloU numbers are 2.3% as well
as 1.9% higher than those of TGANet, as well.

Our approach demonstrates superior precision in tumor
separation compared to existing methods, as evidenced by
the presented results. This advantage can be attributed to the
integration of M2SM and LE blocks within the M2CSFormer
architecture. The incorporation of the LE block effectively
highlights polyp boundaries, enhancing the representation of
diverse feature levels. To improve the accuracy of feature
maps, we have introduced channel attention and spatial at-
tention mechanisms to emphasize crucial channel character-
istics and tumor localization details. Additionally, the M2SM
enhances the representation of local features by mitigating
the impact of recessed regions and emphasizing significant
differentiation information.

E. In the performance tests on the unseen dataset

This test demonstrates our model’s capacity for accurate
prediction and generalization on uncertain datasets. The
efficacy of neural network-based segmentation methods in
clinical applications may be limited by variations in image
acquisition systems and individual cases. Comparative results
for various methodologies are presented in Tables IV-VI. On
the Endoscene dataset, M2CSFormer outperforms the highly
competitive SSFormer, increasing mDice and mloU by 1.5%
and 1.3%, respectively. Furthermore, it surpasses MCSF-Net
with improvements of 0.9% in mDice and 1.7% in mloU. Our
method also exhibits superior generalization on the CVC-
ColonDB dataset compared to other approaches. Specifically,
against SSFormer, it achieves gains of 2.4% in mDice and
1.8% in mloU.

The ETIS dataset poses significant challenges due to the
morphological distinctiveness of the majority of parasite
images, rendering them imperceptible to the model. Our
MZ2CSFormer model yielded the highest mDice and mloU
values, achieving 0.781 and 0.702, respectively, as shown in
Table VI. The MCSF-Net model demonstrated the highest
precision levels. Compared to alternative methodologies,
the M2CSFormer model exhibited notable enhancements in
segmentation outcomes when dealing with imperceptible
datasets. This improvement can be attributed to the en-
coder module in the M?CSFormer model, which integrates
a Transformer mechanism capable of robust global context
comprehension and multi-scale feature processing to effec-
tively capture global contextual information. Additionally,
the Shape block within the M2CSFormer model enhances the
discrimination of colonies from the background by encoding
details regarding the shape of polyp boundaries, thereby
enhancing precision in the final fragmentation prediction.

Table VII presents the frames per second (FPS) evaluation
of various competing techniques. All models underwent eval-
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Fig. 4: Visual comparison of polyp segmentation results.
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Fig. 5: Visual comparison of differences between results and labels for different methods.
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TABLE VIII: Comparison of cross-dataset segmentation

results.
Method Backbone mDice  mloU Recall Precision

Training dataset: Kvasir-SEG Test dataset: CVC-ClinioDB

U-Net[9] — 0.647 0.628 0.701 0.785
U-Net++[10] — 0.656 0.632 0.724 0.801
DeepLabV3+[17] Xception 0.803 0.746 0.827 0.872
PraNet[13] Res2Net50  0.815 0.732 0.814 0.883
SANet[18] Res2Net50  0.846 0.780 0.861 0.840
TGANet[21] Res2Net50  0.821 0.754 0.831 0.862
MCSF-Net[23] ResNet101 0.865 0.792 0.887 0.887
SSFormer[29] Transformer 0.831 0.760 0.845 0.879
MZ2CSFormer(Ours)  Transformer 0.878 0.804 0.905 0.874

TABLE IX: Comparison of cross-dataset segmentation

results.
Method Backbone mDice  mloU Recall Precision

Training dataset:CVC-ClinioDB Test dataset:Kvasir-SEG

U-Net[9] — 0.464 0.549 0.533 0.655
U-Net++[10] — 0.593 0.670 0.780 0.659
DeepLabV3+[17] Xception 0.667 0.741 0.765 0.800
PraNet[13] Res2Net50  0.712 0.640 0.627 0.567
SANet[18] Res2Net50  0.724 0.804 0.812 0.851
TGANet[21] Res2Net50  0.818 0.882 0.937 0.852
MCSF-Net[23] ResNet101  0.826 0.890 0.949 0.865
SSFormer[29] Transformer 0.802 0.721 0.796 0.720
MZ2CSFormer(Ours) Transformer 0.840 0.892 0.907 0.909

uation under identical experimental conditions. The methods
were tested in precisely the same experimental setup. It
is apparent that our M2CSFormer outperforms the other
techniques in terms of real-time performance, segmentation
accuracy, and scalability.

F. Generalization ability

Due to the colon polyp segmentation task requiring the
model to possess both accurate prediction and strong gen-
eralization capabilities, it is essential to separately eval-
vate its performance on experimental and unseen bench-
mark datasets. To this end, three distinct training-test con-
figurations were employed to conduct cross-dataset eval-
uations of the model’s prediction accuracy and learn-
ing capabilities. In the first experiment, the generaliza-
tion ability of the M?CSFormer was assessed by testing a
model trained on CVC-ClinicDB against the Kvasir-SEG
dataset. As presented in Table VIII, the test results indicate
that M2CSFormer significantly outperforms other methods.
Specifically, M2CSFormer’s mDice and mloU scores are

TABLE X: Comparison of cross-dataset segmentation
results.

Method Backbone mDice  mloU Recall Precision

Training dataset:CVC-ClinioDB Test dataset: CVC-ColonDB

U-Net[9] — 0.334 0.409 0.422 0.545
U-Net++[10] — 0.353 0.447 0.357 0.596
DeepLabV3+[17] Xception 0.650 0.761 0.652 0.780
PraNet[13] Res2Net50  0.738 0.646 0.752 0.831
SANet[18] Res2Net50  0.724 0.804 0.812 0.851
TGANet[21] Res2Net50 0.804 0.831 0.925 0.884
MCSEF-Net[23] ResNet101 0.815 0.887 0.918 0.911
SSFormer[29] Transformer 0.797 0.869 0.784 0.782
MZ2CSFormer(Ours)  Transformer 0.810 0.871 0.923 0.905

1.5% higher than those of the most competitive MCSF-
Net. In the second experiment, the CVC-ClinicDB dataset
was exclusively used for model training, followed by testing
on the entire Kvasir-SEG dataset. As shown in Table IX,
our model achieved superior performance under this testing
scheme, with M2CSFormer’s mDice and mIoU scores being
1.7% and 0.2% higher than those of the most competi-
tive MCSF-Net, respectively. In the third experiment, the
CVC-ClinicDB dataset was again used solely for model
training, and the model was subsequently tested on the
entire CVC-ColonDB dataset. As demonstrated in Table X,
M2CSFormer’s Recall score is 0.5% higher than that of the
most competitive MCSF-Net. Through the results of these
three experiments, we have conclusively demonstrated that
MZ2CSFormer exhibits robust generalization capabilities and
high prediction accuracy.

G. Qualitative analysis

The segmentation outcomes of all methods are presented
in Fig. 4, while Fig. 5 illustrates the disparities between the
resulting segmentations from each method and the ground
truth labels. In Fig. 5, white pixels indicate areas where the
generated output differs from the true labels, with a higher
concentration of black pixels indicating closer alignment with
the actual labels. M2CSFormer shows notable improvements
in segmenting polyp samples of various sizes when utilizing
LE blocks, M2SM, and Shape blocks, as depicted in Fig.
5. Specifically, while other approaches tend to oversegment
large polyp samples in the Kvasir-SEG dataset, M2CSFormer
accurately delineates polyp boundaries in images containing
large polyps.

Alternative methods in ClinicDB are less effective for
segmenting massive and small to medium-sized tumors
due to inaccurate segmentation and unclear boundaries. In
contrast, our approach excels in accurately identifying and
efficiently utilizing diverse polyps with varying features.
The M2?CSFormer exhibits robust segmentation capabilities
for capturing structured data in Endoscene and reliably
dividing small and medium-sized tumor samples through
shape blocks. Its robust detection capabilities are evident in
outperforming other methods in ColonDB and ETIS datasets,
particularly in accurately segmenting extremely small polyps.
By leveraging the LE block and M2SM, the M2CSFormer
accurately locates colonies and distinguishes them from the
background, thereby preventing polyp omission and image
over-segmentation.

Fig. 6 illustrates a case of segmentation failure in the
MZ2CSFormer model. The first row demonstrates the model’s
tendency to overlook important regions of the tumor when
the features in the image closely resemble the surrounding
folds. Severe distortions or reflections, as seen in the sec-
ond and third panels, notably hinder the model’s ability to
accurately identify polyp areas. In the fourth row, the model
incorrectly identifies normal tissue due to the resemblance
between the polyp and the prominent surrounding striations.

H. Ablation study

In order to verify the efficacy of M2SM, LE, and shape
block, we conducted erasure operations on the Kvasir-SEG
and CVC-ClinicDB datasets to examine the role of every
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TABLE XI: Ablation study for M2CSFormer on the Kvasir
and CVC-ClinicDB datasets.

. e Kvasir-SEG CVC-ClinicDB
Experiment description

mDice MlIoU mbDice MloU

MZCSFormer 0.935 0.873  0.949 0.893

Without M2SM 0911 0.855  0.925 0.877

Without LE 0.919 0.861  0.931 0.886

Without shape block 0.923 0.865  0.938 0.880

element in the M?CSFormer. We trained the model and
watched its impact on its performance by systematically
removing these blocks from the M2CSFormer while keeping
the others intact. Table XI displays the quantitative outcomes
of our ablation studies.

Initially, we’ll eliminate an MZ2SM module, which led to a
2.4% and 1.8% reduction in mDice and mloU scores within
the Kvasir-SEG dataset, correspondingly. In the same vein,
the mDice and mlIoU scores on the CVC-ClinicDB dataset
declined by 2.4% and 1.6%, accordingly. These results indi-
cate that M?SM integrates disparate information from feature
maps of varying decisions, and the model’s classification
effectiveness is typically enhanced by the presence of rich
local features in various layers of features. M2SM efficiently
minimizes the parameter case of the operation, improves
the representation of feature information, and accurately
integrates the local feature information of polyps.

Consequently, we eliminated the LE blocks and incorpo-
rated the encoder-extracted features into M2SM. It is evident
that the mDice and mloU scores experienced a substantial
decline in the Kvasir-SEG and CVC-ClinicDB datasets.
In the Kvasir-SEG dataset, the mDice and mloU scores
decreased by 1.6% and 1.2%, respectively, whereas these
values declined by 1.8% and 0.7% on the CVC-ClinicDB
dataset.

It is evident from Table XI that the model’s performance
is also impacted by the removal of the shape block, which is
responsible for maintaining high accuracy when interacting
with data from invisible sources. In the Kvasir-SEG dataset,
the mDice and mloU scores declined by 1.2% and 0.8%,
respectively, whereas in the CVC-ClinicDB dataset, they
dropped by 1.1% and 1.3%.

The heatmap that shows all of the properties of our
proposal block both before and after the insertion of every
element is depicted in Fig. 7. It is evident that the polyp re-
gion is the primary focus of attention following the LE block.
Inclusion of the M2 SM block improves the representation
of local features, decreases the influence of other chaotic
information, and more clearly captures boundary informa-
tion. The polyp boundary information signals are captured
by the shape block, which aids the model in generating a
more precise division map.

IV. DISCUSSION AND CONCLUSION

Challenges in segmenting colonies in images include
unclear boundaries between colonies and tissue, numerous
anatomical variations, and the tumor’s close resemblance to
the background color. Machine learning models often result
in either over-segmentation or under-segmentation. U-Net
++, an enhanced version of U-Net, emphasizes short-range
connections over long-range connections. While it integrates

features from multiple levels, it struggles to establish seman-
tic relationships between pixels, leading to the exclusion of
multiple polyps. PraNet, on the other hand, utilizes an atten-
tion mechanism to indirectly infer contour cues. However, it
lags behind Falls in accurately capturing fine division details
and effectively handling the segmentation of multiple polyps.
Despite its ability to improve polyp segmentation accuracy,
PraNet is susceptible to missing targets when confronted with
numerous polyps.

In contrast, TGANet utilizes text-guided attention to ad-
dress the challenge of detecting polyps with varying sizes
and quantities. This approach enables the network to capture
additional features that aid in distinguishing between polyps
of different diameters. However, TGANet’s ability to extract
detailed features at the pixel level is limited by its lack of
consideration for the semantic correlations between pixels.
In contrast, M2CSFormer differs from TGANet by leverag-
ing Transformer to capture global dependencies within an
image. It demonstrates superior generalization and learning
capabilities and incorporates the LE module to mitigate dis-
tractions, thereby refocusing attention on crucial details such
as contours and boundaries. By employing M2SM to extract
valuable disparity information and eliminating background
noise, the model enhances the representation of local fea-
tures. Additionally, it integrates channel and spatial attention
mechanisms along with a multi-scale merging approach to
enhance feature generation.

Our M?CSFormer model is designed to mitigate incom-
plete feature loss in polyp data resulting from variations
in polyp dimensions and shapes by incorporating shape
blocks. These shape blocks enhance the model’s ability to
generalize across polyps with diverse features by capturing
unique boundary information signals specific to polyps. The
improved blocks, as detailed in Tables II-X, demonstrate the
superior efficiency of M2CSFormer compared to contem-
porary techniques on various datasets. Notably, the model
achieves the highest mDice scores on the Kvasir and CVC-
ClinicDB datasets.

Furthermore, M2CSFormer demonstrated superior perfor-
mance in terms of mDice and mloU scores across the
Endoscene, CVC-ColonDB, and ETIS datasets. To assess
the model’s predictive accuracy and generalizability, we
conducted three distinct experiments. Initially, we trained the
model on the complete Kavsir-SEG dataset and evaluated its
performance on the entire CVC-ClinicDB dataset. The out-
comes, detailed in Table VIII, underscored M2CSFormer’s
top-ranking mDice and mloU scores. Subsequently, as illus-
trated in Table IX, training on the full CVC-ClinicDB dataset
and testing on the complete Kavsir-SEG dataset reaffirmed
MZ2CSFormer’s superior performance in terms of mDice and
mloU scores. Lastly, when the model was exclusively trained
on the CVC-ClinicDB dataset and assessed on the entire
CVC-ColonDB dataset, M2CSFormer exhibited a superior
Recall score compared to the leading competitor, MCSF-Net,
as indicated in Table X. Overall, M2CSFormer demonstrates
excellent robustness when processing images from various
sources, consistently exhibiting strong segmentation capa-
bilities and superior generalization ability. These results lay
a solid foundation for its application in real-world medical
scenarios.

Table VII displays an analysis of FPS (frames per sec-

Volume 33, Issue 9, September 2025, Pages 3513-3524



Engineering Letters

-

Unet++  DeepLabV3+

Unet

Image PraNet

TGANet MCSF-Net SSFormer Ours Ground truth

Fig. 6: Sample of segmentation failures.

Ground truth

Image

w/ LE

—

w/oLE

-

w/ M*SM w/oM’SM  w/ shape block w/o shape block

Fig. 7: The feature heatmap of different modules.

ond) metrics for various methodologies implemented under
identical experimental conditions. The results indicate that
M2CSFormer demonstrates exceptional segmentation pre-
cision, excellent generalization capabilities, and competi-
tive FPS values. Comparative visualization of classification
graphs generated by different segmentation methods can be
found in Fig. 4 and 5. M?CSFormer consistently outperforms
other methods across all evaluated datasets, providing en-
hanced segmented maps for polyp cases of varying sizes.
Notably, M2CSFormer accurately segments the majority of
polyps with different diameters, in contrast to other methods
that often exhibit issues such as over-segmentation or under-
segmentation, thereby compromising the overall accuracy of
localization maps.

Several instances of segmentation failure by M2CSFormer
are demonstrated in Fig. 6. The validation framework of
this study imposes limitations, warranting further clinical
investigations to validate the technique’s efficacy in practical
settings. Moreover, M2CSFormer’s limited imaging capa-
bilities lead to compromised image quality under specific
environmental conditions, as depicted in Fig. 6. Addressing
this challenge may involve integrating specialized imaging
strategies and refining data enhancement techniques during
the training phase.

Ablation experiments were conducted to validate all com-
ponents of the M2CSFormer model. The modified version,
excluding the MZ2SM, LE block, and shape block, was trained
while preserving the remaining elements’ integrity (see Table
XI). Removal of the M2SM resulted in a notable decrease
in the model’s performance on Kvasir-SEG and CVC-
ClinicDB datasets. This indicates that the decoder accurately
predicts classifications and improves segmentation precision
by leveraging the comprehensive spatial features obtained
from the M2SM. Furthermore, eliminating the LE block also
led to a reduction in the model’s effectiveness. The model
demonstrated accurate polyp separation across various levels
of complexity, with the LE block aiding in consolidating
fragmented attention by offering boundary information.

The shape block, initially designed to aid the model in

identifying polyp shape features, was subsequently removed.
This removal led to a decline in the model’s performance,
as demonstrated in the table above. Shape blocks play
a crucial role in distinguishing polyps from surrounding
tissue by leveraging characteristic differences across different
scales. They facilitate the extraction of detailed boundaries
of polyps, enabling the M2CSFormer to accurately segment
polyps of diverse shapes across various polyp datasets. These
results emphasize the significance of the proposed module in
improving the overall segmentation efficacy of the model.

Our proposed module effectively mitigates attention dis-
persion in the Transformer and eliminates submerged resid-
ual information to enhance the accuracy and effectiveness of
features, as demonstrated by the feature heatmap produced
by each module (Fig. 6). The M2CSFormer model pro-
vides a viable solution for medical applications, showcasing
notable segmentation capabilities and exceptional real-time
performance. This study is expected to introduce innovative
concepts for polyp image segmentation. We are ready to
refine the network’s foundational architecture to address
more complex scenarios in future research endeavors.
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