
 

  

Abstract— This study presents a novel protocol, the Secure and 

Lightweight Communication Protocol in Software-Defined Networks 

(SLECP-SDN), leveraging Elliptic Curve25519 to enhance security and 

efficiency in SDN Southbound Interface (SBI) communication. Unlike 

the existing cryptographic solutions, SLECP-SDN integrates 

computational efficiency, robust security, and energy optimization to 

address vulnerabilities in SBI. Using a Lightweight Elliptic Curve 

Diffie-Hellman (ECDH) approach, the proposed protocol ensures 

secure exchange and session establishment while mitigating critical 

security threats, including impersonation, replay, packet injection, and 

Man-in-the-middle (MITM) attacks. To evaluate the system 

performance, the Contiki Cooja Simulator was employed to model 

SDN communication among 20 hosts, incorporating various mod(p) 

values to assess encryption/decryption performance, energy 

consumption, and throughput. The Automated Validation of Internet 

Security Protocols and Applications (AVISPA) tool was also utilized 

for security verification. Using the High-Level Protocol Specification 

Language (HLPSL), AVISPA tested the mutual authentication 

protocol against three attack models: On-the-Fly Model-Checker 

(OFMC), Constraint Logic-based Attack Searcher (CL-AtSe), and 

Tree Automata-based Protocol Analyzer (TA4SP). The results 

demonstrated that SLECP-SDN achieves a throughput of 1224.43 

MBps at a 138-bit modulus, outperforming RSA and hybrid AES+RSA 

algorithms. Single topology configurations delivered the fastest 

transmission times for encrypted files. These findings validate the 

effectiveness of SLECP-SDN in maintaining high-security standards 

without compromising network performance, making it a viable option 

for modern SDNs. 

 

Index Terms: Data Security, Elliptic Curve25519, Software-

defined network, Southbound Interface, Throughput, 

Topology.  

 

I. INTRODUCTION 
oftware-defined network (SDN) has emerged as a 

transformative technology that decouples the control and 
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data planes, enabling centralized network management and    

enhanced flexibility [1], [2]. Unlike traditional networks, 

control logic and data forwarding are tightly integrated [3], 

[4]. SDN separates these functions, allowing for 

programmable and scalable network architectures [5]–[7]. 

This integration hampers network management and restricts 

adaptability. The paradigm shifts facilitate rapid innovation 

in network management and optimization, but they also 

introduce new security challenges, particularly at the 

Southbound Interface (SBI). 

SDN relies on four key interfaces: Southbound, 

Northbound, Eastbound, and Westbound [8], [9]. The 

Southbound API is essential, facilitating communication 

between the control and data planes [10]. Northbound APIs 

offer a standardized interface for application development 

by providing critical insights into the underlying devices 

[11]. Eastbound APIs manage communication between 

distributed controllers, while Westbound APIs integrate 

legacy network devices with the SDN controller. These 

interfaces enable SDN to deliver more flexible and 

manageable network operations. 

The SBI, a critical component of SDN, facilitates 

communication between the control plane and data plane 

devices, such as switches and routers. While this interface is 

essential for SDN’s functionality, it is highly vulnerable to 

various attacks, including unauthorized access, man-in-the-

middle (MiTM), packet injection, and impersonation 

attacks. Securing the SBI is crucial to ensuring the integrity, 

confidentiality, and availability of SDN operations [12]–

[14]. 

Existing approaches to securing SBI communication rely 

on cryptographic techniques such as RSA, AES, or hybrid 

encryption methods. However, these methods often have 

significant computational and energy costs, making them 

unsuitable for resource-constrained environments. 

Moreover, some solutions lack robust mechanisms for 

mutual authentication, leaving networks susceptible to 

impersonation and replay attacks. These limitations 

necessitate the development of a more secure and efficient 

protocol tailored to SDN’s unique requirements. 

This study proposes the Secure and Lightweight 

Communication Protocol in Software-Defined Networks 

(SLECP-SDN) to address these challenges. SLECP-SDN 

leverages the Elliptic Curve25519 algorithm to provide a 

high-security, low-overhead solution for securing the SBI. 

Unlike the traditional methods, the protocol incorporates a 

lightweight mutual authentication mechanism, ensuring trust 

between communicating entities and mitigating key security 

threats. Additionally, SLECP-SDN employs efficient 

encryption and decryption processes, enabling secure data 
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exchange without compromising network performance. The 

main contributions of the study are as follows: 

1.  Development of SLECP-SDN, a protocol that utilizes 

Elliptic Curve25519 for securing SBI communication with 

strong cryptographic guarantees. 

2.   Introduction of a mutual authentication mechanism that 

mitigates various attacks, such as impersonation, MiTM, 

replay, and packet injection attacks, thereby ensuring robust 

device identity verification. 

3.   Performance evaluation of SLECP-SDN using 

encryption and decryption times, energy consumption, and 

throughput across various file sizes and modulus values. 

4.   Comparative analysis with traditional cryptographic 

algorithms, demonstrating SLECP-SDN’s superior balance 

of security and efficiency. 
 

The remainder of this paper is organized as follows: 

Section 2 reviews related work on SBI security. Section 3 

presents the proposed SLECP-SDN methodology. Section 4 

also introduces the experimental setup and evaluates the 

results. Section 5 compares SLECP-SDN’s performance 

with existing methods. Finally, section 6 concludes the 

study and suggests directions for future research. 

II. LITERATURE REVIEW 

Securing communication in SBI in SDN is a critical 

challenge, as malicious switches pose significant threats by 

disobeying rules, colluding with other compromised entities, 

or falsifying information. Recent research has introduced 

defense mechanisms, such as encryption and authentication 

techniques, to address these vulnerabilities. These 

approaches enhance security and preserve network integrity 

by leveraging SDN's programmability and centralized 

control. This review explores these mechanisms, 

highlighting their effectiveness (potential) to mitigate threats 

and safeguard SDN environments. 

Chao et al. [15] synthesized realistic network topologies 

and flow entries derived from real-world datasets to evaluate 

the techniques on virtual SDN networks created using 

Mininet. While the active probing technique effectively 

reduced the required number of test packets and achieved 

practical fault localization times, the techniques involving 

statistics checking and packet obfuscation require further 

evaluation and optimization to address their inherent 

weaknesses and challenges. 

Ghaly and Abdullah [16] addressed the security of data 

transmission in software-defined networks (SDNs) by 

implementing robust encryption algorithms to mitigate 

potential security vulnerabilities arising from the separation 

of control and data planes, which can compromise data 

integrity and confidentiality. It proposes a hybrid encryption 

approach combining the Advanced Encryption Standard 

(AES) symmetric-key algorithm and the Rivest–Shamir–

Adleman (RSA) asymmetric-key algorithm. The approach 

encrypts the original data using AES with a 256-bit key 

length and then encrypts the AES key using RSA with a 

4096-bit public key. The hybrid approach demonstrates 

better encryption time and throughput compared to RSA 

alone. Furthermore, the single topology scenario exhibits the 

lowest transmission time compared to linear and tree 

topologies when sending encrypted files through the SDN 

network.  

Similarly, Alemami et al. [17] addressed the critical issue 

of data security in cloud computing, where resource sharing 

among clients poses risks like data theft and leakage. To 

mitigate these risks, the study investigates encryption 

techniques, including AES, DES, Blowfish, RSA, and 

IDEA, which transform data into cipher text. The 

comparative analysis evaluates these algorithms based on 

security, encipherment capacity, memory usage, and 

encryption speed. The results show that AES and Blowfish 

are the most efficient based on speed and memory usage, 

while RSA and IDEA are less secure.  

Varadharajan and Tupakula [18] proposed a two-pronged 

security architecture to mitigate the threats posed by 

compromised end hosts in SDNs. This architecture aims to 

detect and prevent attacks targeting both the control plane 

(SDN controller) and the data plane (network switches) 

before they can reach and impact these critical components. 

The first part is the Security Management Application 

(SMA), a software component in the SDN controller. The 

SMA specifies and evaluates security policies leveraging the 

controller's global network visibility, while the second part 

consists of the Switch Security Components (SSCs) 

implemented within the network switches. The SSCs 

enforce the security policies the SMA defines by performing 

functions like flow mapping, state validation of end hosts, 

traffic inspection, and flow encryption if required. 

Al-Hamdani and Bhaya [19] proposed a new key 

management scheme to address the challenges of securing 

communication in SDN environments due to the separation 

of control and data planes. This scheme ensures the secure 

distribution of RSA certificate keys without compromising 

network performance. It utilizes the RSA algorithm for key 

generation, a hierarchical system for key distribution, and a 

novel approach to prevent unauthorized access to keys. 

However, the proposed scheme relies heavily on the central 

controller for key generation and management, which could 

become a single point of failure or a bottleneck in larger 

networks. 

To address the vulnerabilities from unencrypted 

communication channels, which allow eavesdropping and 

tampering between controllers and switches in OpenFlow-

enabled devices, Gray et al. [20] introduced a new 

authentication mechanism using device fingerprinting to 

secure SDN environments. Experimental results show that 

this approach prevents unauthorized access and ensures 

network security. However, attackers can exploit this by 

mimicking static features, deceiving the SDN controller into 

recognizing malicious entities as legitimate switches. 

Mockingly examining handshake messages between the 

controller and switches enhanced the quality of secure 

sessions in the SDN data plane. This approach ensures 

secure communication but increases overhead, as the 

controller must scrutinize every message sent and received. 

This additional scrutiny, necessary for maintaining 

communication integrity and security, increases processing 

demands on the controller and may affect overall network 

performance and efficiency. 

Ranjbar et al. [21] enhanced the quality of secure sessions 

in the SDN data plane by meticulously examining 

handshake messages between the controller and the 

switches, which enhanced the quality of secure sessions. 

The study ensures secure communication but increases 

overhead, as the controller must scrutinize every message 

sent and received.  

Yigit et al. [22] proposed the secure distribution and 

management of cryptographic keys in SDN to prevent 
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unauthorized access and maintain high performance. It uses 

asymmetric key generation and distribution using RSA 

algorithms by generating keys at a central controller and 

distributing them securely through SSL channels. The 

experimental results using an SDN testbed show that the 

proposed cryptography key management approach 

effectively secures SDN environments. However, the CPU-

intensive nature of the encryption process could delay 

regular switch operations, and the need to store keys at the 

controller introduces a single point of failure. 

Peng et al. [23] introduced QKDFlow, a solution that 

combines quantum key distribution (QKD) with a one-time 

pad (OTP) encryption algorithm to secure OpenFlow 

protocol messages. This approach is designed to prevent 

Man-in-the-Middle (MitM) attacks and enhance the secure 

communication between the control and data planes in SDN. 

Adhikari et al. [24] addressed the lack of mandatory 

security measures like Transport Layer Security (TLS) in 

the OpenFlow protocol, which makes the Southbound 

Interface (SBI) vulnerable to MiTM attacks. They propose a 

combination of Elliptic-curve Diffie-Hellman (ECDH) key 

exchange and Advanced Encryption Standard (AES) 256 

encryption to secure communication between the SDN 

controller and switches. The study uses Bettercap with 

SSLStrip to simulate MiTM attacks and validate the 

effectiveness of the encryption approach. However, while 

secure, the initial key exchange process depends on the 

assumption that the public keys are exchanged without 

interception. 

The research presents the SAF-Secure Authentication 

framework aiming to heighten security and optimize 

services for entities within the SDN-IoT network. Utilizing 

hashing algorithms (Keccak-256) and digital certificates 

(Bliss-B), the study ensures the validity of entities. It 

assesses the proposed architecture's performance by 

considering computation overhead and resource utilization. 

The SAF architecture demonstrates enhanced security 

performance, improving the efficiency of message 

encryption. However, there is a necessity for deeper 

exploration into system constraints regarding authentication, 

particularly focusing on computation overhead and resource 

utilization [25] 

The study in [26] addresses the lack of data plane 

authentication, a vulnerability that can cause controller 

malfunctions. Their proposed prototype, Mynah, effectively 

mitigates this issue with only a 4.5% increase in 

communication latency. Mynah introduces a novel 

controller and switch architecture, making it the first 

solution to tackle this problem. 

 The literature review highlights several critical research 

gaps in securing data planes in SDNs that need further 

investigation. These include optimizing statistics checking 

and packet obfuscation techniques, understanding the 

performance impact of hybrid encryption methods, and 

providing a tailored analysis of encryption techniques for 

SDNs. Centralized key management schemes present risks 

of single points of failure, and current authentication 

mechanisms are susceptible to sophisticated impersonation 

attacks. Enhanced security measures often increase 

overhead, and processing demands, affecting network 

efficiency, and the security of initial key exchanges relies on 

potentially vulnerable assumptions. 

Addressing these gaps is essential for developing more 

effective and efficient security solutions for SDNs. 

Introducing Elliptic Curve25519 [27] to secure 

communication can address some of these gaps due to its 

high performance and strong security with relatively low 

computational overhead. Its robust cryptographic properties 

make it highly resistant to attacks, including impersonation, 

and it minimizes the additional overhead associated with 

enhanced security measures. Curve25519 also supports 

efficient key exchange management, further strengthening 

the security of SDNs. 

 

III  METHODOLOGY 

This study introduces the Secure and Lightweight 

Communication Protocol for SDN (SLECP-SDN), designed 

to secure communication between the data plane (DP) and 

the control plane (CP). The proposed approach employs a 

pre-computed curve points strategy, enhancing 

computational efficiency and memory usage. It maintains 

robust 192-bit security while using 128-bit encrypted keys. 

The protocol uses Elliptic Curve25519 for efficient, high-

security encryption and key exchange, ensuring robust data 

transfer protection within the SDN. Additionally, integrating 

the GMP library boosted the performance of scalar 

multiplication and reduced the cost of generating large 

prime numbers. The study uses Elliptic Curve25519 for its 

cryptographic strength and efficiency. Figure 1 presents the 

secure communication flow of SLECP-SDN. SLECP-SDN 

involves the following phases: key generation, key 

exchange, encryption and decryption, simulation, and 

mutual authentication.  

  

 A). Key Generation 

 
 Fig. 1. Secure Communication Flow in SLECP-SDN 

 

In this phase, both the control plane (CP) and the data 

plane (DP) dynamically generate private-public key pairs 

using Elliptic Curve Cryptography (ECC). A secure 

cryptographically strong pseudo-random number generator 

(CSPRNG), implemented via Python's os.urandom(), 

generates the private keys, while public keys are derived 

through scalar multiplication of the private key and curve 

base point G, as represented in equation [1]: 

 

                            (1) 

Where P is the public key, K is the private key, and G is the base point. The 

algorithm for scalar multiplication is detailed in Algorithm 1, which 

ensures efficient point addition and doubling using modular arithmetic. 

 

This curve, defined by the equation   =  + 486662  

+ x mod  (Montgomery, 1987), operates over a prime 

finite field, ensuring strong encryption using modular 

arithmetic, specifically: 

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

 
______________________________________________________________________________________ 



 

                                  (2) 

The curve's base point serves as the foundation for 

generating all other points on the curve, which are crucial 

for encryption and decryption processes. Each SDN device 

is assigned unique elliptic curve points generated as part of 

the encryption system.  

 

Algorithm 1: Point Addition and Point Doubling 

Input: Point X = ; Point Y =   

Output: Point Z=  

1.  If X is the point at infinity 

2.      return Y 

3.  end If 

4.  If Y is the point at infinity 

5.      return X 

6.  end if 

7.  If =  and   

8.      return the point at infinity. 

9.  end if 

10  If x  Y, calculate slope m 

11.   m =   

12.  else if x = y, calculate  

13.      m =  

14.  end if 

15.  calculate the coordinates of Z  

16.       =  -  -  

17.       = m  -  

18.       End   

 

Algorithm 1 outlines the process of scalar multiplication 

(point addition and point doubling) on Elliptic Curve 25519 

using modular arithmetic. It takes two input points, X and Y, 

each with two coordinates, and produces an output point, Z.  

Special cases are handled first: if either X or Y is at infinity, 

the algorithm returns the other point, and if the x-

coordinates of X and Y are the same but their y-coordinates 

differ, it returns the point at infinity. For other cases, the 

slope m is calculated. If the points are different, the slope is 

m =   ; if they are the same (point doubling), the slope 

is . Finally, the coordinates (x, y) of the output point Z 

are calculated using  -  -  and m  -  

respectively. 

From Fig. 1, let the data plane be A and the control plane 

be B. The private keys for A and B are represented as  

and , respectively. The corresponding public keys for A 

and B are given by: 

 

                                 (3) 

                           (4) 

 

Where G is a predefined generator point on the elliptic 

curve. 

 

B).   Key Exchange Phase 

The protocol employs the Elliptic Curve Diffie-Hellman 

(ECDH) method to enable CP and DP to establish a shared 

secret over an insecure channel. During the exchange, 

Device A (DP1) sends its public key ( ) to Device B 

(CP1), which responds by sending its public key ( ) to 

Device A. In the shared secret exchange, A computes its 

shared secret (s ) using B's public key ( ) and A's 

private key ( ), as shown in equation (5). Similarly, B 

calculates its shared secret (s ) by using A's public key 

( ) and B's private key ( ), as shown in equation (6). 

Both calculations result in the same shared secret key, 

enabling secure communication between A and B.  This 

protocol ensures that the DP and CP can derive a shared 

secret, even over an insecure communication channel, as 

depicted in Fig. 2. 

 

                             (5) 

                         (6) 

 

These principles also apply to DP2 and CP2, ensuring 

consistent exchange security. The public key is openly 

shared, while the private key remains confidential. 

 

 
 

Fig. 2. Sequence diagram for public key exchange in SLCEP-SDN 

 

C). Encryption and Decryption 

Once the shared key is established, it is used for 

encryption and decryption. Encryption is performed as 

follows: 
 

                       (7) 

     (8) 

 

Decryption reverses this process to recover the original 

plaintext: 
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     (9) 

 

  (10) 

 
 The sender (DP) encrypts the plaintext using the shared 

key, turning it into ciphertext, and then transmits it over the 

network. Upon receiving the ciphertext, the recipient (CP) 

uses the same shared key to decrypt it and recover the 

original plaintext. This process ensures the confidentiality of 

the communication, protecting the transmitted messages 

from an unauthorized access. 

 
D). Simulation and Authentication 

 The system was modelled using Contiki’s Cooja 

simulator, simulating SDN communication between 20 

hosts. The protocol's robustness against attacks was verified 

using the Automated Validation of Internet Security 

Protocols and Applications (AVISPA) tool, employing 

High-Level Protocol Specification Language (HLPSL). It 

ensured resistance against attack models like On-the-Fly 

Model-Checker (OFMC), Constraint Logic-based Attack 

Searcher (CL-AtSe), and Tree Automata-based Protocol 

Analyzer (TA4SP). 

 

E). Proposed Mutual Authentication Technique 

 This section details the key features of the proposed 

approach. The technique aims to ensure optimal 

performance in constrained networks while providing the 

most cost-effective security for hosts in SDN networks. It 

addresses fundamental security components, including 

confidentiality, authentication, and data integrity. The data 

transfer process between the sender and receiver hosts is 

described as follows: 

 

a. To create trust, a host must authenticate the relevant 

device before sending or receiving data to or from an 

adjacent host. The sending and receiving hosts will execute 

an ECDH-based authentication key agreement protocol to 

authenticate mutually. 

b. For the ECDH process, host_1 and host_2 generate their’ 

private keys such that Host1’s private key is Prv_H1 and 

Host_2’s private key is Prv_H2. 

c. The receiving host must ensure that the data received has 

not been altered during transmission once the mutual 

authentication has been established. Similarly, data must be 

protected from eavesdroppers and Man in the Middle 

(MiTM) during transmission. End-to-end encryption is 

typically used to protect data from these types of assaults.  
 

 
Fig. 3. Proposed Lightweight Mutual Authentication Process 

d. Encryption is employed during the key exchange stages, 

enabling secure end-to-end encryption between the two 

constrained SDN hosts. The keys used in this procedure are 

public keys such as embedded network keys (Net_k = 

Network_id + Public_Key), which are the same for one 

network only. 

 The data flow of ECDH-based mutual authentication is 

shown in Figure 3, where the notations used in the proposed 

technique are shown and elaborated upon in Table 1. 
 

TABLE 1 

NOTATIONS IN THE PROPOSED SCHEME 
Notations Description Generator 

Size 

Key pair 

Size 

 Host_1 message 64*d 128*d 

 Host_2 message 64*d 128*d 

 Public key  64 128 

 Private Key of 

Host_1  
64 128 

 Private Key of 

Host_2 
64 128 

 Unique Network key 32 64 

 Generator message 

by Host_1 
64 128 

 Generator message 

of Host_2  
64 128 

 Authentication 

Frame string 
128*d 256*d 

|  Authentication 

acknowledge Frame 

string 

128*d 256*d 

 The hash function 

for Encryption 
64*c 128c 

 Inverse Hash for 

decryption 
64*c 128c 

 Sender encrypted 

data block 
64*d 128*d 

 Receiver encrypted 

data block 
64*d 128*d 

Note: d is the number of data block characters. c is the number of 

ASCII characters 

 
Data transmission and authentication steps are stated 

below: 
1. Host 1 sends the message,  , encrypted through 

the private key of host 1. 

2. Host 2 receives the message, makes knowledge of 

, adds 1 with the message,  and sends 

a reply of . 

3. Host 1 has both privates at this stage. It now encrypts and 

sends an authentication frame, , which is 

encrypted using both private keys. 

4. Host 2 receives and decrypts the message using , 

adds , reads , and sends an 

authentication acknowledgement frame, | . 

5. After a successful acknowledgement frame, Host 1 

encrypts and sends a real message  using hash  

function  The encrypted block is now . 

6. Host 2 receives the encrypted block, , 

decrypts it,  through  and sends 

 as completion of this session. 

 

F). Experimental Setup 

The protocol was tested on a Dell Inspiron 5402 with an 

11th Gen Intel® Core™ i7-1165G7 @ 2.8GHz processor 

and 16GB RAM, running Ubuntu 18.04, Python 3.8, 

Mininet, and Ryu 4.12. Three SDN topologies—single, 

linear, and tree—were modelled. Performance evaluation 
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included encryption/decryption times for varying text file 

sizes. The gmpy2 library (version 2.2.0) with mini-GMP 

was employed to optimize cryptographic operations. 

 

IV RESULTS AND DISCUSSION 

This section presents our findings on securing 

communication between the data plane and the control layer 

using the Elliptic Curve25519. 

 

A). Reference Table 

The Reference Table lists ASCII characters for message 

encryption, with each character mapped to a unique point on 

the elliptic curve. These curve points are pre-calculated to 

minimize runtime computation, unlike the secret key (SK). 

Table II includes all 128 ASCII characters, such as 

uppercase and lowercase English letters, digits (0–9), 

punctuation marks, and control characters (e.g., carriage 

return and line feed). 

Each character is associated with a large random prime 

integer, which serves as a generator point (G) on the curve. 

These points are derived using scalar multiplication from a 

set generator value, which can vary depending on network 

settings, a public key, or periodic updates. The generator 

number for each ASCII character is calculated using a large 

random prime integer. This is essential for determining the 

curve's specific (x, y) coordinates, starting from G with x = 

9 and y = 6248, under the modulus 1019532643. Table 2 

provides data on cryptographic operations, including private 

key generation and elliptic curve point coordinates. It 

includes columns for iteration numbers, ASCII values, and 

the x and y coordinates of the curve points. The randomness 

in the data shows that the cryptographic processes were 

carried out securely and unpredictably. This randomness is 

critical for security, as any patterns in key generation or 

curve points could be exploited by attackers, making the 

system vulnerable. 

 

B). Avalanche Effect 

The avalanche effect refers to the time taken to encrypt 

and decrypt data blocks and the changes in bit patterns 

before and after encryption. Fig. 4 shows a scatter plot with 

ASCII values on the x-axis and PDF values on the y-axis. 

The data points cluster around low PDF values, indicating 

uniformity, unpredictability, equal probability, and 

randomness in the data across the ASCII range. The graph 

shows a near-normal distribution, where each byte has an 

equal chance of occurring. This uniformity is crucial in 

encrypted data, as it prevents patterns that attackers could 

exploit. 

 

C). Computational Performance of Encryption and 

Decryption Time 

This section highlights the computational performance of 

the Elliptic Curve25519 algorithm for encrypting and 

decrypting text files of various sizes with different mod(p) 

values. Table III shows that encryption time increases with 

file size and varies across different mod(p) values. For 

instance, encrypting a 106MB file takes between  

375.1931µs (mod(p) = 18) and 638.905µs (mod(p) = 108). 

Decryption times also differ and do not always match 

encryption times, with the same 106MB file taking between 

348.4432µs (mod(p) = 138) and 774.9815µs (mod(p) = 

108), as shown in Figure 5. 

 

D). Energy Consumption for Encryption and Decryption 

 This section presents the energy consumption during 

encryption and decryption for various input values, as Table 

IV depicts. The data reveals that energy usage increases 

with file size and longer cryptographic keys. Larger files 

and longer bit-length keys require more computational 

power and time, leading to higher energy consumption. For 

example, Curve25519, with a 138-bit key, offers greater 

security but consumes more energy for encryption than 

shorter keys. CPU power usage, reflected in energy 

consumption, generally rises with file size and mod(p) 

values. For instance, encrypting an 11.804MB file at mod(p) 

138 uses 0.01207141 mJ/s, nearly double the 0.00651434 

mJ/s at mod(p) 18. However, the relationship between 

mod(p) values and computational time is inconsistent. 

Larger mod(p) values enhance security but require more 

time and energy.  

 

E). Throughput 

 Throughput measures how efficiently encryption operates 

without creating performance bottlenecks. In SDN, the 

controller must quickly respond to data plane events, and 

any delay can degrade performance. Table 5 and Figure 6 

show the throughput (in MBps) for various modulus bit 

lengths in Curve25519 operations. The 138-bit modulus 

achieves the highest throughput at 1224.43 MBps, offering 

the best balance between security and efficiency. In contrast, 

the 108-bit modulus has the lowest throughput at 984.24 

MBps due to more computationally intensive operations. 

Throughput also drops for larger and smaller bit lengths, 

with the 253-bit modulus at 1073.31 MBps and the 72-bit 

modulus at 1102.67 MBps. This indicates that bit lengths 

above 138 increase computational load without significant 

security gains, while shorter bit lengths may boost speed but 

weaken security. 

 

F). Comparison of Throughput Results Across Different 

Algorithms  

 Figure 6 shows that Curve25519, with a 138-bit modulus, 

achieves the highest throughput at 1224.43 MBps, while 

RSA has the lowest at 33.52 MBps. The hybrid AES + RSA 

algorithm consumes more memory despite its low 

throughput. Curve25519's high throughput highlights its 

superior computational performance and fastest encryption 

times among the compared algorithms. Larger keys offer 

stronger security by requiring more computation to break 

the encryption. High throughput is crucial for optimal 

performance in high-speed networks like data centres and 

SDNs, which handle large data volumes. Curve25519 

consistently outperforms algorithms like those used by 

Ghaly and Abdullah [16], providing better performance in 

these environments. 
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Fig. 4. Uniformity in encrypted frames 

TABLE II 

REFERENCE TABLE RESULTS 

Ci ASCII Curve point (x) Curve point (y) 

1 \x00 149726810710315296553937312724301 24600957519473220769194735521699 

2 \x01 163174634229599258874334183193398 85130006238113929278204390999710 

3 \x02 780558091608003967686489978491883 72839741149170059733587718842234 

4 \x03 137801430053945588459731715413622 158648653400952353340375015959402 

5 \x04 173922987490323721209269691240318 101020736503289960385653001016359 

6 \x05 157320079731207275078488946584733 121136843483945486248145127716954 

7 \x06 156151758736574461367152050556143 109986854106365416332928871443683 

8 \x07 191958799062696965345711303387942 132703531872930875468252346052149 

9 \x08 8400387075025926071918878726382 45446136002036367512488286630135 

10 \t 121743830913937608230457439173814 72403069454975549149926810602113 

11 \n 197371859685415251780241189082531 55644391545652875760106396344570 

12 \x0b 43287691868693190418946629180498 48203497305583214396591157548082 

13 \x0c 1605531985446277787491027134457727 12493726006699614011029499893107 

14 \r 98866145589130550589368806894057 132327937137858778593395070483899 

15 \x0e 9071825616161890397453917942257 195010370010647726939696191003798 

16 \x0f 197771975788040659340258421333968 150828200468320200456797791741440 

17 \x10 159706020404494218147144263608179 107469284392674855392862852139385 

18 \x11 51569769450651939011773900111107 1275543270979720175632549870553 

19 \x12 34681501817146951098488246606362 117347760686959690165580149303838 

20 \x13 5964526546791930670855312116629 28351474552900309024095183355180 

21 \x14 24750915065416558059577050971126 118634230687814148512214991106033 

22 \x15 191925054553661560390367578452552 47297171615120066510971033239849 

23 \x16 48654887353283405174044353107653 189971426246448134522211951351040 

24 \x17 12987369635410323020661696141373 56370959838297157328022881778406 

25 \x18 58921890190933091573959672700960 131430224725100888345881575668680 

26 \x19 90844289010019972680798400225182 174417308842853290691526996724895 

27 \x1a 33422292471199233754465466573700 3992493444415362507375971279785 

28 \x1b 819393018769986793912755029787 186589913907986804354355941385297 

29 \x1c 16828623595101960755138331981848 194730759428046342543014793804 

30 \x1d 43754598955246394193836544665671 157067047071810528446825274677245 

31 \x1e 135551855283630705269492082093937 168102183784710518283377434124348 

32 \x1f 169834897400631511353146427474768 13517088884723521426700603369916 

33  67366257666644977822771863279316 12756379734990538064447403923278 

34 ! 1890153007922555264921718603 137838611113022894684741228810054 

35 " 192928265730552011736012122413142 84764903331782183678801377123774 

36 # 109844769974466109803877548361161 109407167209614069729454097758486 

37 $ 18311938370555316803776127250489 30606541599324377379447354480753 

38 % 153015475417273965582569868444936 28011654104320990542643794927009 

39 & 55048963593969599965163775948594 153617908701962226084569434909194 

40 " 165825161646636817757748097178322 359174189846693826053564977105581 

41 ( 150867669022016994007908950114126 28246445392313803021013769527197 

42 ) 163098789831733149520901723958754 14112116185099818521028844627014 

43 * 8069656439222140138900532800081 175941373947063280950157049086165 

44 + 174131584438625841897229171361424 156877929374343254571461590487940 

45 , 139189422720162185628505107465436 36076575012238035568208634535353 

46 - 105275389736211994004716149622018 66489180054101744788362967225974 

47 . 88102741523736263776853556938104 121204768434919897842262997584153 

48 / 15094530751156508767749357961716 4256256178318410073087145156241 

49 0 19665573300053478380044888782393 74235560923948052540267765007707 

50 1 20518402432411406354108180054620 71702364481054182937196396316535 
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51 2 177509877541323754009262777497781 93913153114224778021042901992043 

52 3 67270278397563451889975454207557 128525217027178677066250961415349 

53 4 61601395650627617163998757183891 190393509614190102170780004198446 

54 5 85223808028520395349272524121401 129662053273846207206224981909083 

55 6 22873118291058051063228939523954 116313090570426320851072204819663 

56 7 69476060406227291017501083516142 25833045339160927227760846401432 

57 8 5346603525403728622223192329742 14340888483576693798223267923907 

58 9 182726681379808148862289393529311 171282290328837196829488212123894 

59 : 107599524645755463795155863770315 157534235571666312725026848591073 

60 ; 112060649054870949938405367040014 22866415025676792799644108987775 

61 < 110069068060128478094851261088124 23226356669582304996442750285034 

62 = 94648842675991353118796965944811 138517205562071362960226437824565 

63 > 74935792642933298997998359868013 122262367430031813451562427079254 

64 ? 186547804817864498376832230696176 73965414845807207181768267176051 

65 @ 25447667958600840488721935076978 14152845921732743401774474241639 

66 A 190030360289311768509092526491925 156480713533070104902867091671716 

67 B 120793742729179040680462351806730 58448003460249953044462939394235 

68 C 355900944747607790509003350995723 180374969813254870853114806192967 

69 D 158193822959635885956072885135849 12834920660988076497852092205056 

70 E 29442954241562060281671061401125 102647578816308278544643697662843 

71 F 167779624595535581617587035526309 75428078360571754011246137627752 

72 G 163036966066320695551119895927071 140416728808897714731241264758581 

73 H 77287431836257600783818615663859 182397745792442612186859658857506 

74 I 108686101027758476932464390592521 7247780024318848925331871461058 

75 J 102331607654068877124711323416043 27548070178070857177285783050491 

76 K 37649063438995812033282888101506 8676226898966166863236575493204 

77 L 128876816620018786723049343831133 45054404728556752109167082660893 

78 M 164857361653411862953209498478471 132517706595580004936491831506744 

79 N 125461943118669953593211954318781 14700275254570640087321604268291 

80 O 7009281048565051667880348070113 26432586399622891061185448632822 

81 P 99713854957795943700974698049417 153829432406835011731703224913931 

82 Q 14481150461500860169884091078736 161319534873142692265736012126260 

83 R 24190514050144509882908182786964 69503727540034617742601551359424 

84 S 165863255567946723867583381511093 192306387060460792280187761246352 

85 T 171024704622051136504113568735294 96334538737065967688644328597686 

86 U 119237079229441536917595561683547 44792649499058175745316344191302 

87 V 20296176349580042293351379143355 10735812669345783224208082070166 

88 W 73851923249152221564684885048947 169673183445614345241076592647379 

89 X 42404110729088076738834892855727 165193520080956151169273085540214 

90 Y 46716303657442930319591842731896 129576732878270970737326467007253 

91 Z 142155738567240393113660431381586 146354843602324778212647078704776 

92 [ 135670151295696880609032601466280 162897270552877489690891329239163 

93 \\ 34516693003651721285338558617494 76226152132985243346402217357065 

94 ] 12828799314404994855106002747104 35800368635721308244532557541672 

95 ^ 115555074461536010570004985062981 178697204763462838897319226170038 

96 _ 34798310765417988065618919219649 58414861312588046947029245178854 

97 ` 40311917456801293571876398123097 608582384359726646440535055977933 

98 A 25201534919257264972352785531958 156943284483372127078888283435943 

99 B 7853383294300904418699292881578 94966530060641782308769405025518 

100 C 14257342686283904597888711491791 45202597864762652025089240987424 

101 D 38079703381696206275196224663486 58400685412852677670706755377545 

102 E 45754318113363907213290807399706 162804139376036548434952246241157 

103 F 54603626980736375626574917973966 13452747470170595478748680068925 

104 G 88310300150614603403428840866155 32061354555739246906426728504402 

105 H 110324834114529365338627179220579 56350336757626433679739085552294 

106 I 114962103403635324894198774726010 52106929978961837597359788332568 

107 J 178352557396510142592676825983891 59328012611119213963933924806248 

108 K 136893011504697995122275622579664 143415225557196245248243287418171 

109 L 25644472604057487620160279983372 153746726294407072170519780611947 

110 M 76284094693932509757161992494670 161479730146468807420454834406518 

111 N 170958508014520504665129973870710 17147802630023397634734007394712 

112 O 121196246606032260496084437330837 79058571393105006032715524873461 

113 P 195168383030345801074816170176780 145951193110984762837294127256437 

114 Q 186398058951962845660831462230733 155837808768653032308876190617550 

115 R 174194187340190280319970993056211 114683818833633285896732555053990 

116 S 109208176658095235959426144532991 136940612168538418999112306803345 

117 t 186210701203574451034199896482324 29708949802675601753411873075099 

118 u 53422078656993150928661280403664 151708204674122501091116616968566 

119 v 16273862062814979909180619891943 7944715892388243628941844281573 

120 w 91023698295672401601788723116128 20288898129341375329081035179403 

121 x 139727684514397351197336984785237 193624016139554199783631283412203 

122 y 194505428411659469405109674142988 125107523856880602179462363678891 

123 z 116992063625517654738613317717161 82003517206186342382599394505019 

124 { 60294121170902891455939443181336 87038905202294191487610086311196 

125 | 2535734540927065882169831281213 153325678348891734881602883923566 

126 } 130082119544515292709886022837111 150908601307678423067909547975790 

127 ~ 11387995585517660791168964790177 101159741031841232682625855654540 

128       \x7f 178929108429204537220187123714203 83115428262923441662558170926958 
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G). Securing Data 

Safeguarding sensitive data is very crucial with the evolving 

cybersecurity   threats. One of the most robust and efficient 

methods of securing data, especially in SDN networks, 

requires a reliable algorithm, which ECC is one which offer 

strong encryption while minimizing computational 

overhead. The elliptic curve 25519 has exceptional security 

properties and performance characteristics compared to the 

various ECC curves. Implementing elliptic curve25519 to 

secure data in SDN requires striking the right balance 

between security and computational efficiency. Analysis, as 

presented in Table V and Fig. 7, reveals that adopting a 138-

bit mod(p) value with curve25519 balances robust 

encryption and efficient computation. The transmission of 

files encrypted with a 138-bit mod(p) value of the ECC 

curve25519 occurs through the SDN network using the Ryu 

controller with three topologies: single, linear, and tree. 

Table 6 presents the transmission times (milliseconds) for 

encrypted text files across network topologies. 

TABLE III 

COMPUTATIONAL TIME PERFORMANCE OF ENCRYPTION AND ENCRYPTION 

Text file P-value Bit Size Encryption Time Decryption Time 

915KB 137849 18 28.17 17.33 

5171003929967 43 24.83 15.50 

3044861653679985063343 72 13.71 14.48 

198211423230930754013084525763697 108 12.85 13.07 

276602624281642239937218680557139826668747 138 15.07 14.97 

1447401115466452442794637312608598848160326

3447650325797860494125407373907997 

253 15.16 16.67 

5.384MB 137849 18 30.25 35.12 

5171003929967 43 29.10 29.22 

3044861653679985063343 72 25.92 49.47 

198211423230930754013084525763697 108 30.87 30.21 

276602624281642239937218680557139826668747 138 29.12 27.24 

1447401115466452442794637312608598848160326

3447650325797860494125407373907997 

253 28.77 31.56 

11.804MB 137849 18 65.14 64.18 

5171003929967 43 71.99 66.51 

3044861653679985063343 72 70.03 66.29 

198211423230930754013084525763697 108 84.37 62.67 

276602624281642239937218680557139826668747 138 120.71 76.51 

1447401115466452442794637312608598848160326

344765032579786049412540373907997 

253 57.20 58.05 

35.350MB 137849 18 229.99 334.31 

5171003929967 43 241.77 206.49 

3044861653679985063343 72 206.49 234.83 

198211423230930754013084525763697 108 160.30 172.52 

276602624281642239937218680557139826668747 138 171.81 230.41 

1447401115466452442794637312608598848160326

344765032579786049412540373907997 

253 245.98 228.07 

 

59.809MB 137849 18 360.77 333.67 

5171003929967 43 346.11 349.67 

3044861653679985063343 72 410.10 303.10 

198211423230930754013084525763697 108 405.74 410.98 

276602624281642239937218680557139826668747 138 319.92 472.83 

1447401115466452442794637312608598848160326

344765032579786049412540373907997 

253 245.65 316.53 

106MB 137849 18 375.19 383.95 

5171003929967 43 440.82 402.22 

3044861653679985063343 72 438.37 459.07 

198211423230930754013084525763697 108 638.90 774.98 

276602624281642239937218680557139826668747 138 417.70 348.44 

1447401115466452442794637312608598848160326

344765032579786049412540373907997 

253 632.83 654.76 
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Fig. 5. Graphical Analysis of Encryption Computational Time Performance  

 

TABLE IV 

ENERGY CONSUMPTION OF ECC CURVE25519 FOR ENCRYPTION AND DECRYPTION 

Text File P-value Bit 

Size 

Encryption Energy Decryption Energy 

915KB 

137849 
18 0.0028 0.0017 

5171003929967 
43 0.0025 0.0015 

3044861653679985063343 
72 0.0014 0.0014 

198211423230930754013084525763697 
108 0.0013 0.0013 

276602624281642239937218680557139826668747 
138 0.0015 0.0015 

144740111546645244279463731260859884816032

63447650325797860494125407373907997 253 0.0015 0.0017 

5.384MB 

137849 
18 0.0030 0.0035 

5171003929967 
43 0.0029 0.0029 

3044861653679985063343 72 0.0026 0.0049 

198211423230930754013084525763697 
108 0.0031 0.0030 

276602624281642239937218680557139826668747 
138 0.0029 0.0027 

144740111546645244279463731260859884816032

63447650325797860494125407373907997 253 0.0029 0.0032 

 

 

 

 

 

 

11.804MB 

137849 
18 0.0065 0.0064 

5171003929967 
43 0.0072 0.0067 

3044861653679985063343 
72 0.0070 0.0066 

198211423230930754013084525763697 
108 0.0084 0.0063 

276602624281642239937218680557139826668747 
138 0.0121 0.0077 

144740111546645244279463731260859884816032

6344765032579786049412540373907997 253 0.0057 

 

0.0058 

35.350MB 

137849 
18 0.0230 0.0334 

5171003929967 
43 0.0242 0.0206 

3044861653679985063343 
72 0.0235 0.0160 

198211423230930754013084525763697 
108 0.0164 0.0173 

276602624281642239937218680557139826668747 
138 0.0172 0.0230 

144740111546645244279463731260859884816032

6344765032579786049412540373907997 
253 0.0246 0.0228 

 

 

 

 

 

 

 

59.809MB 

137849 
18 0.0361 0.0334 

5171003929967 
43 0.0346 0.0350 

3044861653679985063343 
72 0.0410 0.0303 

198211423230930754013084525763697 
108 0.0406 0.0411 

276602624281642239937218680557139826668747 
138 0.0320 0.0473 

144740111546645244279463731260859884816032

6344765032579786049412540373907997 253 0.0246 0.0317 

106MB 

137849 
18 0.0375 0.0384 

5171003929967 
43 0.0441 0.0402 

3044861653679985063343 
72 0.0439 0.0459 

198211423230930754013084525763697 
108 0.0639 0.0775 

276602624281642239937218680557139826668747 138 0.0418 0.0348 

144740111546645244279463731260859884816032

6344765032579786049412540373907997 253 0.0633 0.0655 
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TABLE V 

ELLIPTIC CURVE25519 THROUGHPUT 

 
18-bit Mod(p) 

Total Time (s) 

43-bit Mod(p) 

Total Time (s) 

72-bit Mod(p) 

Total Time (s) 

108-bit Mod(p) 

Total Time (s) 

138-bit Mod(p) 

Total Time (s) 

253-bit Mod(p) 

Total Time (s) 

915KB 28.14 24.83 13.71 12.85 15.07 15.16 

5.384MB 30.24 29.10 25.92 30.87 29.12 28.77 

11.804MB 65.14 71.99 70.03 84.37 120.71 57.20 

35.350MB 229.99 241.77 234.83 163.76 171.81 245.98 

59.809MB 360.77 346.11 410.10 405.74 319.92 245.65 

106MB 375.19 440.82 438.37 638.91 417.70 632.83 

Throughput 1207.41 1139.28 1102.67 984.24 1224.43 1073.31 

                       

 

 

 

 

Fig. 6. Comparison of Throughput Across Different Security Algorithms

Analysis, as presented in Table V and Figure 6, reveals 

that adopting a 138-bit mod(p) value with Curve25519 

balances robust encryption and efficient computation. The 

transmission of files encrypted with a 138-bit mod(p) value 

of the ECC Curve25519 occurs through the SDN network 

using the RYU controller with three topologies: single, 

linear, and tree. Table 6 presents the transmission times 

(milliseconds) for encrypted text files across network 

topologies.  
Table VI 

TRANSMISSION TIMES OF ENCRYPTED TEXT FILES OVER 

DIFFERENT NETWORK TOPOLOGIES 

Text Files Single 

Topology 

Linear 

Topology 

Tree 

Topology 

 

Text1 0.0036 0.0042 0.0099 

Text2 0.0052 0.0055 0.0156 

Text3 0.0053 0.0076 0.0205 

Text4 0.1013 0.1045 0.2450 

Text5 0.1115 0.1165 0.2250 

Text6 0.1301 0.1367 0.3540 

Total Time (s) 0.357 0.375 0.87 

 

Fig. 7 shows that it takes the least Time for a single 

topology to transmit encrypted files compared to other 

topologies, which implies that a single topology transmits 

encrypted files faster than other topologies. 

 

H). Analysis of Mitigating Attack Vectors 

 Integrating robust encryption and mutual authentication 

techniques poses a significant challenge for attackers trying 

to bypass security measures. Consequently, prevalent attack 

routes, such as Man-in-the-Middle (MiTM) attacks, packet 

injection, and unauthorised access attempts, are effectively 

mitigated, thereby enhancing the overall security posture of 

the SDN environment as detailed as follows: 

 
 

 

Fig. 8. Graphical Analysis of Transmission Times of Encrypted Text Files 

over Different Network Topologies 

 

1). Attack by Impersonators from Host 1 

 Assume an attacker has gained possession of H1. This 

means the attacker has access to the network key and the 

public keys. The attacker then replaces H1 with a counterfeit 

device, Fake_H1. Fake_H1 uses a random number generator 

to compute the private key of H1 and determine curve points 

before initiating communication with H2. H2 computes 

H1_Msg1 and returns H2_Msg2. However, for the 

impersonator (Fake_H1) to verify authenticity, they need to 

know |aF|. Since |aF| is embedded in the firmware, it is 

impossible for the impostor to obtain this value. 

 

2). Attack by Impersonators from Host 2 

 When the attacker obtains H2, they replace it with a fake 

device known as Fake_H2, and they are aware of all the 

previously mentioned parameters. Similarly, fake host gets 
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 from H1 and computes . The H2 then 

computes and returns  . Following the 

receipt of |aF| from H1, Fake_H2 will have to wait for the 

authentication acknowledgment frame from H1. In this case, 

the authentication procedure won't start in the absence of an 

authentication acknowledgment frame. The session key will 

expire since H1 will not be able to validate authentication 

and will not be able to send actual data to Fake_H2 because 

the authentication acknowledgment frame is not available. It 

demonstrates the resilience of our approach against 

impersonation attacks. 

 

3). Man-in-the-Middle (MiTM) Attack 

 The attacker continuously watches the transmission 

channel for messages sent back and forth between H1 and 

H2. With time, MiTM can comprehend and imitate the data 

that is transmitted. Likewise, data spoofing allows for the 

analysis of H1 and H2 messages over an extended period, 

which allows for the prediction of keys and the discovery of 

|authentication Frame string| and |acknowledge frame string|. 

However, authentication frames are encrypted when end-to-

end encryption is used. MiTM finds it very challenging to 

decrypt and analyze the sent data because of the elliptic 

curve-based end-to-end encryption. Moreover, the encrypted 

data block's 1-bit mutation will result in points at infinity. 

Consequently, in the event of a single-bit mutation, H2 will 

not calculate points at infinity and the entire data block will 

produce null values. 

 

4). Device Anonymity and Privacy 

 Once an attacker gains possession of a host controller, 

they attempt to retrieve data from a certain host. Even with 

complete authorization via H1 or H2, the impostor will not 

be able to extract the data or status of other devices since the 

hosts have a very particular communication pattern. Because 

of the way the plan is set up, H1 will only ever meet H2 once 

while H1 and H2 will need to mutually re-authenticate once 

the session terminates. Additionally, without knowledge of 

H1 and H2's private keys, the network administrator is 

unable to decrypt specific transmission data blocks. All hosts 

in the network have high privacy and anonymity as a result. 
 

5). Dos / Replay Attack 

 The compromised host must first be connected to the 

network by the attacker to use DoS or replay assaults.  To 

compute the precise amount for each devoted session, an 

attacker must also know a set of parameters such as the 

network, public and private keys. This is a challenging and 

computationally demanding procedure. As a result, H1 or H2 

will compute curve points at infinity, preventing the ECDH 

process from continuing. Replay attacks work similarly, with 

each step’s message pattern changing. The session will stop, 

and the message will be refused if the attacker repeatedly 

transmits the same message patterns since the relevant 

device will calculate curve points at infinity. 

 

V  CONCLUSION 

This study introduced SLECP-SDN, a novel protocol 

designed to secure communication between SDN's data and 

control planes using the Elliptic Curve25519 algorithm. The 

protocol integrates /lightweight encryption and robust 

authentication to effectively address vulnerabilities in the 

SDN Southbound Interface (SBI). The results demonstrate 

the efficacy of SLECP-SDN in achieving high throughput, 

energy efficiency, and enhanced resistance to security 

threats, such as impersonation, replay, man-in-the-middle, 

device anonymity and packet injection attacks. By utilizing 

pre-computed curve points and optimizing cryptographic 

operations, the protocol offers a practical solution that 

balances security and performance, making it highly suitable 

for resource-constrained environments. The implementation 

of Curve25519 establishes a new benchmark for securing 

SDN environments, ensuring data confidentiality, integrity, 

and availability without compromising network efficiency. 
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