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Abstract—This paper presents a novel approach that
combines artificial bee colony (ABC) optimization with long
short-term memory (LSTM) neural networks for designing
digital finite impulse response (FIR) filters. Initially, a
mathematical model of the digital FIR filter is developed
to evaluate the actual and desired amplitude responses, and
then the error between them is calculated. An LSTM neural
network is introduced to minimize the amplitude error. To
address the computational complexity of the traditional LSTM
design, the ABC optimization method is applied to reduce
key parameters, such as the filter order, number of hidden
layer neurons, and iterations. This ensures that the specified
limits for passband fluctuation and stopband suppression are
met simultaneously. Finally, the optimized parameters are
applied in the LSTM neural network to obtain the optimal
coefficients for the digital FIR filter. Several design examples
are employed to assess the performance of the proposed
ABC-LSTM model. The simulation results demonstrate that,
when compared to four alternative methods, the proposed
ABC-LSTM design exhibits reduced passband fluctuation
and improved stopband suppression. Moreover, the proposed
ABC-LSTM design reduces the filter order, the number of
hidden neurons in the LSTM network, and the number of
iterations, resulting in lower computational complexity (CPU
running time) compared to the traditional LSTM network
design.

Index Terms—Artificial bee colony, Long short-term memory,
Low computational complexity, Digital FIR filter

I. INTRODUCTION

IN digital signal processing, finite impulse response (FIR)
filters are widely implemented due to their strictly linear

phase characteristics and inherent stability advantages over
infinite impulse response (IIR) filters [1], [2], [3], [4], [5].
FIR filters serve various purposes, including spectral analysis
[6], signal shaping [7], band selection [8], and general
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filtering [9]. Among the four filter types, including Type I,
Type II, Type III, and Type IV, only Type I filters can be
used to design low-pass, high-pass, band-pass, and band-stop
filters [10]. As the demand for advanced signal processing
grows, optimizing Type I FIR filters has emerged as a
significant challenge.

The window function method is commonly used in digital
filter design [11], [12], [13]. Although it is straightforward
and easy to implement, it may not always achieve the
performance standards required for ideal filters. At present,
Type I FIR filters are designed by minimizing the amplitude
errors between the actual and desired responses. Well-known
optimization techniques include the least squares method
[14] and non-iterative weighted least squares algorithms [15].

Machine learning typically aims to reduce estimation
errors between actual and desired values in various
applications [16], [17]. For example, X. H. Le et al.
introduced a runoff prediction method using long short-term
memory (LSTM) neural networks, focusing on reducing the
gap between actual and desired runoff [18]. In a similar
approach, H. Zheng et al. utilized LSTM neural networks
to minimize the discrepancy between actual and desired
air pollutant concentrations, improving forecasting accuracy
[19]. L. Wang et al. proposed a method for short-term power
forecasting in photovoltaic systems, based on LSTM neural
networks, which effectively minimized the estimation error
between actual and desired power generation [20]. While
these studies do not specifically focus on machine learning
for designing digital FIR filters, they offer valuable insights
for related research in this field.

Recent research has explored the use of machine learning
techniques to optimize digital FIR filters. One study
suggested using a traditional neural network (TNN) to
enhance the design of digital FIR filters by minimizing the
amplitude error between the actual and desired responses.
In contrast to the window function method, the TNN-based
design demonstrates improved passband fluctuation and
enhanced stopband suppression [21]. Another method
employed a backpropagation neural network (BPNN) to
enhance the optimization of FIR filter design [22]. Test
results demonstrate that it outperforms both the TNN-based
design and the rectangular window method in reducing
passband fluctuations and enhancing stopband suppression.

This paper introduces a method that combines the artificial
bee colony (ABC) algorithm with long short-term memory
(LSTM) neural networks to optimize the design of digital
finite impulse response (FIR) filters. First, a mathematical
model for the digital FIR filter is developed to obtain both
the actual and desired amplitude responses, followed by
the calculation of the amplitude error between them. Next,
the Long Short-Term Memory (LSTM) neural network [23]
is utilized to reduce the amplitude error. To minimize the
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computational complexity of LSTM neural network design,
the artificial bee colony (ABC) algorithm is used to optimize
the filter order, the number of neurons in the LSTM hidden
layer, and the number of iterations, while ensuring predefined
constraints on passband fluctuation and stopband suppression
are met. The artificial bee colony (ABC) algorithm [24], [25]
demonstrates robust global search capabilities, effectively
avoiding local optima, while the LSTM neural network
processes temporal sequences to optimize the filter’s dynamic
properties. Ultimately, the optimized parameters are used in
the LSTM neural network to derive the optimal coefficients
for the digital finite impulse response (FIR) filter.

The key contributions of this paper are outlined below:
(1) A novel approach for digital FIR filter design is

proposed, utilizing the ABC-LSTM method. The objective is
to reduce the amplitude error between the actual and desired
responses, thereby generating the optimal filter coefficients.

(2) The ABC algorithm is introduced to optimize the filter
order, the number of neurons in the LSTM neural network’s
hidden layers, and the number of iterations, ensuring that
the predefined limits for passband fluctuation and stopband
suppression are met simultaneously. This method simplifies
the computational demands involved in designing the LSTM
neural network.

(3) A thorough comparison is conducted to evaluate the
performance, mean square error (MSE), and computational
efficiency of filters designed using different methods,
including TNN, BPNN, the rectangular window method,
LSTM networks, and ABC-LSTM.

(4) The simulation results show that the proposed
ABC-LSTM design outperforms the other four methods in
passband fluctuation, stopband suppression, and MSE, while
also reducing computational complexity.

The structure of this paper is as follows: Section II presents
an analysis of amplitude errors in digital FIR filters. Section
III outlines the optimization framework based on LSTM
neural networks for determining optimal filter coefficients.
Section IV presents an analysis of the simulation results,
highlighting the performance enhancements attained by the
proposed method. Section V then concludes with a summary
of the key findings.

II. AMPLITUDE ERROR

To optimize filter performance, it is essential to reduce the
amplitude error between the actual and desired responses.

The system function of a digital finite impulse response
filter, as derived from the analytical approaches in [21] and
[22], is mathematically represented as:

H(z) =

N∑
n=0

h(n)z−n (1)

If a digital FIR filter satisfies the symmetry condition
H(z) = H(N − n) and N is even, the entire sequence
will be symmetric about n = N

2 . The digital FIR filter
in question is predominantly recognized as a Type I filter,
distinguished by its linear phase properties. If the condition
H(N2 − k) = H(N2 + k) is still satisfied and z = ejω is

given, the frequency response can be expressed as:
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Using Euler’s formula, Eq. (2) can be expressed as:
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When the filter coefficient is specified as ak, with:

M =
N

2
, a0 = h(M), ak = 2h(M − k), k = 1, 2, . . . ,M

(4)

The amplitude response can be expressed as:

A(ω) = a0 +
M∑
k=1

ak cos(kω) =
M∑
k=0

ak cos(kω) (5)

The amplitude error is defined as:

e(ω) = I(ω)−A(ω) = I(ω)−
M∑
k=0

ak cos(kω), ω ∈ W (6)

Here, I(ω) corresponds to the desired amplitude response of
the digital FIR filter. The coefficients (a0, . . . , ak, . . . , aM )
are therefore determined by minimizing the amplitude error
e(ω).

The continuous frequency variable ω is sampled into
uniformly spaced points ωl within the frequency range W .
Here, l = 1, 2, · · · , L, where L represents the total number
of discrete frequency points. Consequently, Eq. (6) can be
reformulated as:

e(ωl) = I(ωl)−A(ωl) = I(ωl)−
M∑
k=0

ak cos(kωl), l = 1, 2, . . . , L

(7)
Thus, the problem of minimizing e(ω) is transformed into
the problem of minimizing e(ωl).

III. DESIGN METHODOLOGY FOR DIGITAL FIR FILTER
USING ABC-LSTM

A. Digital FIR filter optimization design via LSTM neural
network

As a recurrent neural network with a gating mechanism,
the long short-term memory neural network (LSTM) [26],
[27], [28], [29] effectively addresses the vanishing gradient
problem of traditional recurrent neural networks (RNNs)
[30], [31] through memory cells and gating structures. This
algorithm offers distinct advantages in handling time-series
data, as it dynamically controls the flow of information
through the coordinated interaction of the input, forget, and
output gates.

The structure of the LSTM neural network is depicted
in Fig. 1(a), while its unfolded schematic representation is
shown in Fig. 1(b).
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Fig. 1. Structure of the LSTM neural network.

The neural network takes input in the form of a vector,
defined as:

C = [1, cos(ωl), . . . , cos(kωl), . . . , cos(Kωl)]
T

= [x(0), x(1), . . . , x(k), . . . , x(K)]
T

(8)

In the LSTM model, the input and output of the LSTM1
layer are:

xl
t1(k),n

= x(k) · γl = cos(kωl) · γl (9)

alt1(k),n = f(xl
t1(k),n

− λl) (10)

γl = [γl
1,γ

l
2, . . . ,γ

l
n, . . . ,γ

l
N ]T (11)

γl
n = [γl

(0),n, γ
l
(1),n, . . . , γ

l
(k),n, . . . , γ

l
(K),n]

T (12)

Here, γl denotes the weight matrix that links the input to the
LSTM1 layer, γl

(k),n represents the weight of the k-th time
step. This weight corresponds to the connection between the
k-th unit in the initial processing stage and the n-th LSTM
unit in the LSTM1 layer. λl represents the threshold of the
LSTM1 layer, and f(·) represents a linear activation function.

The input and output of the LSTM2 layer are:

xl
t2(k),n

= alt1(k),n · ωl (13)

alt2(k),n = f(xl
t2(k),n

− αl) (14)

ωl = [ωl
1,ω

l
2, . . . ,ω

l
n, . . . ,ω

l
N ]T (15)

ωl
n = [ωl

(0),n, ω
l
(1),n, . . . , ω

l
(k),n, . . . , ω

l
(K),n]

T (16)

Here, ωl
n represents the weight matrix that connects the

LSTM1 layer to the LSTM2 layer, ωl
(k),n denotes the weight

for the connection between the n-th LSTM unit’s k-th time
step in LSTM1 and its corresponding one in LSTM2, and αl

represents the threshold of the LSTM2 layer.
The input and output of the output layer are:

xl
o = alt2(k),n · βl (17)

A(ωl) = f(xl
o − ξl) (18)

βl = [βl
1, β

l
2, . . . , β

l
n, . . . , β

l
N ]T (19)

Here, βl represents the weight matrix connecting the LSTM2
layer to the output layer, βl

n represents the weight from
the n-th LSTM unit of the LSTM2 layer to the output

layer, and ξl represents the threshold of output layer. The
amplitude error serves as a performance metric, and the
desired amplitude response, I(ωl), is defined as:

I(ωl) =

{
1, ωl in the passband
0, ωl in the stopband

l = 1, 2, . . . , R (20)

Then, the parameter Jl is used to update the weights of the
LSTM neural network:

Jl =
1

2
e2(ω) (21)

To reduce the amplitude error, the weights and threshold
must be updated as follows:

∆γl
(k),n + γl

(k),n → γl
(k),n

∆ωl
(k),n + ωl

(k),n → ωl
(k),n

∆βl
n + βl

n → βl
n

∆λl + λl → λl

∆αl + αl → αl

∆ξl + ξl → ξl

(22)

with 

∆γl
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t1(k),n

∂al
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(23)

In this context, η represents the learning rate. Once the LSTM
model completes the maximum number of iterations, the
coefficients of the digital FIR filter are obtained.
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Fig. 2. Parameters optimization flowchart by ABC-LSTM.

B. ABC-LSTM
The artificial bee colony (ABC) algorithm is a

metaheuristic optimization method, inspired by the foraging
behavior of bees in nature. The algorithm classifies bees into
three roles: employed, onlooker, and scout bees. Employed
bees search for new solutions near the current best one,
while onlooker bees base their search on the locations
found by employed bees. Scout bees, on the other hand,
randomly select positions within the solution space and
generate new solutions under predefined conditions. This
mechanism improves the algorithm’s capacity to avoid local
optima and better explore the global search space.

Randomly initialize i solutions xi using Eq. (24)

xid = Ld + rand(0, 1)(Ud − Ld) (24)

Here, Ld and Ud represent the minimum and maximum limits
of the search space for each dimension index d, where d
ranges over the discrete set {1, 2, . . . , D}.

vid = xid + ϕid(xid − xjd) (25)

Let D be a randomly selected integer from the interval
[1, D], denoting the dimension chosen by the employed
bee for exploration. The index j corresponds to a honey
source selected from NP available sources, ensuring j ̸=
i. The parameter ϕid is a uniformly distributed random
number within the range [−1, 1], governing the magnitude
of perturbation.

pi =
fiti∑NP
i=1 fitn

(26)

The onlooker bees employ the roulette-wheel selection
mechanism to choose among the employed bees. Specifically,
a uniformly distributed random number r is generated within
the interval [0, 1]. If the probability pi associated with food
source i exceeds r, the onlooker bee generates a new food
source in the vicinity of food source i based on Eq. (25).
The selection process for retaining the food source follows
the same methodology as that used by the employed bees.

Fig. 2 illustrates the flowchart outlining the optimization
process for selecting the filter order, determining the number
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of neurons in the LSTM network’s hidden layer, and defining
the number of iterations in the LSTM network using the ABC
algorithm.

1) Set the parameters of the ABC algorithm, including
the dimension D of the parameters to be optimized,
the iteration limit L for local search, the upper limit
tmax
ABC for the ABC algorithm’s iterations, the iteration

count t for the local solution, as well as the ranges
of LSTM neural network iterations I , the number of
hidden-layer neurons N , and the filter orders O.

2) Randomly initialize the food source xid according to
Eq.(24).

3) Generate the filter order Or, the number of LSTM
neural network hidden-layer neurons Ne, and iterations
It as outlined in step 1.

4) Construct the initial LSTM model leveraging the
parameters generated in step 3.

5) Compute the fitness value fiti for each solution.
6) Employed bees generate a new solution vi using

Eq.(25). If fitnewi > fiti, replace xi with vi;
otherwise, retain xi.

7) Onlooker bees select a solution to follow based on the
probability calculated by Eq.(26).

8) Onlooker bees generate a new solution vi using
Eq.(25). If fitnewi > fiti, replace xi with vi;
otherwise, retain xi.

9) Determine whether the current local iteration count t
has reached the threshold L. If t > L, return to step 6.

10) Increase the iteration count of the ABC algorithm. If
tABC > tmax

ABC , export the optimal parameters It, Or,
and Ne; otherwise, return to step 3.

11) Construct and train the optimized LSTM model using
the optimal parameters. Increase the iteration count I .
If It > Imax

t , train the optimized LSTM model using
the optimal parameters; otherwise, export the optimal
parameter combination.

12) If all conditions are met δs ≤ δmax
s and δp−p ≤ δmax

p−p

simultaneously, the parameters It, Or, and Ne are the
optimal parameters; otherwise, return to step 1.

IV. SIMULATION RESULTS AND ANALYSIS

The effectiveness of our ABC-LSTM-based digital FIR
filter design has been thoroughly evaluated and examined
using multiple unique design examples. In these instances,
the order M of the digital FIR filter was set to 40, the
aggregate quantity of sampled frequency values L was set
to 2837, and η = 1.

A. Assessment of effectiveness

Example 1: Design of low-pass finite impulse response
filters

In the first design example, the passband and stopband
threshold frequencies were set to 0.45π and 0.55π,
respectively.

Fig. 3 displays the frequency responses of low-pass FIR
filters designed through various methods. Table I presents
the key performance metrics for each approach, including
passband fluctuation (δp−p), maximal stopband suppression
(δsmax

), and minimal stopband suppression (δsmin
). Analysis

of the results shows that the LSTM neural network achieves

Algorithm 1 Pseudo-code of ABC-LSTM.
1: Set parameters of ABC: D, L, t, I , O and N

2: Randomly initialize xid according to Eq. (1)
3: Generate It, Or and Ne from I , O, and N , respectively
4: Calculate the fitness fiti for each solution
5: Employed bees generating new solution vi according to

Eq. (2)
6: if fitnewi > fiti then
7: vi = xi

8: else
9: continue with xi

10: end if
11: Onlooker bees calculate the probability to follow

according to Eq. (3)
12: Onlooker bees generating new solution vi according to

Eq. (2)
13: if fitnewi < fiti then
14: vi = xi

15: else
16: if t > L then
17: Employed bees generating new solution vi

according to Eq. (2)
18: else
19: tABC = tABC + 1

20: end if
21: end if
22: if tABC ≥ tmax

ABC then
23: Derive the optimal It, Or and Ne
24: else
25: Generate It, Or, Ne from I , O, N , respective
26: end if
27: Training the optimized LSTM model using the optimal

It, Or and Ne

28: It = It + 1

29: if It < Imax
t then

30: Training the optimized LSTM model using the
optimal It, Or and Ne

31: else
32: Obtain parameter It, Or, and Ne

33: end if
34: if δs ≤ δmax

s , δp−p ≤ δmax
p−p then

35: It, Or, and Ne is the required parameter
36: else
37: Set parameters of ABC: D, L, t, I , O and N

38: end if

a δp−p of 0.1065 dB, while the BPNN and TNN methods
yield 1.5928 dB and 1.2441 dB, respectively. The rectangular
window approach demonstrates a value of 1.2104 dB. In
comparison, our ABC-LSTM-based design achieves a lower
δp−p of 0.0674 dB, outperforming these four methods.

Moreover, the maximal stopband suppression (δsmax )
achieved by the ABC-LSTM, LSTM neural network, BPNN,
TNN, and rectangular window methods are −43.1007
dB, −41.3632 dB, −28.6924 dB, −26.3144 dB, and
−26.5044 dB, correspondingly. Similarly, the minimal
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TABLE I
SUMMARY OF PASSBAND FLUCTUATION AMPLITUDE, AND THE RANGE OF STOPBAND SUPPRESSION

Design Example Method δP−P δs max δs min

Low-pass digital FIR filter

ABC-LSTM 0.0674 dB -43.1007 dB -117.0269 dB
LSTM neural network [23] 0.1065 dB -41.3632 dB -106.5557 dB

BPNN [22] 1.5928 dB -28.6924 dB -91.2463 dB

TNN [21] 1.2441 dB -26.3144 dB -88.5629 dB

Rectangular window [12] 1.2104 dB -26.5044 dB -88.6183 dB

High-pass digital FIR filter

ABC-LSTM 0.4468 dB -41.6526 dB -123.6674 dB
LSTM neural network [23] 0.7133 dB -41.1869 dB -114.2902 dB

BPNN [22] 1.6374 dB -26.2171 dB -93.6799 dB

TNN [21] 1.0192 dB -29.3275 dB -106.4870 dB

Rectangular window [12] 1.2104 dB -29.7825 dB -88.6179 dB

Band-pass digital FIR filter

ABC-LSTM 0.3795 dB -41.3415 dB -122.4697 dB
LSTM neural network [23] 0.7990 dB -30.0651 dB -118.6382 dB

BPNN [22] 1.6046 dB -23.3088 dB -103.9448 dB

TNN [21] 1.4286 dB -21.0974 dB -92.0916 dB

Rectangular window [12] 1.3244 dB -20.9115 dB -82.2671 dB

Band-stop digital FIR filter

ABC-LSTM 0.7990 dB -38.5022 dB -114.0830 dB
LSTM neural network [23] 0.7998 dB -37.8101 dB -109.7864 dB

BPNN [22] 0.7996 dB -18.9314 dB -93.8306 dB

TNN [21] 0.7996 dB -21.4342 dB -80.6333 dB

Rectangular window [12] 0.7996 dB -20.0883 dB -81.9966 dB

Fig. 3. Frequency response comparison of low-pass digital FIR filters designed using different methods.

stopband suppression (δsmin ) values for these methods are
−117.0269 dB, −106.5557 dB, −91.2463 dB, −88.5629 dB,
and −88.6183 dB, respectively. The results clearly show that
the ABC-LSTM-based optimization design outperforms the
other four methods, achieving notably lower maximal and
minimal stopband suppression levels.

Example 2: Design of high-pass finite impulse response
filters

In design example 2, the cutoff frequencies for the
passband and stopband were set to 0.55π and 0.45π,
correspondingly.

Fig. 4 presents the frequency responses of high-pass
FIR filters designed using different techniques. Table I
summarizes the key performance metrics, including passband

fluctuation (δp−p), maximal stopband suppression (δsmax
),

and minimal stopband suppression (δsmin
) for each approach.

Analysis of the results shows that the LSTM neural network
achieves a δp−p of 0.7133 dB, while the BPNN and TNN
methods yield 1.6374 dB and 1.0192 dB, respectively.
The rectangular window approach demonstrates a value of
1.2104 dB. In comparison, our ABC-LSTM-based design
achieves a lower δp−p of 0.4468 dB, outperforming these
four methods.

Additionally, the maximal stopband suppression (δsmax )
values achieved by the ABC-LSTM, LSTM neural network,
BPNN, TNN, and rectangular window methods are -41.6526
dB, -41.1869 dB, -26.2171 dB, -29.3275 dB, and -29.7825
dB, respectively. The corresponding minimal stopband
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Fig. 4. Frequency response comparison of high-pass digital FIR filters designed using different methods.

Fig. 5. Frequency response comparison of band-pass digital FIR filters designed using different methods.

suppression (δsmin ) values are -123.6674 dB, -114.2902 dB,
-93.6799 dB, -106.4807 dB, and -88.6179 dB. These results
clearly indicate that the ABC-LSTM-based optimization
outperforms the other methods, achieving significantly lower
maximal and minimal stopband suppression levels.

Example 3: Design of band-pass finite impulse response
filters

Regarding the third design case, the threshold frequencies
for the passband are arranged at 0.3π and 0.7π, and the
stopband threshold frequencies are determined to be 0.25π
and 0.75π.

Fig. 5 illustrates the frequency responses of band-pass FIR
filters designed using various techniques. Table I summarizes
the key performance metrics, including passband fluctuation
(δp−p), maximal stopband suppression (δsmax

), and minimal
stopband suppression (δsmin ) for each approach. Analysis of
the results shows that the LSTM neural network achieves
a δp−p of 0.7990 dB, while the BPNN and TNN methods
yield 1.6046 dB and 1.4286 dB, respectively. The rectangular

window approach demonstrates a value of 1.3244 dB. In
comparison, our ABC-LSTM-based design achieves a lower
δp−p of 0.3795 dB, outperforming these four methods.

The maximal stopband suppression (δsmax
) achieved by

methods based on ABC-LSTM, LSTM neural network,
BPNN, TNN, and the rectangular window method are
-41.3415 dB, -30.0651 dB, -23.3088 dB, -21.0974 dB,
and -20.9115 dB, respectively. Meanwhile, the minimal
stopband suppression (δsmin

) values are -122.4697 dB,
-118.6382 dB, -103.9448 dB, -92.0916 dB, and -82.2671 dB,
respectively. In comparison to the other four methods, our
proposed ABC-LSTM-based optimization design achieves
lower values for both maximal and minimal stopband
suppression.

Example 4: Design of band-stop finite impulse response
filters

In the fourth design example, the threshold frequencies of
the passband are set to 0.25π and 0.75π, while the stopband
is defined by frequencies of 0.3π and 0.7π.

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3525-3534

 
______________________________________________________________________________________ 



Fig. 6. Frequency response comparison of band-stop digital FIR filters designed using different methods.

Figure 6 displays the frequency responses of band-stop
FIR filters designed using various methods. Table I
summarizes the key performance metrics, including passband
fluctuation (δp−p), maximal stopband suppression (δsmax

),
and minimal stopband suppression (δsmin

) for each approach.
Analysis of the results shows that the LSTM neural network
achieves a δp−p of 0.7998 dB, while the BPNN and TNN
methods both yield 0.7996 dB. The rectangular window
approach also demonstrates a similar value of 0.7996 dB. In
comparison, our ABC-LSTM-based design achieves a lower
δp−p of 0.7990 dB, outperforming these four methods.

The maximal stopband suppression values δsmax
for the

ABC-LSTM, LSTM neural network, BPNN, TNN, and
rectangular window methods are -38.5022 dB, -37.8101 dB,
-18.9314 dB, -21.4342 dB, and -20.0883 dB, respectively. In
contrast, the minimal stopband suppression values δsmin

for
these methods are -114.0830 dB, -109.7864 dB, -93.8306
dB, -80.6333 dB, and -81.9966 dB, respectively. The
ABC-LSTM method outperforms the other four approaches
by achieving lower maximal and minimal stopband
suppression, demonstrating its superior effectiveness.

The analysis of Examples 1 to 4 shows that the
ABC-LSTM implementation outperforms other methods,
including LSTM neural network, BPNN, TNN, and
rectangular window techniques, in terms of improved
performance metrics such as reduced passband fluctuation
and better stopband suppression.

Additionally, the performance of these four digital FIR
filter designs can be ranked quantitatively, from highest to
lowest performance:

ABC-LSTM > [23] > [22] > [21] > [12] (27)

B. Mean square error analysis and complexity analysis

The operational frequency range for digital FIR filters,
including low-pass, high-pass, and band-pass types, is

defined as Ωp = [ωp1, ωp2]. Passband accuracy is evaluated
using mean square error analysis:

MSEp =

ωp2
π L∑

l=
ωp1
π L

(I(ωl)−A(ωl))
2

ωp2 − ωp1

π
L

(28)

For the band-stop digital FIR filter implementation, the
operational frequency range is defined as Ωp = [ωp1, ωp2] ∪
[ωp3, ωp4]. The passband accuracy is then determined using
mean square error analysis:

MSEp =

ωp2
π L∑

l=
ωp1
π L

(I(ωl)−A(ωl))
2 +

ωp4
π L∑

l=
ωp3
π L

(I(ωl)−A(ωl))
2

(ωp2 − ωp1) + (ωp4 − ωp3)

π
L

(29)
The stopband region for the low-pass and band-pass digital

FIR filters is defined as Ωs = [ωs1, ωs2]. The mean square
error of the stopband is expressed as:

MSEs =

ωs2
π L∑

l=
ωs1
π L

(I(ωl)−A(ωl))
2

ωs2 − ωs1

π
L

(30)

The stopband bandwidth of a stopband digital FIR filter
can be set to Ωs = [ωs1, ωs2] ∪ [ωs3, ωs4]. The mean square
error of the stopband is expressed as:

MSEs =

ωs2
π L∑

l=
ωs1
π L

(I(ωl)−A(ωl))
2 +

ωs4
π L∑

l=
ωs3
π L

(I(ωl)−A(ωl))
2

(ωs2 − ωs1) + (ωs4 − ωs3)

π
L

(31)
In terms of computational efficiency, the implementation

of ABC-LSTM-optimized digital FIR filters (low-pass,
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TABLE II
COMPARATIVE ANALYSIS OF MEAN SQUARE ERROR AND ALOGORITHMIC

Design Example Method MSEP MSES CPU running time Order Neurons Ierations

Low-pass digital FIR filter

ABC-LSTM 0.0002 0.8105×10-5 71.2888s 32 69 77
LSTM neural network [23] 0.00023 1.1159×10-5 185.7794s 62 128 100

BPNN [22] 0.0078 0.0002 90.5965s - - -

TNN [21] 0.0060 0.0002 37.7183s - - -

Rectangular window [12] 0.9418 0.0001 0.0013s - - -

High-pass digital FIR filter

ABC-LSTM 0.0015 1.1003×10-5 118.6276s 54 76 81
LSTM neural network [23] 0.0019 3.1413×10-5 179.9818s 62 128 100

BPNN [22] 0.0060 0.0007 95.9772s - - -

TNN [21] 0.0054 0.0003 19.8563s - - -

Rectangular window [12] 0.9459 0.0001 0.0018s - - -

Band-pass digital FIR filter

ABC-LSTM 0.0005 1.7226×10-5 106.5470s 52 82 88
LSTM neural network [23] 0.0013 2.0276×10-5 110.3697s 62 128 100

BPNN [22] 0.0193 0.0007 79.2226s - - -

TNN [21] 0.0138 0.0008 34.3453s - - -

Rectangular window [12] 1.1049 0.0004 0.0017s - - -

Band-stop digital FIR filter

ABC-LSTM 0.0013 2.0837×10-5 90.5903s 40 27 92
LSTM neural network [23] 0.0025 2.1359×10-5 144.9199s 62 128 100

BPNN [22] 0.0098 0.0015 93.8691s - - -

TNN [21] 0.0101 0.0011 14.4203s - - -

Rectangular window [12] 1.0400 0.0073 0.0019s - - -

high-pass, band-pass, and band-stop) on systems with a 2.8
GHz CPU results in processing times of 71.29 s, 118.63 s,
106.55 s, and 90.59 s, respectively. The optimization design
using the LSTM neural network takes 185.7794 s, 179.9818
s, 110.3697 s, and 144.9199 s, respectively. The optimization
design using BPNN takes 90.5965 s, 95.9772 s, 79.2226
s, and 93.8691 s, respectively. In contrast, the optimization
design using TNN takes 37.7183 s, 19.8563 s, 34.3453 s,
and 14.4203 s, respectively. Finally, the optimization design
using the rectangular window method takes 0.0013 s, 0.0018
s, 0.0017 s, and 0.0019 s, respectively.

Table II provides a summary of the passband mean
square error (MSEp), stopband mean square error (MSEs),
and computational complexity (CPU execution time),
comparing designs optimized using ABC-LSTM, LSTM
neural network, BPNN, TNN, and the rectangular window
method. Additionally, we can analyze the filter order, the
number of neurons in the hidden layers of the LSTM neural
network, and the number of iterations. In the traditional
LSTM neural network design, the parameters for low-pass,
high-pass, band-pass, and band-stop filters are all the same
and are 62, 128, and 100, respectively. In contrast, our
proposed ABC-LSTM design achieves parameters of 32, 69,
and 77 for the low-pass filter, representing reductions of
48%, 46%, and 23%compared to the traditional LSTM neural
network design. For the high-pass filter, the ABC-LSTM
design yields parameters of 54, 76, and 81, corresponding
to reductions of 13%, 40%, and 19%compared to the
traditional LSTM neural network design. The band-pass filter
parameters in the ABC-LSTM design are 52, 82, and 88,
showing reductions of 17%, 36%, and 12%compared to
the traditional LSTM neural network design. Finally, the
band-stop filter parameters in the ABC-LSTM design are
40, 27, and 92, indicating reductions of 35%, 78%, and
8%compared to the traditional LSTM neural network design.

These results demonstrate that the proposed
ABC-LSTM-based design achieves lower passband and
stopband MSE compared to the other four methods. It not
only reduces the relevant key parameters, including the filter
order, the number of the LSTM neural network hidden layer
neurons and the iterations, but also minimizes the CPU
running time.

V. CONCLUSION

This paper presents an algorithm that combines the
artificial bee colony (ABC) algorithm with long short-term
memory (LSTM) networks for the design of digital finite
impulse response (FIR) filters. The objective is to improve
filter performance by minimizing the amplitude error
between the actual and desired frequency responses. First, a
digital FIR filter model is constructed to obtain the actual
amplitude response and the desired amplitude response,
and then the amplitude error between them is calculated.
Following this, we proposed a long short-term memory
(LSTM) neural network to minimize the amplitude error.
To reduce the computational complexity associated with the
traditional LSTM neural network design, the ABC algorithm
is employed to optimize the filter order, the number of LSTM
neural network hidden layer neurons, and the number of
LSTM neural network iterations, ensuring that the given
upper limits of the fluctuation in the passband and the
suppression in the stopband can be satisfied simultaneously.
Then, these optimized parameters are applied to the LSTM
model to generate the optimal digital finite impulse response
(FIR) filter coefficients.

The simulation results demonstrate that the proposed
ABC-LSTM-based filter design exhibits superior
performance across all four types of filters. In terms
of passband characteristics, the passband fluctuations
are measured to be 0.0674 dB, 0.4468 dB, 0.3795 dB,
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and 0.7990 dB, respectively. Regarding the stopband
performance, the corresponding ranges of stopband
suppression levels are [-43.1007 dB, -117.0269 dB],
[-41.6526 dB, -123.6674 dB], [-41.3415 dB, -122.4697 dB],
and [-38.5022 dB, -114.0830 dB], respectively. Regarding
the error metrics, the passband mean square errors are
quantified as 0.00020, 0.0015, 0.0005, and 0.0013, while
the stopband mean square error values are measured to
be 0.8105 × 10−5, 1.1003 × 10−5, 1.7226 × 10−5, and
2.0837× 10−5, respectively.

The ABC-LSTM-based approach outperforms traditional
digital finite impulse response (FIR) filter design methods,
including LSTM, backpropagation neural networks (BPNN),
traditional neural networks (TNN), and rectangular window
techniques, in terms of performance metrics. These
performance improvements are achieved while maintaining
a low computational complexity by not only reducing the
correlation coefficients, including the filter order, the number
of LSTM neural network hidden layer neurons and the
iterations, but also by satisfying the given upper bounds on
the passband fluctuations and the stopband suppression.
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