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Abstract—This paper takes the hydraulic support cylinder
system (HSCS) as the research object. Based on its working
principle and physical characteristics, a nonlinear mathematical
model describing the electro-hydraulic control power system
of the hydraulic support is constructed. Firstly, by combining
reinforcement learning technology and asymmetric output
constraint theory, an adaptive asymmetric output constraint
optimal control strategy is proposed, aiming to enhance
the robustness of the system and meet industrial constraint
requirements. Secondly, by adopting a simplified optimal
backstepping design method, an adaptive optimal controller
is designed to ensure that the performance of each subsystem
reaches the optimum and the output error of the system is
always limited within the preset asymmetric constraint range.
Finally, the simulation verification shows that the proposed
method has good effectiveness and engineering feasibility.

Index Terms—Hydraulic support cylinder, Adaptive optimal
control, Reinforcement learning, Asymmetric output constraints

I. INTRODUCTION

AS the tide of industrial intelligence sweeps across
the landscape, the intelligent control system governing

the “trinity” of fully mechanized mining operations has
emerged as a cornerstone technology for safeguarding safety
and amplifying efficiency. Among its critical elements, the
electro-hydraulic control cylinder of the hydraulic support
stands out, yet it grapples with formidable challenges
owing to its pronounced nonlinear hysteresis and parameters
that vary with time. These hurdles include the intricacies
of dynamic modeling and the shortfall in servo tracking
precision [1, 2]. Fortunately, the evolution of adaptive
nonlinear control theory heralds an ingenious resolution,
paving the way for the intelligent advancement of such
sophisticated industrial systems [3, 4].

Optimal control for nonlinear systems is one of the core
aspects of modern control theory, aiming to optimize the
performance indicators of control systems [5]. It integrates
the fundamental conditions and methods distilled from
practical problems, with the research object being controlled
dynamic systems or motion processes. It seeks the best
control scheme among the allowable ones to ensure the
system achieves the optimal performance when transitioning
from the initial state to the target state [6]. With the
rapid development of digital technology and electronic
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computers, optimal control has been widely applied in
production, military, and economic activities, playing a
significant role in the national economy and national defense.
The optimal problem is theoretically equivalent to solving
the Hamilton-Jacobi-Bellman (HJB) equation [7], but due
to its strong nonlinearity and dynamic uncertainty, it is
difficult to solve directly through analysis. To overcome this
challenge, reinforcement learning (RL) and adaptive dynamic
programming (ADP) have been proven to be effective
solutions. RL and ADP were initially proposed by Werbos for
discrete systems [8] and later extended to continuous systems
[9, 10], but they are only applicable to affine nonlinear
systems. For the control problem of nonlinear mismatched
systems, in [11] proposed an optimal control method based
on the backstepping framework, ensuring the optimization
of each subsystem. To simplify complexity and alleviate the
continuous excitation condition, in [12–14] further simplified
the optimal backstepping control strategy.

Constraints are a frequent occurrence in practical control
systems. Considering that control systems often have to
strike a balance between performance requirements and
physical limitations, the constraint problem holds significant
importance in practical control systems [15, 16]. To date, the
barrier Lyapunov function (BLF) has become the mainstream
method for dealing with constraints due to its ability to
constrain state variables within a predefined compact set
[17–21]. In [17], the BLF method was used to control
a multi-input multi-output (MIMO) nonlinear system to
achieve practical stability under output constraint conditions.
In [18], a neural network adaptive fault-tolerant controller
based on integral type BLF was adopted, and it was
proposed that the full state constraint of the uncertain
nonlinear system could be satisfied even if the initial value
violated the predefined compact set limit. However, it should
be noted that the BLF technique in [17, 18] is only
used to handle symmetric constraints. Recently, in [19–21],
further research on the tracking control of nonlinear systems
under time-varying asymmetric constraint conditions has
been conducted using different types of BLF. That is, the
constraints are allowed to be asymmetric and time-varying,
and the boundary conditions have been greatly relaxed in
these works, which is more in line with the application of
actual systems.

Based on the above research, this paper takes the
working principle of the hydraulic support electro-hydraulic
control cylinder as the control object, and combines the
reinforcement learning algorithm and adaptive control theory,
aiming to optimize the overall stability and robustness of the
system operation. Through the modeling analysis, controller
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design and simulation verification of the working process
of the hydraulic support electro-hydraulic control cylinder
system, an optimal control strategy combining reinforcement
learning and asymmetric output constraints is proposed.
The specific contributions are summarized as follows: 1)
Mathematical analysis and modeling of the working principle
and physical process of Hydraulic support cylinder; 2)
Keeping all signals in the Hydraulic support cylinder system
bounded while achieving performance optimization of each
subsystem; 3) The system output error strictly conforms to
the pre-designed form and avoids any violation of constraints
throughout the process.

II. MODEL DESCRIPTION AND PRELIMINARIES

Assuming that the electro-hydraulic control cylinder
system of the hydraulic support operates in the direction
shown in Figure 1 during operation, according to the force
balance equation and the flow balance equation, its dynamic
equation can be expressed as:

MẌp = p1A1 − p2A2 −BẊp + FT (1)

where p1 = (ps + pr)/2, p2 = (ps − pr)/2. m is the
load mass, Xp is the displacement of the hydraulic support
cylinder, B is the damping coefficient, and FT is the external
force acting on the hydraulic support cylinder. A1 and A2 are
the effective areas of the non-symmetric cylinder’s rodless
chamber and rod chamber respectively. p1 and p2 are the
pressures at the oil cylinder’s inlet and outlet respectively. ps
and pr are the supply and return oil pressures respectively.

B

m FT
Xp

A2 P2

A1 P1

Q2

Q1

]

u

Pr
Ps

Fig. 1: Model diagram of hydraulic support cylinder.

Subsequently, by introducing a state space transformation
ξ1 = mXp, ξ2 = mẊp, and ξ3 = p1A1 − p2A2, (1) can be
transformed into a nonlinear system of the following form:

ξ̇1 = mξ2

ξ̇2 = ξ3 −
B

m
ξ2 − FT −mg

ξ̇3 = γ1u− γ2ξ2 − γ3(p1 − p2)

y = ξ1

(2)

where ξ = [ξ1, ξ2, ξ3]
T ∈ R3 denotes the state variables. u

and y are the control input and output, respectively. The u is
a voltage signal ranging from 0− 10 V , which satisfies the
linear relationship xv = kvu. In this paper, xv denotes the

displacement of the spool in the proportional valve, and kv
represents a positive constant.

Then, for ∀t ≥ t0, the system output is constrained by
a asymmetric time-varying boundary condition, defined as
follows:

−ϱ
a1
(t) ≤ ξ1 ≤ ϱa1(t) (3)

where ϱ
a1
(t) and ϱa1(t) represent time-varying boundary

functions, with the constraint being asymmetric when
ϱ
a1
(t) ̸= ϱa1(t).

Additionally, the bounded parameters γ1, γ2, and γ3 are
defined as follows:

γ1 = (
A1R1

V1 +
A1

m ξ1
+

A2R2

V2 − A2

m ξ1
)βekqkv

γ2 = (
A2

1

mV1 +A1ξ1
+

A2
2

mV2 −A2ξ1
)βe

γ3 = (
A1

V1 +
A1

m ξ1
+

A2

V2 − A2

m ξ1
)βeCt

(4)

where R1 =
√
ps + sign(xv)(ps − 2p1) and R2 =√

ps + sign(xv)(2p2 − ps). βe represents the effective
volume elastic modulus of the hydraulic system, Ct is the
leakage coefficient within the hydraulic cylinder, Kq is the
flow gain of the proportional valve, and V1 and V2 are the
initial volumes of the two chambers of the hydraulic cylinder.

Lemma 1 [22] Let f(x) be a continuous function defined
on a compact set Ωx. Then for ∀ε > 0, there exist the NN
ζTΨ(x) such that

sup
x∈Ωx

|f(x)− ζTΨ(x)| ≤ ε (5)

where ζ = [ζ1, ζ2, . . . , ζm]T ∈ Rm is the weight vector
and Ψ(x) = [ψ1(x), ψ2(x), . . . , ψm(x)]T is the NN basis
function with m > 1 is the number of NN rules. ψi(x) =
exp[−∥x − ξi∥2/ϑ2i ], i = 1, 2, . . . ,m is the Gaussian
function, where ϑi and ξi = [ξi1, ξi2, . . . , ξim]T represent
the width and center, respectively. The optimal parameter
vector ζ∗ of NN is defined as

ζ∗ = arg min
ζ∈Rm

{ sup
x∈Ωx

|f(x)− ζTΨ(x)|} (6)

Therefore, the continuous function f(x) can be expressed
as

f(x) = ζ∗TΨ(x) + ε(x) (7)

where ε(x) is the NN approximation error, which can be
bounded by |ε(x)| ≤ ε, where ε is a positive constant. It
should be pointed out that since ζ∗ is an analytical quantity,
it needs to be estimated later for practical use.
Assumption 1. There exist time-varying functions ϱ

b1
(t) and

ϱb1(t) such that the reference signal yr satisfies −ϱ
a1
(t) <

ϱ
b1
(t) ≤ yr ≤ ϱb1(t) < ϱa1(t). Additionally, the derivatives

of −ϱ
a1
(t), ϱ

b1
(t), yr, ϱb1(t), and ϱa1(t) are known and

bounded.

III. MAIN RESULT

In this section, we will combine the reinforcement learning
algorithm and the asymmetric output constraint control
method to design an optimal backstepping control strategy
under the critic-actor architecture, thereby constructing an
optimal controller.
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A. Optimized backstepping design

First, consider the following tracking error coordinate
transformation:

z1 = ξ1 − yr

z2 = mξ2 − α̂∗
1

z3 = ξ3 − α̂∗
2

(8)

where yr is selected as the reference signal and set to
0.2 sin(t). αi−1(i = 2, 3) and α̂∗

i−1 represent the virtual
control and actual optimal virtual control correspondingly.

Step 1: In order to impose the asymmetric time-varying
constraints on the output, an asymmetric Lyapunov function
as given in [19] is introduced:

V̆ =
z21

(ϕ1(t)− z1)(ϕ1(t) + z1)
(9)

where ϕ
1
(t) and ϕ1(t) are positive barrier functions. Define

set ϕz1 = {−ϕ
1
(t) < z1 < ϕ1(t)}, ensuring that V̆ is

well-defined within this compact set. Simultaneously, the
boundary functions designated as ϕ

1
(t) = ϱ

a1
(t) − ϱ

b1
(t)

and ϕ1(t) = ϱa1
(t) − ϱb1(t) are chosen to satisfy condition

(3).
Then, the derivative of V̆ is as follows:

˙̆
V = Pz1(ż1 +Q) (10)

where

P =
2ϕ

1
ϕ1 − ϕ

1
z1 + ϕ1z1

[(ϕ1 − z1)(ϕ1 + z1)]2
(11)

Q =
−ϕ̇

1
ϕ1 − ϕ

1
ϕ̇1 + z1(ϕ̇1 − ϕ̇1)

2ϕ
1
ϕ1 − ϕ

1
z1 + ϕ1z1

(12)

From (4) and (8), the derivative of z1 can be calculated

ż1 = mξ2 − ẏr (13)

The optimal performance index function is chosen as

J1(z1) =

∫ ∞

t

h1

(
z1(v), α1

(
z1(v)

))
dv (14)

where h1(z1, α1) = z21 +α2
1 is the cost function, and let the

optimal virtual control α∗
1 replace α1 in (13), the optimal

performance index function can be obtained

J∗
1 (z1) =

∫ ∞

t

h1(z1(v), α
∗
1(z1(v)))dv

= min
α1∈Ωz1

{
∫ ∞

t

h1

(
z1(v), α1

(
z1(v)

))
dv}

(15)

Replace ξ2 in (12) with the optimal virtual control α∗
1, and

subsequently define the HJB equation associated with (12)
and (14) as

H1(z1, α
∗
1,

dJ∗
1

dz1
) = z21 + α∗

1
2 +

dJ∗
1

dz1
(α∗

1 − ẏr) = 0 (16)

The optimal virtual control α∗
1 can be computed by solving

∂H1/∂α
∗
1 = 0 as

α∗
1 = −1

2

dJ∗
1 (z1)

dz1
(17)

Then, dJ∗
1 (z1)
dz1

is decomposed into

dJ∗
1 (z1)

dz1
= (

2χ1

P
+
7P

2
)z1 + Jo

1 (ξ1, z1) (18)

where χ1 > 0 is design parameter. Jo
1 (ξ1, z1) = −( 2χ1

P +
7P
2 )z1 +

dJ∗
1 (z1)
dz1

∈ R is a continuous function, and
substituting (18) into (17) has

α∗
1 = −(

χ1

P
+
7P

4
)z1 −

1

2
Jo
1 (ξ1, z1) (19)

Since Jo
1 (ξ1, z1) is continuous unknown function, it can

be approximated by NN as follows:

Jo
1 (ξ1, z1) = ζ∗TJ1ΨJ1(ξ1, z1) + εJ1(ξ1, z1) (20)

where ζ∗J1 represents the ideal weight vector, ΨJ1(ξ1, z1)
is the basis function vector, and εJ1(ξ1, z1) represents the
approximation error bounded by |εJ1(ξ1, z1)| ≤ εJ1 as
arbitrarily small. Then, (18) and (19) can be reorganized as

dJ∗
1 (z1)

dz1
= (

2χ1

P
+
7P

2
)z1 + ζ∗TJ1ΨJ1 + εJ1 (21)

α∗
1 = −(

χ1

P
+
7P

4
)z1 −

1

2
ζ∗TJ1ΨJ1 −

1

2
εJ1 (22)

Since ζ∗J1 is unknown constant vector, the optimal virtual
control (22) is not available for the controlled system. To
derive the effective optimized virtual control, the following
RL algorithm with critic and actor is performed.

dĴ∗
1 (z1)

dz1
= (

2χ1

P
+
7P

2
)z1 + ζ̂Tc1ΨJ1 (23)

α̂∗
1 = −(

χ1

P
+
7P

4
)z1 −

1

2
ζ̂Ta1ΨJ1 (24)

where dĴ∗
1 (z1)
dz1

and α̂∗
1 are the estimates of dJ∗

1 (z1)
dz1

and α∗
1,

respectively. ζ̂Tc1ΨJ1 and ζ̂Ta1ΨJ1 are the NN weight vectors
of critic and actor, respectively.

Following this, the weight vectors of the neural networks
for both the critic and actor are trained according to the
respective adaptive laws outlined below.

˙̂
ζc1 = −κc1ΨJ1Ψ

T
J1ζ̂c1 (25)

˙̂
ζa1 = −ΨJ1Ψ

T
J1

(
κa1(ζ̂a1 − ζ̂c1) + κc1ζ̂c1

)
(26)

where κc1 > 0 and κa1 > 0 represent critic and actor design
parameters, while κc1 and κa1 satisfy κa1 > 1

2 , κa1 > κc1

2 .
Using (24), (13) can be rewritten as

ż1 = z2 − (
χ1

P
+
7P

4
)z1 −

1

2
ζ̂Ta1ΨJ1 − ẏr (27)

For the first backstepping step, the Lyapunov function V1
is designed as follows:

V1 = V̆ +
1

2
ζ̃Tc1ζ̃c1 +

1

2
ζ̃Ta1ζ̃a1 (28)

where ζ̃c1 = ζ∗J1− ζ̂c1 and ζ̃a1 = ζ∗J1− ζ̂a1 are the estimation
errors of the critic and the actor, respectively.

Then, the derivative of V1 is

V̇1 =Pz1
(
z2 − (

χ1

P
+
7P

4
)z1 −

1

2
ζ̂Ta1ΨJ1 − ẏr +Q

)
+ κc1ζ̃

T
c1ΨJ1Ψ

T
J1ζ̂c1 + ζ̃Ta1ΨJ1Ψ

T
J1

(
κa1(ζ̂a1

− ζ̂c1) + κc1ζ̂c1
) (29)
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The Young’s inequality yields the following results

Pz1z2 ≤ 1

2
P 2z21 +

1

2
z22

PQz1 ≤ 1

2
P 2z21 +

1

2
Q2

−Pz1ẏr ≤ 1

2
P 2z21 +

1

2
ẏ2r

−1

2
Pz1ζ̂

T
a1ΨJ1 ≤ 1

4
P 2z21 +

1

4
ζ̂Ta1ΨJ1Ψ

T
J1ζ̂a1

(30)

Along with (29) and (30), we can calculate:

V̇1 ≤− χ1z1+ κc1ζ̃
T
c1ΨJ1Ψ

T
J1ζ̂c1

+ κa1ζ̃
T
a1ΨJ1Ψ

T
J1ζ̂a1 +

1

2
z22 +

1

2
ẏ2r

+ (κc1 − κa1)ζ̃
T
a1ΨJ1Ψ

T
J1ζ̂c1

+
1

4
ζ̂Ta1ΨJ1Ψ

T
J1ζ̂a1 +

1

2
Q2

(31)

Based on ζ̃c1 = ζ∗J1 − ζ̂c1, ζ̃a1 = ζ∗J1 − ζ̂a1 and Young’s
inequality, we have

ζ̃Tc1ΨJ1Ψ
T
J1ζ̂c1 =

1

2
ζ∗TJ1ΨJ1Ψ

T
J1ζ

∗
J1 −

1

2
ζ̃Tc1ΨJ1

×ΨT
J1ζ̃c1 −

1

2
ζ̂Tc1ΨJ1Ψ

T
J1ζ̂c1

ζ̃Ta1ΨJ1Ψ
T
J1ζ̂a1 =

1

2
ζ∗TJ1ΨJ1Ψ

T
J1ζ

∗
J1 −

1

2
ζ̃Ta1ΨJ1

×ΨT
J1ζ̃a1 −

1

2
ζ̂Ta1ΨJ1Ψ

T
J1ζ̂a1

ζ̃Ta1ΨJ1Ψ
T
J1ζ̂c1 ≤− 1

2
ζ̃Ta1ΨJ1Ψ

T
J1ζ̃a1

− 1

2
ζ̂Tc1ΨJ1Ψ

T
J1ζ̂c1

(32)

Subsequently, we can acquire

V̇1 ≤− χ1z1 −
κc1
2
ζ̃Tc1ΨJ1Ψ

T
J1ζ̃c1

− (κa1 −
κc1
2

)ζ̃Ta1ΨJ1Ψ
T
J1ζ̃a1

− κa1
2
ζ̂Tc1ΨJ1Ψ

T
J1ζ̂c1 − (

κa1
2

− 1

4
)

× ζ̂Ta1ΨJ1Ψ
T
J1ζ̂a1 +

1

2
z22 +

1

2
ẏ2r

+
κc1 + κa1

2
ζ∗TJ1ΨJ1Ψ

T
J1ζ

∗
J1 +

1

2
Q2

(33)

The following inequality holds when λmin
ΨJ1

is the minimum
eigenvalue of ΨJ1Ψ

T
J1.

− ζ̃Tc1ΨJ1Ψ
T
J1ζ̃c1 ≤ −λmin

ΨJ1
ζ̃Tc1ζ̃c1

− ζ̃Ta1ΨJ1Ψ
T
J1ζ̃a1 ≤ −λmin

ΨJ1
ζ̃Ta1ζ̃a1

(34)

According to the design parameters κa1 > κc1

2 and κa1 >
1
2 , as well as (34), it can yield

V̇1 ≤− χ1z1 −
κc1
2
λmin
ΨJ1

ζ̃Tc1ζ̃c1

− (κa1 −
κc1
2

)λmin
ΨJ1

ζ̃Ta1ζ̃a1 +
1

2
z22 + σ1

(35)

where σ1 = 1
2 ẏ

2
r +

1
2Q

2+ κc1+κa1

2 ζ∗TJ1ΨJ1Ψ
T
J1ζ

∗
J1. Since all

the terms in σ1 are bounded, there exists a positive constant
σ1 such that |σ1| ≤ σ1.

Step 2 : The derivative of z2 is calculated in a similar
manner.

ż2 = ξ3 −
B

m
ξ2 − FT −mg − ˙̂α∗

1 (36)

Among them, −B
mξ2 − FT − mg can be approximated

by NN as ζ∗Tf2 Ψf2 + εf2, there exists a positive constant
εf2 such that |εf2| ≤ εf2. Then, the selection of the most
suitable integral cost function is detailed as follows:

J∗
2 (z2) =

∫ ∞

t

h2

(
z2(v), α

∗
2

(
z2(v)

))
dv

= min
α2∈Ωz2

{
∫ ∞

t

h2

(
z2(v), α2

(
z2(v)

))
dv}

(37)

where h2(z2, α2) = z22 + α2
2 is the cost function, α∗

2

represents the optimal controller.
Based on (37), the HJB equation is constructed as

H2(z2, α
∗
2,

dJ∗
2

dz2
) =z22 + α∗2

2 +
dJ∗

2

dz2

(
α∗
2 + ζ∗Tf2 Ψf2(ξ)

+ εf (ξ)− ˙̂α∗
1

)
= 0

(38)
The same as before, we can solve for ∂H2/∂α

∗
2 = 0 as

α∗
2 = −1

2

dJ∗
2 (z2)

dz2
(39)

Then, dJ∗
2 (z2)
dz2

can be factored as

dJ∗
2 (z2)

dz2
=(2χ2 +

9

2
)z2 + 2ζ∗Tf2 Ψf2 + 2εf2

+ Jo
2 (ξ2, z2)

(40)

where χ2 > 0 is design parameter. Jo
2 (ξ2, z2) = −(2χ2 +

9
2 )z2 − 2ζ∗Tf2 Ψf2 − 2εf2 +

dJ∗
2 (z2)
dz2

is a continuous function,
and the α∗

2 can be expressed as

α∗
2 = −(χ2 +

9

4
)z2 − ζ∗Tf2 Ψf2 − εf2 −

1

2
Jo
2 (ξ2, z2) (41)

Since Jo
2 (ξ2, z2) is unknown continuous term, it can also

be approximated using NN as follows:

Jo
2 (ξ2, z2) = ζ∗TJ2ΨJ2 + εJ2 (42)

where ζ∗J2 is the ideal weight vector, ΨJ2 is the NN basis
function vector, and the NN approximation error εJ2 is
bounded.

Similarly, we can derive the following conclusion

dJ∗
2 (z2)

dz2
= (2χ2 +

9

2
)z2 + 2ζ∗Tf2 Ψf2 + ζ∗TJ2ΨJ2 + ε2 (43)

α∗
2 = −(χ2 +

9

4
)z2 − ζ∗Tf2 Ψf2 −

1

2
ζ∗TJ2ΨJ2 −

1

2
ε2 (44)

where ε2 = 2εf2 + εJ2.
The optimal control (44), however, remains unattainable,

necessitating the execution of an RL algorithm featuring both
a critic and an actor to acquire viable control signal.

dĴ∗
2 (z2)

dz2
= (2χ2 +

9

2
)z2 + 2ζ̂Tf2Ψf2 + ζ̂Tc2ΨJ2 (45)

α̂2
∗ = −(χ2 +

9

4
)z2 − ζ̂Tf2ΨJ2 −

1

2
ζ̂Ta2ΨJ2 (46)

where dĴ∗
2 (z2)
dz2

and α̂2
∗ are the estimate of dJ∗

2 (z2)
dz2

and α∗
2,

respectively. ζ̂Tc2ΨJ2 and ζ̂Ta2ΨJ2 are the NN weight vectors
of critic and actor, respectively.

Same as the first step, the corresponding three adaptive
update laws are designed as follows:

˙̂
ζf2 = Γf2ΨJ2z2 − κf2ζ̂f2 (47)
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˙̂
ζc2 = −κc2ΨJ2Ψ

T
J2ζ̂c2 (48)

˙̂
ζa2 = −ΨJ2Ψ

T
J2

(
κa2(ζ̂a2 − ζ̂c2) + κc2ζ̂c2

)
(49)

where Γf2 > 0, κf2 > 0, κc2 > 0 and κa2 > 0 are design
parameters, while κc2 and κa2 satisfy κa2 > 1

2 , κa2 > κc2

2 .
According to (46), the ż2 can be expressed as follows

ż2 =− (χ2 +
9

4
)z2 + z3 −

1

2
ζ̂Ta2ΨJ2

+ ζ̃Tf2Ψf2 + εf2 − ˙̂α∗
1

(50)

Subsequently, the Lyapunov function V2 is established as

V2 =
1

2
z22 +

1

2Γf2
ζ̃Tf2ζ̃f2 +

1

2
ζ̃Tc2ζ̃c2 +

1

2
ζ̃Ta2ζ̃a2 (51)

where ζ̃f2 = ζ∗f2− ζ̂f2, ζ̃c2 = ζ∗J2− ζ̂c2 and ζ̃a2 = ζ∗J2− ζ̂a2.
Then, the V̇2 can be calculated as

V̇2 =z2
(
− (χ2 +

9

4
)z2 +z3 −

1

2
ζ̂Ta2ΨJ2 + ζ̃Tf2Ψf2

+ εf2 − ˙̂α∗
1

)
+
κf2
Γf2

ζ̃Tf2ζ̂f2 + κc2ζ̃
T
c2ΨJ2Ψ

T
J2ζ̂c2

+ ζ̃Ta2ΨJ2Ψ
T
J2

(
κa2(ζ̂a2 − ζ̂c2) + κc2ζ̂c2

) (52)

Using the Young’s inequality, we have

z2z3 ≤ 1

2
z22 +

1

2
z23

z2εf2 ≤ 1

2
z22 +

1

2
ε2f2

−z2 ˙̂α∗
1 ≤ 1

2
z22 +

1

2
˙̂α∗2
1

−1

2
z2ζ̂

T
a2ΨJ2 ≤ 1

4
z22 +

1

4
ζ̂Ta2ΨJ2Ψ

T
J2ζ̂a2

(53)

Substituting (53) into (52) yields

V̇2 ≤− χ2z
2
2 − κf2

2Γf2
ζ̃Tf2ζ̃f2−

κc2
2
ζ̃Tc2ΨJ2Ψ

T
J2ζ̃c2

−(κa2−
κc2
2
)ζ̃Ta2ΨJ2Ψ

T
J2ζ̃a2−

κa2
2
ζ̂Tc2ΨJ2Ψ

T
J2ζ̂c2

− (
κa2
2

− 1

4
)ζ̂Ta2ΨJ2Ψ

T
J2ζ̂a2 +

κc2 + κa2
2

ζ∗TJ2ΨJ2

×ΨT
J2ζ

∗
J2 +

1

2
ε2f2 +

1

2
˙̂α∗2
1 +

κf2
2
ζ∗Tf2 ζ

∗
f2 +

1

2
z23

≤− χ2z
2
2 − κf2

2Γf2
ζ̃Tf2ζ̃f2 −

κc2
2
λmin
ΨJ2

ζ̃Tc2ζ̃c2

− (κa2 −
κc2
2

)λmin
ΨJ2

ζ̃Ta2ζ̃a2 −
1

2
z22 +

1

2
z23 + σ2

(54)
where σ2 = 1

2ε
2
f2 +

κc2+κa2

2 ζ∗TJ2ΨJ2Ψ
T
J2ζ

∗
J2 +

κf2

2 ζ∗Tf2 ζ
∗
f2 +

1
2
˙̂α∗2
1 is bounded, and there exists a positive constant σ2

that ensures the existence of |σ2| ≤ σ2. Additionally, λmin
ΨJ2

represents the minimum eigenvalue of ΨJ2Ψ
T
J2.

Step 3 : Similarly, the derivative of z3 is

ż3 = ξ̇3 − ˙̂α∗
2

= γ1u− γ2ξ2 − γ3(p1 − p2)− ˙̂α∗
2

(55)

where −γ2ξ2 − γ3(p1 − p2) can be approximated by NN
as ζ∗Tf3 Ψf3 + εf3, there exists a positive constant εf3 such
that |εf3(ξ)| ≤ εf3. Then, the selection of the most suitable
integral cost function is detailed as follows:

J∗
3 (z3) =

∫ ∞

t

h3

(
z3(v), u

∗(z3(v)))dv
= min

u∈Ωz3

{
∫ ∞

t

h3

(
z3(v), u

(
z3(v)

))
dv}

(56)

where h3(z3, u) = z23+u
2 is the cost function, u∗ represents

the optimal controller.
Based on (56), the HJB equation is constructed as

H3(z3, u
∗,

dJ∗
3

dz3
) =z23 + u∗2 +

dJ∗
3

dz3

(
u∗ + ζ∗Tf3 Ψf3

+ εf3 − ˙̂α∗
2

)
= 0

(57)

The same as before, we can solve for ∂H3/∂u
∗ = 0 as

u∗ = −1

2

dJ∗
3 (z3)

dz3
(58)

Then, dJ∗
3 (z3)
dz3

can be factored as

dJ∗
3 (z3)

dz3
= (2χ3 +

7

2
)z3 + 2ζ∗Tf3 Ψf3 + 2εf3 + Jo

3 (ξ3, z3)

(59)
where χ3 > 0 is design parameter. Jo

3 (ξ3, z3) = −(2χ3 +
7
2 )z3 − 2ζ∗Tf3 Ψf3 − 2εf3 +

dJ∗
3 (z3)
dz3

is a continuous function,
and the u∗ can be expressed as

u∗ = −(χ3 +
7

4
)z3 − ζ∗Tf3 Ψf3 − εf3 −

1

2
Jo
3 (ξ3, z3) (60)

Since Jo
3 (ξ3, z3) is unknown continuous term, it can also

be approximated using NN as follows:

Jo
3 (ξ3, z3) = ζ∗TJ3ΨJ3 + εJ3 (61)

where ζ∗J3 is the ideal weight vector, ΨJ3 is the NN basis
function vector, and the NN approximation error εJ3 is
bounded.

Similarly, we can derive the following conclusion

dJ∗
3 (z3)

dz3
= (2χ3 +

7

2
)z3 + 2ζ∗Tf3 Ψf3 + ζ∗TJ3ΨJ3 + ε3 (62)

u∗ = −(χ3 +
7

4
)z3 − ζ∗Tf3 Ψf3 −

1

2
ζ∗TJ3ΨJ3 −

1

2
ε3 (63)

where ε3 = 2εf3 + εJ3. For (63), however, remains
unattainable, necessitating the execution of an RL algorithm
featuring both a critic and an actor to acquire viable control
signal.

dĴ∗
3 (z3)

dz3
= (2χ3 +

7

2
)z3 + 2ζ̂Tf3Ψf3 + ζ̂Tc3ΨJ3 (64)

û∗ = −(χ3 +
7

4
)z3 − ζ̂Tf3ΨJ3 −

1

2
ζ̂Ta3ΨJ3 (65)

where dĴ∗
3 (z3)
dz3

and û∗ are the estimate of dJ∗
3 (z3)
dz3

and u∗,
respectively. ζ̂Tc3ΨJ3 and ζ̂Ta3ΨJ3 are the NN weight vectors
of critic and actor, respectively.

Then, the corresponding three adaptive update laws are
designed as follows:

˙̂
ζf3 = Γf3ΨJ3z3 − κf3ζ̂f3 (66)

˙̂
ζc3 = −κc3ΨJ3Ψ

T
J3ζ̂c3 (67)

˙̂
ζa3 = −ΨJ3Ψ

T
J3

(
κa3(ζ̂a3 − ζ̂c3) + κc3ζ̂c3

)
(68)

where Γf3 > 0, κf3 > 0, κc3 > 0 and κa3 > 0 are design
parameters, while κc3 and κa3 satisfy κa3 >

γ2
1

2 , κa3 > κc3

3 .
Following (55) and (65), we obtain ż3

ż3 = γ1
(
− (χ3 +

7

4
)z3 −

1

2
ζ̂Ta3ΨJ3 + ζ̃Tf3Ψf3 + εf3 − ˙̂α∗

1

)
(69)
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Subsequently, the Lyapunov function V3 is established as

V3 =
1

2
z23 +

1

2Γf3
ζ̃Tf3ζ̃f3 +

1

2
ζ̃Tc3ζ̃c3 +

1

2
ζ̃Ta3ζ̃a3 (70)

where ζ̃f3 = ζ∗f3− ζ̂f3, ζ̃c3 = ζ∗J3− ζ̂c3 and ζ̃a3 = ζ∗J3− ζ̂a3.
Then, the V̇3 can be calculated as

V̇3 =γ1z3
(
− (χ3 +

7

4
)z3 −

1

2
ζ̂Ta3ΨJ3 + ζ̃Tf3Ψf3 + εf3

− ˙̂α∗
2

)
+
κf3
Γf3

ζ̃Tf3ζ̂f3 + κc3ζ̃
T
c3ΨJ3Ψ

T
J3ζ̂c3

+ ζ̃Ta3ΨJ3Ψ
T
J3

(
κa3(ζ̂a3 − ζ̂c3) + κc3ζ̂c3

)
(71)

Using the Young’s inequality, we have

γ1z3εf3 ≤ 1

2
z23 +

γ21
2
ε2f3

−γ1z3 ˙̂α∗
2 ≤ 1

2
z23 +

γ21
2

˙̂α∗2
2

−1

2
γ1z3ζ̂

T
a3ΨJ3 ≤ 1

4
z23 +

γ21
4
ζ̂Ta3ΨJ3Ψ

T
J3ζ̂a3

(72)

Substituting (72) into (71) yields

V̇3 ≤− χ3z
2
3 − κf3

2Γf3
ζ̃Tf3ζ̃f3−

κc3
2
ζ̃Tc3ΨJ3Ψ

T
J3ζ̃c3

−(κa3−
κc3
2
)ζ̃Ta3ΨJ3Ψ

T
J3ζ̃a3−

κa3
2
ζ̂Tc3ΨJ3Ψ

T
J3ζ̂c3

− (
κa3
2

− γ21
4
)ζ̂Ta3ΨJ3Ψ

T
J3ζ̂a3 +

κc3 + κa3
2

ζ∗TJ3ΨJ3

×ΨT
J3ζ

∗
J3 +

1

2
ε2f3 +

1

2
˙̂α∗2
2 +

κf3
2
ζ∗Tf3 ζ

∗
f3 −

1

2
z23 +σ3

≤− χ3z
2
3 − κf3

2Γf3
ζ̃Tf3ζ̃f3 −

κc3
2
λmin
ΨJ3

ζ̃Tc3ζ̃c3

− (κa3 −
κc3
2

)λmin
ΨJ3

ζ̃Ta3ζ̃a3 −
1

2
z23 + σ3

(73)
where σ3 =

γ2
1

2 ε
2
f3 + κc3+κa3

2 ζ∗TJ3ΨJ3Ψ
T
J3ζ

∗
J3 +

γ2
1

2
˙̂α∗2
2 +

κf3

2 ζ∗Tf3 ζ
∗
f3 is bounded, and there exists a positive constant

σ3 that ensures the existence of |σ3| ≤ σ3. Additionally,
λmin
ΨJ3

represents the minimum eigenvalue of ΨJ3Ψ
T
J3.

B. Stability analysis

Theorem 1 Apply the control strategy proposed in this
paper to (2), where the adaptive laws for NN parameters,
critics and actors are (47), (66) and (25), (48), (67) and (26),
(49), (68), respectively, and the optimal virtual control and
control input are (24), (46), and (65). Based on this, the
following conclusions can be drawn: 1) This control strategy
can ensure that all signals in the closed-loop system remain
bounded and achieve the performance optimization of each
subsystem; 2) The output error strictly follows the design
form defined in (3) and no violation of constraints occurs.

Proof: Construct a Lyapunov function V =
3∑

i=1

Vi, and

by integrating the preceding steps, we can compute

V̇ ≤−
3∑

i=1

χiz
2
i −

3∑
i=2

κf3
2Γf3

ζ̃Tfiζ̃fi −
3∑

i=1

κci
2
λmin
ΨJi

ζ̃Tciζ̃ci

−
3∑

i=1

(κai−
κci
2

)λmin
ΨJi

ζ̃Taiζ̃ai+
3∑

i=1

σi

≤−ΘV +∆
(74)

where Θ = min{2χi,
κfj

Γfj
, κci, (κai−κci

2 )λmin
ΨJi

, i=1, 2, 3, j =

2, 3},∆ =
3∑

i=0

σi.

The proof of Theorem 1 is completed.
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Fig. 2: ξ1, yr and the constraints −ϱ
a1

, ϱa1.
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Fig. 3: z1 and the constraints ϕ
1
, ϕ1.

IV. SIMULATION EXAMPLE

To verify the effectiveness of the control algorithm
proposed in this paper, numerical simulation verification was
carried out with the aid of MATLAB. The parameters used
in the simulation process are summarized as follows:

The corresponding process parameters in the
electro-hydraulic control cylinder system of the hydraulic
support are m = 300 kg, B = 1000N/(m · S−1),
A1 = 1.92625 × 10−3m2, A2 = 9.4514 × 10−4m2, ps =
2× 107 Pa, pr = 0, kqkv = 8.9× 10−8m3/(s · V ·

√
Pa),

βe = 7 × 108 Pa, Ct = 4 × 10−13m3/(s · Pa).
The output ξ1 is constrained within the range of
−0.18 sin(2t) − 0.45 < ξ1 < 0.05 sin(t) + 0.25. The
reference signal is selected as yr = 0.2 sin(t).
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Fig. 4: The norms of the ζ̂f2 and ζ̂f3.
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Fig. 5: The norms of the ζ̂c1, ζ̂c2 and ζ̂c3.
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Fig. 6: The norms of the ζ̂a1, ζ̂a2 and ζ̂a3.
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Fig. 7: Control input u.
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Fig. 8: Cost functions h1, h2 and h3.

The control parameters are designed as χ1 = 8, χ2 = 12,
χ3 = 18, κf2 = 15, κf3 = 20, κc1 = κc2 = κc3 = 10,
κa1 = κa2 = κa3 = 12. Furthermore, the initial values
are set as ξ1(0) = −0.2, ξ2(0) = ξ3(0) = 0.2, ζ̂f2(0) =
ζ̂f3(0) = [0.2, . . . , 0.2]T ∈ R6×1, ζ̂c1(0) = ζ̂a1(0) =
[0.5, . . . , 0.5]T ∈ R6×1, ζ̂c2(0) = ζ̂a2(0) = [0.4, . . . , 0.4]T ∈
R6×1, ζ̂c3(0) = ζ̂a3(0) = [0.4, . . . , 0.4]T ∈ R6×1.

The simulation results show that the dual neural network
structure based on the critic-actor framework proposed in this
paper can efficiently evaluate the value function of the current
control strategy, generate adaptive compensation terms to
optimize the control law, and ensure that the output error
of the hydraulic support cylinder system is always within
the preset range by dynamically adjusting the system control
gain online. Figures 2 and 3 verify the excellent tracking
performance of the system under this strategy. Figures 4
to 8 further demonstrate that the critic adaptive law, the
actor adaptive law, and the optimal controller designed in
this paper all exhibit fast convergence characteristics and
maintain stability, thereby effectively achieving the optimal
control state of the system.
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V. CONCLUSION

Based on the working principle of the hydraulic support
electro-hydraulic control system, a more precise control
mathematical model was constructed. Combined with
reinforcement learning technology, an optimal backstepping
controller with a critic-actor mechanism was designed.
By introducing the asymmetric constraint theory method,
this controller not only achieved performance optimization
of each subsystem but also effectively ensured that the
output error always met the preset asymmetric constraint
conditions. Simulation results show that the proposed method
significantly improves the robustness and convergence
efficiency of the system, fully verifying the effectiveness and
engineering feasibility of the control strategy. This research
provides a solid theoretical support and feasible practical
solution for the performance optimization of the HSCS,
and has the potential for further application verification in
complex industrial scenarios.
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