

Abstract— This study presents a novel protocol, the Secure and

Lightweight Communication Protocol in Software-Defined Networks

(SLECP-SDN), leveraging Elliptic Curve25519 to enhance security and

efficiency in SDN Southbound Interface (SBI) communication. Unlike

the existing cryptographic solutions, SLECP-SDN integrates

computational efficiency, robust security, and energy optimization to

address vulnerabilities in SBI. Using a Lightweight Elliptic Curve

Diffie-Hellman (ECDH) approach, the proposed protocol ensures

secure exchange and session establishment while mitigating critical

security threats, including impersonation, replay, packet injection, and

Man-in-the-middle (MITM) attacks. To evaluate the system

performance, the Contiki Cooja Simulator was employed to model

SDN communication among 20 hosts, incorporating various mod(p)

values to assess encryption/decryption performance, energy

consumption, and throughput. The Automated Validation of Internet

Security Protocols and Applications (AVISPA) tool was also utilized

for security verification. Using the High-Level Protocol Specification

Language (HLPSL), AVISPA tested the mutual authentication

protocol against three attack models: On-the-Fly Model-Checker

(OFMC), Constraint Logic-based Attack Searcher (CL-AtSe), and

Tree Automata-based Protocol Analyzer (TA4SP). The results

demonstrated that SLECP-SDN achieves a throughput of 1224.43

MBps at a 138-bit modulus, outperforming RSA and hybrid AES+RSA

algorithms. Single topology configurations delivered the fastest

transmission times for encrypted files. These findings validate the

effectiveness of SLECP-SDN in maintaining high-security standards

without compromising network performance, making it a viable option

for modern SDNs.

Index Terms: Data Security, Elliptic Curve25519, Software-

defined network, Southbound Interface, Throughput,

Topology.

I. INTRODUCTION
oftware-defined network (SDN) has emerged as a

transformative technology that decouples the control and

Manuscript received August 31, 2024; revised February 13, 2025.

This work was supported and funded by Universiti Putra Malaysia

(UPM).

Aladesote Olomi Isaiah is a Ph.D. student in the Department of

Computer Communication and Networks, Faculty of Computer Science and

Information Technology, Universiti Putra Malaysia (UPM), Serdang 43400,

Malaysia (phone: +2348030657156; e-mail: gs57427@student.upm.edu.my

and isaaladesote@fedpolel.edu,ng)

Azizol Abdullah is an Associate Professor in the Department of

Computer Communication and Networks, Faculty of Computer Science and

Information Technology, Universiti Putra Malaysia (UPM), Serdang 43400,

Malaysia (e-mail: azizol@upm.edu.my)

Normalia Samian is a Senior Lecturer in the Department of Computer

Communication and Networks, Faculty of Computer Science and

Information Technology, Universiti Putra Malaysia (UPM), Serdang 43400,

Malaysia (e-mail: normalia@upm.edu.my)

Zurina Mohd. Hanapi is an Associate Professor in the Department of

Computer Communication and Networks, Faculty of Computer Science and

Information Technology, Universiti Putra Malaysia (UPM), Serdang 43400,

Malaysia (e-mail: zurinamh@upm.edu.my)

data planes, enabling centralized network management and

enhanced flexibility [1], [2]. Unlike traditional networks,

control logic and data forwarding are tightly integrated [3],

[4]. SDN separates these functions, allowing for

programmable and scalable network architectures [5]–[7].

This integration hampers network management and restricts

adaptability. The paradigm shifts facilitate rapid innovation

in network management and optimization, but they also

introduce new security challenges, particularly at the

Southbound Interface (SBI).

SDN relies on four key interfaces: Southbound,

Northbound, Eastbound, and Westbound [8], [9]. The

Southbound API is essential, facilitating communication

between the control and data planes [10]. Northbound APIs

offer a standardized interface for application development

by providing critical insights into the underlying devices

[11]. Eastbound APIs manage communication between

distributed controllers, while Westbound APIs integrate

legacy network devices with the SDN controller. These

interfaces enable SDN to deliver more flexible and

manageable network operations.

The SBI, a critical component of SDN, facilitates

communication between the control plane and data plane

devices, such as switches and routers. While this interface is

essential for SDN’s functionality, it is highly vulnerable to

various attacks, including unauthorized access, man-in-the-

middle (MiTM), packet injection, and impersonation

attacks. Securing the SBI is crucial to ensuring the integrity,

confidentiality, and availability of SDN operations [12]–

[14].

Existing approaches to securing SBI communication rely

on cryptographic techniques such as RSA, AES, or hybrid

encryption methods. However, these methods often have

significant computational and energy costs, making them

unsuitable for resource-constrained environments.

Moreover, some solutions lack robust mechanisms for

mutual authentication, leaving networks susceptible to

impersonation and replay attacks. These limitations

necessitate the development of a more secure and efficient

protocol tailored to SDN’s unique requirements.

This study proposes the Secure and Lightweight

Communication Protocol in Software-Defined Networks

(SLECP-SDN) to address these challenges. SLECP-SDN

leverages the Elliptic Curve25519 algorithm to provide a

high-security, low-overhead solution for securing the SBI.

Unlike the traditional methods, the protocol incorporates a

lightweight mutual authentication mechanism, ensuring trust

between communicating entities and mitigating key security

threats. Additionally, SLECP-SDN employs efficient

encryption and decryption processes, enabling secure data

SLECP-SDN: A Secure and Lightweight

Communication Protocol in a Software-Defined

Network (SDN)

Aladesote Olomi Isaiah, Member, IAENG, Azizol Abdullah, Member, IAENG, Normalia Samian and

Zurina Mohd. Hanapi

S

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

__

mailto:gs57427@student.upm.edu.my
mailto:isaaladesote@fedpolel.edu,ng
mailto:azizol@upm.edu.my)
mailto:norma-lia@upm.edu.my
mailto:norma-lia@upm.edu.my
mailto:zurinamh@upm.edu.my
mailto:zurinamh@upm.edu.my

exchange without compromising network performance. The

main contributions of the study are as follows:

1. Development of SLECP-SDN, a protocol that utilizes

Elliptic Curve25519 for securing SBI communication with

strong cryptographic guarantees.

2. Introduction of a mutual authentication mechanism that

mitigates various attacks, such as impersonation, MiTM,

replay, and packet injection attacks, thereby ensuring robust

device identity verification.

3. Performance evaluation of SLECP-SDN using

encryption and decryption times, energy consumption, and

throughput across various file sizes and modulus values.

4. Comparative analysis with traditional cryptographic

algorithms, demonstrating SLECP-SDN’s superior balance

of security and efficiency.

The remainder of this paper is organized as follows:

Section 2 reviews related work on SBI security. Section 3

presents the proposed SLECP-SDN methodology. Section 4

also introduces the experimental setup and evaluates the

results. Section 5 compares SLECP-SDN’s performance

with existing methods. Finally, section 6 concludes the

study and suggests directions for future research.

II. LITERATURE REVIEW

Securing communication in SBI in SDN is a critical

challenge, as malicious switches pose significant threats by

disobeying rules, colluding with other compromised entities,

or falsifying information. Recent research has introduced

defense mechanisms, such as encryption and authentication

techniques, to address these vulnerabilities. These

approaches enhance security and preserve network integrity

by leveraging SDN's programmability and centralized

control. This review explores these mechanisms,

highlighting their effectiveness (potential) to mitigate threats

and safeguard SDN environments.

Chao et al. [15] synthesized realistic network topologies

and flow entries derived from real-world datasets to evaluate

the techniques on virtual SDN networks created using

Mininet. While the active probing technique effectively

reduced the required number of test packets and achieved

practical fault localization times, the techniques involving

statistics checking and packet obfuscation require further

evaluation and optimization to address their inherent

weaknesses and challenges.

Ghaly and Abdullah [16] addressed the security of data

transmission in software-defined networks (SDNs) by

implementing robust encryption algorithms to mitigate

potential security vulnerabilities arising from the separation

of control and data planes, which can compromise data

integrity and confidentiality. It proposes a hybrid encryption

approach combining the Advanced Encryption Standard

(AES) symmetric-key algorithm and the Rivest–Shamir–

Adleman (RSA) asymmetric-key algorithm. The approach

encrypts the original data using AES with a 256-bit key

length and then encrypts the AES key using RSA with a

4096-bit public key. The hybrid approach demonstrates

better encryption time and throughput compared to RSA

alone. Furthermore, the single topology scenario exhibits the

lowest transmission time compared to linear and tree

topologies when sending encrypted files through the SDN

network.

Similarly, Alemami et al. [17] addressed the critical issue

of data security in cloud computing, where resource sharing

among clients poses risks like data theft and leakage. To

mitigate these risks, the study investigates encryption

techniques, including AES, DES, Blowfish, RSA, and

IDEA, which transform data into cipher text. The

comparative analysis evaluates these algorithms based on

security, encipherment capacity, memory usage, and

encryption speed. The results show that AES and Blowfish

are the most efficient based on speed and memory usage,

while RSA and IDEA are less secure.

Varadharajan and Tupakula [18] proposed a two-pronged

security architecture to mitigate the threats posed by

compromised end hosts in SDNs. This architecture aims to

detect and prevent attacks targeting both the control plane

(SDN controller) and the data plane (network switches)

before they can reach and impact these critical components.

The first part is the Security Management Application

(SMA), a software component in the SDN controller. The

SMA specifies and evaluates security policies leveraging the

controller's global network visibility, while the second part

consists of the Switch Security Components (SSCs)

implemented within the network switches. The SSCs

enforce the security policies the SMA defines by performing

functions like flow mapping, state validation of end hosts,

traffic inspection, and flow encryption if required.

Al-Hamdani and Bhaya [19] proposed a new key

management scheme to address the challenges of securing

communication in SDN environments due to the separation

of control and data planes. This scheme ensures the secure

distribution of RSA certificate keys without compromising

network performance. It utilizes the RSA algorithm for key

generation, a hierarchical system for key distribution, and a

novel approach to prevent unauthorized access to keys.

However, the proposed scheme relies heavily on the central

controller for key generation and management, which could

become a single point of failure or a bottleneck in larger

networks.

To address the vulnerabilities from unencrypted

communication channels, which allow eavesdropping and

tampering between controllers and switches in OpenFlow-

enabled devices, Gray et al. [20] introduced a new

authentication mechanism using device fingerprinting to

secure SDN environments. Experimental results show that

this approach prevents unauthorized access and ensures

network security. However, attackers can exploit this by

mimicking static features, deceiving the SDN controller into

recognizing malicious entities as legitimate switches.

Mockingly examining handshake messages between the

controller and switches enhanced the quality of secure

sessions in the SDN data plane. This approach ensures

secure communication but increases overhead, as the

controller must scrutinize every message sent and received.

This additional scrutiny, necessary for maintaining

communication integrity and security, increases processing

demands on the controller and may affect overall network

performance and efficiency.

Ranjbar et al. [21] enhanced the quality of secure sessions

in the SDN data plane by meticulously examining

handshake messages between the controller and the

switches, which enhanced the quality of secure sessions.

The study ensures secure communication but increases

overhead, as the controller must scrutinize every message

sent and received.

Yigit et al. [22] proposed the secure distribution and

management of cryptographic keys in SDN to prevent

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

__

unauthorized access and maintain high performance. It uses

asymmetric key generation and distribution using RSA

algorithms by generating keys at a central controller and

distributing them securely through SSL channels. The

experimental results using an SDN testbed show that the

proposed cryptography key management approach

effectively secures SDN environments. However, the CPU-

intensive nature of the encryption process could delay

regular switch operations, and the need to store keys at the

controller introduces a single point of failure.

Peng et al. [23] introduced QKDFlow, a solution that

combines quantum key distribution (QKD) with a one-time

pad (OTP) encryption algorithm to secure OpenFlow

protocol messages. This approach is designed to prevent

Man-in-the-Middle (MitM) attacks and enhance the secure

communication between the control and data planes in SDN.

Adhikari et al. [24] addressed the lack of mandatory

security measures like Transport Layer Security (TLS) in

the OpenFlow protocol, which makes the Southbound

Interface (SBI) vulnerable to MiTM attacks. They propose a

combination of Elliptic-curve Diffie-Hellman (ECDH) key

exchange and Advanced Encryption Standard (AES) 256

encryption to secure communication between the SDN

controller and switches. The study uses Bettercap with

SSLStrip to simulate MiTM attacks and validate the

effectiveness of the encryption approach. However, while

secure, the initial key exchange process depends on the

assumption that the public keys are exchanged without

interception.

The research presents the SAF-Secure Authentication

framework aiming to heighten security and optimize

services for entities within the SDN-IoT network. Utilizing

hashing algorithms (Keccak-256) and digital certificates

(Bliss-B), the study ensures the validity of entities. It

assesses the proposed architecture's performance by

considering computation overhead and resource utilization.

The SAF architecture demonstrates enhanced security

performance, improving the efficiency of message

encryption. However, there is a necessity for deeper

exploration into system constraints regarding authentication,

particularly focusing on computation overhead and resource

utilization [25]

The study in [26] addresses the lack of data plane

authentication, a vulnerability that can cause controller

malfunctions. Their proposed prototype, Mynah, effectively

mitigates this issue with only a 4.5% increase in

communication latency. Mynah introduces a novel

controller and switch architecture, making it the first

solution to tackle this problem.

 The literature review highlights several critical research

gaps in securing data planes in SDNs that need further

investigation. These include optimizing statistics checking

and packet obfuscation techniques, understanding the

performance impact of hybrid encryption methods, and

providing a tailored analysis of encryption techniques for

SDNs. Centralized key management schemes present risks

of single points of failure, and current authentication

mechanisms are susceptible to sophisticated impersonation

attacks. Enhanced security measures often increase

overhead, and processing demands, affecting network

efficiency, and the security of initial key exchanges relies on

potentially vulnerable assumptions.

Addressing these gaps is essential for developing more

effective and efficient security solutions for SDNs.

Introducing Elliptic Curve25519 [27] to secure

communication can address some of these gaps due to its

high performance and strong security with relatively low

computational overhead. Its robust cryptographic properties

make it highly resistant to attacks, including impersonation,

and it minimizes the additional overhead associated with

enhanced security measures. Curve25519 also supports

efficient key exchange management, further strengthening

the security of SDNs.

III METHODOLOGY

This study introduces the Secure and Lightweight

Communication Protocol for SDN (SLECP-SDN), designed

to secure communication between the data plane (DP) and

the control plane (CP). The proposed approach employs a

pre-computed curve points strategy, enhancing

computational efficiency and memory usage. It maintains

robust 192-bit security while using 128-bit encrypted keys.

The protocol uses Elliptic Curve25519 for efficient, high-

security encryption and key exchange, ensuring robust data

transfer protection within the SDN. Additionally, integrating

the GMP library boosted the performance of scalar

multiplication and reduced the cost of generating large

prime numbers. The study uses Elliptic Curve25519 for its

cryptographic strength and efficiency. Figure 1 presents the

secure communication flow of SLECP-SDN. SLECP-SDN

involves the following phases: key generation, key

exchange, encryption and decryption, simulation, and

mutual authentication.

 A). Key Generation

 Fig. 1. Secure Communication Flow in SLECP-SDN

In this phase, both the control plane (CP) and the data

plane (DP) dynamically generate private-public key pairs

using Elliptic Curve Cryptography (ECC). A secure

cryptographically strong pseudo-random number generator

(CSPRNG), implemented via Python's os.urandom(),

generates the private keys, while public keys are derived

through scalar multiplication of the private key and curve

base point G, as represented in equation [1]:

 (1)

Where P is the public key, K is the private key, and G is the base point. The

algorithm for scalar multiplication is detailed in Algorithm 1, which

ensures efficient point addition and doubling using modular arithmetic.

This curve, defined by the equation = + 486662

+ x mod (Montgomery, 1987), operates over a prime

finite field, ensuring strong encryption using modular

arithmetic, specifically:

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

__

 (2)

The curve's base point serves as the foundation for

generating all other points on the curve, which are crucial

for encryption and decryption processes. Each SDN device

is assigned unique elliptic curve points generated as part of

the encryption system.

Algorithm 1: Point Addition and Point Doubling

Input: Point X = ; Point Y =

Output: Point Z=

1. If X is the point at infinity

2. return Y

3. end If

4. If Y is the point at infinity

5. return X

6. end if

7. If = and 

8. return the point at infinity.

9. end if

10 If x  Y, calculate slope m

11. m =

12. else if x = y, calculate

13. m =

14. end if

15. calculate the coordinates of Z

16. = - -

17. = m -

18. End

Algorithm 1 outlines the process of scalar multiplication

(point addition and point doubling) on Elliptic Curve 25519

using modular arithmetic. It takes two input points, X and Y,

each with two coordinates, and produces an output point, Z.

Special cases are handled first: if either X or Y is at infinity,

the algorithm returns the other point, and if the x-

coordinates of X and Y are the same but their y-coordinates

differ, it returns the point at infinity. For other cases, the

slope m is calculated. If the points are different, the slope is

m = ; if they are the same (point doubling), the slope

is . Finally, the coordinates (x, y) of the output point Z

are calculated using - - and m -

respectively.

From Fig. 1, let the data plane be A and the control plane

be B. The private keys for A and B are represented as

and , respectively. The corresponding public keys for A

and B are given by:

 (3)

 (4)

Where G is a predefined generator point on the elliptic

curve.

B). Key Exchange Phase

The protocol employs the Elliptic Curve Diffie-Hellman

(ECDH) method to enable CP and DP to establish a shared

secret over an insecure channel. During the exchange,

Device A (DP1) sends its public key () to Device B

(CP1), which responds by sending its public key () to

Device A. In the shared secret exchange, A computes its

shared secret (s) using B's public key () and A's

private key (), as shown in equation (5). Similarly, B

calculates its shared secret (s) by using A's public key

() and B's private key (), as shown in equation (6).

Both calculations result in the same shared secret key,

enabling secure communication between A and B. This

protocol ensures that the DP and CP can derive a shared

secret, even over an insecure communication channel, as

depicted in Fig. 2.

 (5)

 (6)

These principles also apply to DP2 and CP2, ensuring

consistent exchange security. The public key is openly

shared, while the private key remains confidential.

Fig. 2. Sequence diagram for public key exchange in SLCEP-SDN

C). Encryption and Decryption

Once the shared key is established, it is used for

encryption and decryption. Encryption is performed as

follows:

 (7)

 (8)

Decryption reverses this process to recover the original

plaintext:

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

__

 (9)

 (10)

 The sender (DP) encrypts the plaintext using the shared

key, turning it into ciphertext, and then transmits it over the

network. Upon receiving the ciphertext, the recipient (CP)

uses the same shared key to decrypt it and recover the

original plaintext. This process ensures the confidentiality of

the communication, protecting the transmitted messages

from an unauthorized access.

D). Simulation and Authentication

 The system was modelled using Contiki’s Cooja

simulator, simulating SDN communication between 20

hosts. The protocol's robustness against attacks was verified

using the Automated Validation of Internet Security

Protocols and Applications (AVISPA) tool, employing

High-Level Protocol Specification Language (HLPSL). It

ensured resistance against attack models like On-the-Fly

Model-Checker (OFMC), Constraint Logic-based Attack

Searcher (CL-AtSe), and Tree Automata-based Protocol

Analyzer (TA4SP).

E). Proposed Mutual Authentication Technique

 This section details the key features of the proposed

approach. The technique aims to ensure optimal

performance in constrained networks while providing the

most cost-effective security for hosts in SDN networks. It

addresses fundamental security components, including

confidentiality, authentication, and data integrity. The data

transfer process between the sender and receiver hosts is

described as follows:

a. To create trust, a host must authenticate the relevant

device before sending or receiving data to or from an

adjacent host. The sending and receiving hosts will execute

an ECDH-based authentication key agreement protocol to

authenticate mutually.

b. For the ECDH process, host_1 and host_2 generate their’

private keys such that Host1’s private key is Prv_H1 and

Host_2’s private key is Prv_H2.

c. The receiving host must ensure that the data received has

not been altered during transmission once the mutual

authentication has been established. Similarly, data must be

protected from eavesdroppers and Man in the Middle

(MiTM) during transmission. End-to-end encryption is

typically used to protect data from these types of assaults.

Fig. 3. Proposed Lightweight Mutual Authentication Process

d. Encryption is employed during the key exchange stages,

enabling secure end-to-end encryption between the two

constrained SDN hosts. The keys used in this procedure are

public keys such as embedded network keys (Net_k =

Network_id + Public_Key), which are the same for one

network only.

 The data flow of ECDH-based mutual authentication is

shown in Figure 3, where the notations used in the proposed

technique are shown and elaborated upon in Table 1.

TABLE 1

NOTATIONS IN THE PROPOSED SCHEME
Notations Description Generator

Size

Key pair

Size

 Host_1 message 64*d 128*d

 Host_2 message 64*d 128*d

 Public key 64 128

 Private Key of

Host_1
64 128

 Private Key of

Host_2
64 128

 Unique Network key 32 64

 Generator message

by Host_1
64 128

 Generator message

of Host_2
64 128

 Authentication

Frame string
128*d 256*d

| Authentication

acknowledge Frame

string

128*d 256*d

 The hash function

for Encryption
64*c 128c

 Inverse Hash for

decryption
64*c 128c

 Sender encrypted

data block
64*d 128*d

 Receiver encrypted

data block
64*d 128*d

Note: d is the number of data block characters. c is the number of

ASCII characters

Data transmission and authentication steps are stated

below:
1. Host 1 sends the message, , encrypted through

the private key of host 1.

2. Host 2 receives the message, makes knowledge of

, adds 1 with the message, and sends

a reply of .

3. Host 1 has both privates at this stage. It now encrypts and

sends an authentication frame, , which is

encrypted using both private keys.

4. Host 2 receives and decrypts the message using ,

adds , reads , and sends an

authentication acknowledgement frame, | .

5. After a successful acknowledgement frame, Host 1

encrypts and sends a real message using hash

function The encrypted block is now .

6. Host 2 receives the encrypted block, ,

decrypts it, through and sends

 as completion of this session.

F). Experimental Setup

The protocol was tested on a Dell Inspiron 5402 with an

11th Gen Intel® Core™ i7-1165G7 @ 2.8GHz processor

and 16GB RAM, running Ubuntu 18.04, Python 3.8,

Mininet, and Ryu 4.12. Three SDN topologies—single,

linear, and tree—were modelled. Performance evaluation

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

__

included encryption/decryption times for varying text file

sizes. The gmpy2 library (version 2.2.0) with mini-GMP

was employed to optimize cryptographic operations.

IV RESULTS AND DISCUSSION

This section presents our findings on securing

communication between the data plane and the control layer

using the Elliptic Curve25519.

A). Reference Table

The Reference Table lists ASCII characters for message

encryption, with each character mapped to a unique point on

the elliptic curve. These curve points are pre-calculated to

minimize runtime computation, unlike the secret key (SK).

Table II includes all 128 ASCII characters, such as

uppercase and lowercase English letters, digits (0–9),

punctuation marks, and control characters (e.g., carriage

return and line feed).

Each character is associated with a large random prime

integer, which serves as a generator point (G) on the curve.

These points are derived using scalar multiplication from a

set generator value, which can vary depending on network

settings, a public key, or periodic updates. The generator

number for each ASCII character is calculated using a large

random prime integer. This is essential for determining the

curve's specific (x, y) coordinates, starting from G with x =

9 and y = 6248, under the modulus 1019532643. Table 2

provides data on cryptographic operations, including private

key generation and elliptic curve point coordinates. It

includes columns for iteration numbers, ASCII values, and

the x and y coordinates of the curve points. The randomness

in the data shows that the cryptographic processes were

carried out securely and unpredictably. This randomness is

critical for security, as any patterns in key generation or

curve points could be exploited by attackers, making the

system vulnerable.

B). Avalanche Effect

The avalanche effect refers to the time taken to encrypt

and decrypt data blocks and the changes in bit patterns

before and after encryption. Fig. 4 shows a scatter plot with

ASCII values on the x-axis and PDF values on the y-axis.

The data points cluster around low PDF values, indicating

uniformity, unpredictability, equal probability, and

randomness in the data across the ASCII range. The graph

shows a near-normal distribution, where each byte has an

equal chance of occurring. This uniformity is crucial in

encrypted data, as it prevents patterns that attackers could

exploit.

C). Computational Performance of Encryption and

Decryption Time

This section highlights the computational performance of

the Elliptic Curve25519 algorithm for encrypting and

decrypting text files of various sizes with different mod(p)

values. Table III shows that encryption time increases with

file size and varies across different mod(p) values. For

instance, encrypting a 106MB file takes between

375.1931µs (mod(p) = 18) and 638.905µs (mod(p) = 108).

Decryption times also differ and do not always match

encryption times, with the same 106MB file taking between

348.4432µs (mod(p) = 138) and 774.9815µs (mod(p) =

108), as shown in Figure 5.

D). Energy Consumption for Encryption and Decryption

 This section presents the energy consumption during

encryption and decryption for various input values, as Table

IV depicts. The data reveals that energy usage increases

with file size and longer cryptographic keys. Larger files

and longer bit-length keys require more computational

power and time, leading to higher energy consumption. For

example, Curve25519, with a 138-bit key, offers greater

security but consumes more energy for encryption than

shorter keys. CPU power usage, reflected in energy

consumption, generally rises with file size and mod(p)

values. For instance, encrypting an 11.804MB file at mod(p)

138 uses 0.01207141 mJ/s, nearly double the 0.00651434

mJ/s at mod(p) 18. However, the relationship between

mod(p) values and computational time is inconsistent.

Larger mod(p) values enhance security but require more

time and energy.

E). Throughput

 Throughput measures how efficiently encryption operates

without creating performance bottlenecks. In SDN, the

controller must quickly respond to data plane events, and

any delay can degrade performance. Table 5 and Figure 6

show the throughput (in MBps) for various modulus bit

lengths in Curve25519 operations. The 138-bit modulus

achieves the highest throughput at 1224.43 MBps, offering

the best balance between security and efficiency. In contrast,

the 108-bit modulus has the lowest throughput at 984.24

MBps due to more computationally intensive operations.

Throughput also drops for larger and smaller bit lengths,

with the 253-bit modulus at 1073.31 MBps and the 72-bit

modulus at 1102.67 MBps. This indicates that bit lengths

above 138 increase computational load without significant

security gains, while shorter bit lengths may boost speed but

weaken security.

F). Comparison of Throughput Results Across Different

Algorithms

 Figure 6 shows that Curve25519, with a 138-bit modulus,

achieves the highest throughput at 1224.43 MBps, while

RSA has the lowest at 33.52 MBps. The hybrid AES + RSA

algorithm consumes more memory despite its low

throughput. Curve25519's high throughput highlights its

superior computational performance and fastest encryption

times among the compared algorithms. Larger keys offer

stronger security by requiring more computation to break

the encryption. High throughput is crucial for optimal

performance in high-speed networks like data centres and

SDNs, which handle large data volumes. Curve25519

consistently outperforms algorithms like those used by

Ghaly and Abdullah [16], providing better performance in

these environments.

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

__

Fig. 4. Uniformity in encrypted frames

TABLE II

REFERENCE TABLE RESULTS

Ci ASCII Curve point (x) Curve point (y)

1 \x00 149726810710315296553937312724301 24600957519473220769194735521699

2 \x01 163174634229599258874334183193398 85130006238113929278204390999710

3 \x02 780558091608003967686489978491883 72839741149170059733587718842234

4 \x03 137801430053945588459731715413622 158648653400952353340375015959402

5 \x04 173922987490323721209269691240318 101020736503289960385653001016359

6 \x05 157320079731207275078488946584733 121136843483945486248145127716954

7 \x06 156151758736574461367152050556143 109986854106365416332928871443683

8 \x07 191958799062696965345711303387942 132703531872930875468252346052149

9 \x08 8400387075025926071918878726382 45446136002036367512488286630135

10 \t 121743830913937608230457439173814 72403069454975549149926810602113

11 \n 197371859685415251780241189082531 55644391545652875760106396344570

12 \x0b 43287691868693190418946629180498 48203497305583214396591157548082

13 \x0c 1605531985446277787491027134457727 12493726006699614011029499893107

14 \r 98866145589130550589368806894057 132327937137858778593395070483899

15 \x0e 9071825616161890397453917942257 195010370010647726939696191003798

16 \x0f 197771975788040659340258421333968 150828200468320200456797791741440

17 \x10 159706020404494218147144263608179 107469284392674855392862852139385

18 \x11 51569769450651939011773900111107 1275543270979720175632549870553

19 \x12 34681501817146951098488246606362 117347760686959690165580149303838

20 \x13 5964526546791930670855312116629 28351474552900309024095183355180

21 \x14 24750915065416558059577050971126 118634230687814148512214991106033

22 \x15 191925054553661560390367578452552 47297171615120066510971033239849

23 \x16 48654887353283405174044353107653 189971426246448134522211951351040

24 \x17 12987369635410323020661696141373 56370959838297157328022881778406

25 \x18 58921890190933091573959672700960 131430224725100888345881575668680

26 \x19 90844289010019972680798400225182 174417308842853290691526996724895

27 \x1a 33422292471199233754465466573700 3992493444415362507375971279785

28 \x1b 819393018769986793912755029787 186589913907986804354355941385297

29 \x1c 16828623595101960755138331981848 194730759428046342543014793804

30 \x1d 43754598955246394193836544665671 157067047071810528446825274677245

31 \x1e 135551855283630705269492082093937 168102183784710518283377434124348

32 \x1f 169834897400631511353146427474768 13517088884723521426700603369916

33 67366257666644977822771863279316 12756379734990538064447403923278

34 ! 1890153007922555264921718603 137838611113022894684741228810054

35 " 192928265730552011736012122413142 84764903331782183678801377123774

36 # 109844769974466109803877548361161 109407167209614069729454097758486

37 $ 18311938370555316803776127250489 30606541599324377379447354480753

38 % 153015475417273965582569868444936 28011654104320990542643794927009

39 & 55048963593969599965163775948594 153617908701962226084569434909194

40 " 165825161646636817757748097178322 359174189846693826053564977105581

41 (150867669022016994007908950114126 28246445392313803021013769527197

42) 163098789831733149520901723958754 14112116185099818521028844627014

43 * 8069656439222140138900532800081 175941373947063280950157049086165

44 + 174131584438625841897229171361424 156877929374343254571461590487940

45 , 139189422720162185628505107465436 36076575012238035568208634535353

46 - 105275389736211994004716149622018 66489180054101744788362967225974

47 . 88102741523736263776853556938104 121204768434919897842262997584153

48 / 15094530751156508767749357961716 4256256178318410073087145156241

49 0 19665573300053478380044888782393 74235560923948052540267765007707

50 1 20518402432411406354108180054620 71702364481054182937196396316535

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

__

51 2 177509877541323754009262777497781 93913153114224778021042901992043

52 3 67270278397563451889975454207557 128525217027178677066250961415349

53 4 61601395650627617163998757183891 190393509614190102170780004198446

54 5 85223808028520395349272524121401 129662053273846207206224981909083

55 6 22873118291058051063228939523954 116313090570426320851072204819663

56 7 69476060406227291017501083516142 25833045339160927227760846401432

57 8 5346603525403728622223192329742 14340888483576693798223267923907

58 9 182726681379808148862289393529311 171282290328837196829488212123894

59 : 107599524645755463795155863770315 157534235571666312725026848591073

60 ; 112060649054870949938405367040014 22866415025676792799644108987775

61 < 110069068060128478094851261088124 23226356669582304996442750285034

62 = 94648842675991353118796965944811 138517205562071362960226437824565

63 > 74935792642933298997998359868013 122262367430031813451562427079254

64 ? 186547804817864498376832230696176 73965414845807207181768267176051

65 @ 25447667958600840488721935076978 14152845921732743401774474241639

66 A 190030360289311768509092526491925 156480713533070104902867091671716

67 B 120793742729179040680462351806730 58448003460249953044462939394235

68 C 355900944747607790509003350995723 180374969813254870853114806192967

69 D 158193822959635885956072885135849 12834920660988076497852092205056

70 E 29442954241562060281671061401125 102647578816308278544643697662843

71 F 167779624595535581617587035526309 75428078360571754011246137627752

72 G 163036966066320695551119895927071 140416728808897714731241264758581

73 H 77287431836257600783818615663859 182397745792442612186859658857506

74 I 108686101027758476932464390592521 7247780024318848925331871461058

75 J 102331607654068877124711323416043 27548070178070857177285783050491

76 K 37649063438995812033282888101506 8676226898966166863236575493204

77 L 128876816620018786723049343831133 45054404728556752109167082660893

78 M 164857361653411862953209498478471 132517706595580004936491831506744

79 N 125461943118669953593211954318781 14700275254570640087321604268291

80 O 7009281048565051667880348070113 26432586399622891061185448632822

81 P 99713854957795943700974698049417 153829432406835011731703224913931

82 Q 14481150461500860169884091078736 161319534873142692265736012126260

83 R 24190514050144509882908182786964 69503727540034617742601551359424

84 S 165863255567946723867583381511093 192306387060460792280187761246352

85 T 171024704622051136504113568735294 96334538737065967688644328597686

86 U 119237079229441536917595561683547 44792649499058175745316344191302

87 V 20296176349580042293351379143355 10735812669345783224208082070166

88 W 73851923249152221564684885048947 169673183445614345241076592647379

89 X 42404110729088076738834892855727 165193520080956151169273085540214

90 Y 46716303657442930319591842731896 129576732878270970737326467007253

91 Z 142155738567240393113660431381586 146354843602324778212647078704776

92 [135670151295696880609032601466280 162897270552877489690891329239163

93 \\ 34516693003651721285338558617494 76226152132985243346402217357065

94] 12828799314404994855106002747104 35800368635721308244532557541672

95 ^ 115555074461536010570004985062981 178697204763462838897319226170038

96 _ 34798310765417988065618919219649 58414861312588046947029245178854

97 ` 40311917456801293571876398123097 608582384359726646440535055977933

98 A 25201534919257264972352785531958 156943284483372127078888283435943

99 B 7853383294300904418699292881578 94966530060641782308769405025518

100 C 14257342686283904597888711491791 45202597864762652025089240987424

101 D 38079703381696206275196224663486 58400685412852677670706755377545

102 E 45754318113363907213290807399706 162804139376036548434952246241157

103 F 54603626980736375626574917973966 13452747470170595478748680068925

104 G 88310300150614603403428840866155 32061354555739246906426728504402

105 H 110324834114529365338627179220579 56350336757626433679739085552294

106 I 114962103403635324894198774726010 52106929978961837597359788332568

107 J 178352557396510142592676825983891 59328012611119213963933924806248

108 K 136893011504697995122275622579664 143415225557196245248243287418171

109 L 25644472604057487620160279983372 153746726294407072170519780611947

110 M 76284094693932509757161992494670 161479730146468807420454834406518

111 N 170958508014520504665129973870710 17147802630023397634734007394712

112 O 121196246606032260496084437330837 79058571393105006032715524873461

113 P 195168383030345801074816170176780 145951193110984762837294127256437

114 Q 186398058951962845660831462230733 155837808768653032308876190617550

115 R 174194187340190280319970993056211 114683818833633285896732555053990

116 S 109208176658095235959426144532991 136940612168538418999112306803345

117 t 186210701203574451034199896482324 29708949802675601753411873075099

118 u 53422078656993150928661280403664 151708204674122501091116616968566

119 v 16273862062814979909180619891943 7944715892388243628941844281573

120 w 91023698295672401601788723116128 20288898129341375329081035179403

121 x 139727684514397351197336984785237 193624016139554199783631283412203

122 y 194505428411659469405109674142988 125107523856880602179462363678891

123 z 116992063625517654738613317717161 82003517206186342382599394505019

124 { 60294121170902891455939443181336 87038905202294191487610086311196

125 | 2535734540927065882169831281213 153325678348891734881602883923566

126 } 130082119544515292709886022837111 150908601307678423067909547975790

127 ~ 11387995585517660791168964790177 101159741031841232682625855654540

128 \x7f 178929108429204537220187123714203 83115428262923441662558170926958

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

__

../../../../

G). Securing Data

Safeguarding sensitive data is very crucial with the evolving

cybersecurity threats. One of the most robust and efficient

methods of securing data, especially in SDN networks,

requires a reliable algorithm, which ECC is one which offer

strong encryption while minimizing computational

overhead. The elliptic curve 25519 has exceptional security

properties and performance characteristics compared to the

various ECC curves. Implementing elliptic curve25519 to

secure data in SDN requires striking the right balance

between security and computational efficiency. Analysis, as

presented in Table V and Fig. 7, reveals that adopting a 138-

bit mod(p) value with curve25519 balances robust

encryption and efficient computation. The transmission of

files encrypted with a 138-bit mod(p) value of the ECC

curve25519 occurs through the SDN network using the Ryu

controller with three topologies: single, linear, and tree.

Table 6 presents the transmission times (milliseconds) for

encrypted text files across network topologies.

TABLE III

COMPUTATIONAL TIME PERFORMANCE OF ENCRYPTION AND ENCRYPTION

Text file P-value Bit Size Encryption Time Decryption Time

915KB 137849 18 28.17 17.33

5171003929967 43 24.83 15.50

3044861653679985063343 72 13.71 14.48

198211423230930754013084525763697 108 12.85 13.07

276602624281642239937218680557139826668747 138 15.07 14.97

1447401115466452442794637312608598848160326

3447650325797860494125407373907997

253 15.16 16.67

5.384MB 137849 18 30.25 35.12

5171003929967 43 29.10 29.22

3044861653679985063343 72 25.92 49.47

198211423230930754013084525763697 108 30.87 30.21

276602624281642239937218680557139826668747 138 29.12 27.24

1447401115466452442794637312608598848160326

3447650325797860494125407373907997

253 28.77 31.56

11.804MB 137849 18 65.14 64.18

5171003929967 43 71.99 66.51

3044861653679985063343 72 70.03 66.29

198211423230930754013084525763697 108 84.37 62.67

276602624281642239937218680557139826668747 138 120.71 76.51

1447401115466452442794637312608598848160326

344765032579786049412540373907997

253 57.20 58.05

35.350MB 137849 18 229.99 334.31

5171003929967 43 241.77 206.49

3044861653679985063343 72 206.49 234.83

198211423230930754013084525763697 108 160.30 172.52

276602624281642239937218680557139826668747 138 171.81 230.41

1447401115466452442794637312608598848160326

344765032579786049412540373907997

253 245.98 228.07

59.809MB 137849 18 360.77 333.67

5171003929967 43 346.11 349.67

3044861653679985063343 72 410.10 303.10

198211423230930754013084525763697 108 405.74 410.98

276602624281642239937218680557139826668747 138 319.92 472.83

1447401115466452442794637312608598848160326

344765032579786049412540373907997

253 245.65 316.53

106MB 137849 18 375.19 383.95

5171003929967 43 440.82 402.22

3044861653679985063343 72 438.37 459.07

198211423230930754013084525763697 108 638.90 774.98

276602624281642239937218680557139826668747 138 417.70 348.44

1447401115466452442794637312608598848160326

344765032579786049412540373907997

253 632.83 654.76

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

__

Fig. 5. Graphical Analysis of Encryption Computational Time Performance

TABLE IV

ENERGY CONSUMPTION OF ECC CURVE25519 FOR ENCRYPTION AND DECRYPTION

Text File P-value Bit

Size

Encryption Energy Decryption Energy

915KB

137849
18 0.0028 0.0017

5171003929967
43 0.0025 0.0015

3044861653679985063343
72 0.0014 0.0014

198211423230930754013084525763697
108 0.0013 0.0013

276602624281642239937218680557139826668747
138 0.0015 0.0015

144740111546645244279463731260859884816032

63447650325797860494125407373907997 253 0.0015 0.0017

5.384MB

137849
18 0.0030 0.0035

5171003929967
43 0.0029 0.0029

3044861653679985063343 72 0.0026 0.0049

198211423230930754013084525763697
108 0.0031 0.0030

276602624281642239937218680557139826668747
138 0.0029 0.0027

144740111546645244279463731260859884816032

63447650325797860494125407373907997 253 0.0029 0.0032

11.804MB

137849
18 0.0065 0.0064

5171003929967
43 0.0072 0.0067

3044861653679985063343
72 0.0070 0.0066

198211423230930754013084525763697
108 0.0084 0.0063

276602624281642239937218680557139826668747
138 0.0121 0.0077

144740111546645244279463731260859884816032

6344765032579786049412540373907997 253 0.0057

0.0058

35.350MB

137849
18 0.0230 0.0334

5171003929967
43 0.0242 0.0206

3044861653679985063343
72 0.0235 0.0160

198211423230930754013084525763697
108 0.0164 0.0173

276602624281642239937218680557139826668747
138 0.0172 0.0230

144740111546645244279463731260859884816032

6344765032579786049412540373907997
253 0.0246 0.0228

59.809MB

137849
18 0.0361 0.0334

5171003929967
43 0.0346 0.0350

3044861653679985063343
72 0.0410 0.0303

198211423230930754013084525763697
108 0.0406 0.0411

276602624281642239937218680557139826668747
138 0.0320 0.0473

144740111546645244279463731260859884816032

6344765032579786049412540373907997 253 0.0246 0.0317

106MB

137849
18 0.0375 0.0384

5171003929967
43 0.0441 0.0402

3044861653679985063343
72 0.0439 0.0459

198211423230930754013084525763697
108 0.0639 0.0775

276602624281642239937218680557139826668747 138 0.0418 0.0348

144740111546645244279463731260859884816032

6344765032579786049412540373907997 253 0.0633 0.0655

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

__

TABLE V

ELLIPTIC CURVE25519 THROUGHPUT

18-bit Mod(p)

Total Time (s)

43-bit Mod(p)

Total Time (s)

72-bit Mod(p)

Total Time (s)

108-bit Mod(p)

Total Time (s)

138-bit Mod(p)

Total Time (s)

253-bit Mod(p)

Total Time (s)

915KB 28.14 24.83 13.71 12.85 15.07 15.16

5.384MB 30.24 29.10 25.92 30.87 29.12 28.77

11.804MB 65.14 71.99 70.03 84.37 120.71 57.20

35.350MB 229.99 241.77 234.83 163.76 171.81 245.98

59.809MB 360.77 346.11 410.10 405.74 319.92 245.65

106MB 375.19 440.82 438.37 638.91 417.70 632.83

Throughput 1207.41 1139.28 1102.67 984.24 1224.43 1073.31

Fig. 6. Comparison of Throughput Across Different Security Algorithms

Analysis, as presented in Table V and Figure 6, reveals

that adopting a 138-bit mod(p) value with Curve25519

balances robust encryption and efficient computation. The

transmission of files encrypted with a 138-bit mod(p) value

of the ECC Curve25519 occurs through the SDN network

using the RYU controller with three topologies: single,

linear, and tree. Table 6 presents the transmission times

(milliseconds) for encrypted text files across network

topologies.
Table VI

TRANSMISSION TIMES OF ENCRYPTED TEXT FILES OVER

DIFFERENT NETWORK TOPOLOGIES

Text Files Single

Topology

Linear

Topology

Tree

Topology

Text1 0.0036 0.0042 0.0099

Text2 0.0052 0.0055 0.0156

Text3 0.0053 0.0076 0.0205

Text4 0.1013 0.1045 0.2450

Text5 0.1115 0.1165 0.2250

Text6 0.1301 0.1367 0.3540

Total Time (s) 0.357 0.375 0.87

Fig. 7 shows that it takes the least Time for a single

topology to transmit encrypted files compared to other

topologies, which implies that a single topology transmits

encrypted files faster than other topologies.

H). Analysis of Mitigating Attack Vectors

 Integrating robust encryption and mutual authentication

techniques poses a significant challenge for attackers trying

to bypass security measures. Consequently, prevalent attack

routes, such as Man-in-the-Middle (MiTM) attacks, packet

injection, and unauthorised access attempts, are effectively

mitigated, thereby enhancing the overall security posture of

the SDN environment as detailed as follows:

Fig. 8. Graphical Analysis of Transmission Times of Encrypted Text Files

over Different Network Topologies

1). Attack by Impersonators from Host 1

 Assume an attacker has gained possession of H1. This

means the attacker has access to the network key and the

public keys. The attacker then replaces H1 with a counterfeit

device, Fake_H1. Fake_H1 uses a random number generator

to compute the private key of H1 and determine curve points

before initiating communication with H2. H2 computes

H1_Msg1 and returns H2_Msg2. However, for the

impersonator (Fake_H1) to verify authenticity, they need to

know |aF|. Since |aF| is embedded in the firmware, it is

impossible for the impostor to obtain this value.

2). Attack by Impersonators from Host 2

 When the attacker obtains H2, they replace it with a fake

device known as Fake_H2, and they are aware of all the

previously mentioned parameters. Similarly, fake host gets

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

__

 from H1 and computes . The H2 then

computes and returns . Following the

receipt of |aF| from H1, Fake_H2 will have to wait for the

authentication acknowledgment frame from H1. In this case,

the authentication procedure won't start in the absence of an

authentication acknowledgment frame. The session key will

expire since H1 will not be able to validate authentication

and will not be able to send actual data to Fake_H2 because

the authentication acknowledgment frame is not available. It

demonstrates the resilience of our approach against

impersonation attacks.

3). Man-in-the-Middle (MiTM) Attack

 The attacker continuously watches the transmission

channel for messages sent back and forth between H1 and

H2. With time, MiTM can comprehend and imitate the data

that is transmitted. Likewise, data spoofing allows for the

analysis of H1 and H2 messages over an extended period,

which allows for the prediction of keys and the discovery of

|authentication Frame string| and |acknowledge frame string|.

However, authentication frames are encrypted when end-to-

end encryption is used. MiTM finds it very challenging to

decrypt and analyze the sent data because of the elliptic

curve-based end-to-end encryption. Moreover, the encrypted

data block's 1-bit mutation will result in points at infinity.

Consequently, in the event of a single-bit mutation, H2 will

not calculate points at infinity and the entire data block will

produce null values.

4). Device Anonymity and Privacy

 Once an attacker gains possession of a host controller,

they attempt to retrieve data from a certain host. Even with

complete authorization via H1 or H2, the impostor will not

be able to extract the data or status of other devices since the

hosts have a very particular communication pattern. Because

of the way the plan is set up, H1 will only ever meet H2 once

while H1 and H2 will need to mutually re-authenticate once

the session terminates. Additionally, without knowledge of

H1 and H2's private keys, the network administrator is

unable to decrypt specific transmission data blocks. All hosts

in the network have high privacy and anonymity as a result.

5). Dos / Replay Attack

 The compromised host must first be connected to the

network by the attacker to use DoS or replay assaults. To

compute the precise amount for each devoted session, an

attacker must also know a set of parameters such as the

network, public and private keys. This is a challenging and

computationally demanding procedure. As a result, H1 or H2

will compute curve points at infinity, preventing the ECDH

process from continuing. Replay attacks work similarly, with

each step’s message pattern changing. The session will stop,

and the message will be refused if the attacker repeatedly

transmits the same message patterns since the relevant

device will calculate curve points at infinity.

V CONCLUSION

This study introduced SLECP-SDN, a novel protocol

designed to secure communication between SDN's data and

control planes using the Elliptic Curve25519 algorithm. The

protocol integrates /lightweight encryption and robust

authentication to effectively address vulnerabilities in the

SDN Southbound Interface (SBI). The results demonstrate

the efficacy of SLECP-SDN in achieving high throughput,

energy efficiency, and enhanced resistance to security

threats, such as impersonation, replay, man-in-the-middle,

device anonymity and packet injection attacks. By utilizing

pre-computed curve points and optimizing cryptographic

operations, the protocol offers a practical solution that

balances security and performance, making it highly suitable

for resource-constrained environments. The implementation

of Curve25519 establishes a new benchmark for securing

SDN environments, ensuring data confidentiality, integrity,

and availability without compromising network efficiency.

ACKNOWLEDGEMENT

We appreciate Universiti Putra Malaysia (UPM) for

providing an enabling environment for conducting the

research work. In addition, O. I. Aladesote would like to

thank the Management of Federal Polytechnic, Ile Oluji,

Ondo State, Nigeria for their support in pursuing his

postgraduate studies.

REFERENCES
[1] Z. Latif, K. Sharif, F. Li, M. M. Karim, S. Biswas, and Y. Wang, “A

comprehensive survey of interface protocols for software defined

networks,” J. Netw. Comput. Appl., vol. 156, no. July 2019, p. 102563,

2020, doi: 10.1016/j.jnca.2020.102563.

[2] T. Bakhshi, “State of the art and recent research advances in software

defined networking,” Wirel. Commun. Mob. Comput., vol. 2017, 2017,

doi: 10.1155/2017/7191647.

[3] A. Mohamed et al., “Software-defined networks for resource

allocation in cloud computing: A survey,” Comput. Networks, vol.

195, no. December 2020, p. 108151, 2021, doi:

10.1016/j.comnet.2021.108151.

[4] S. Khorsandroo, A. G. Sánchez, A. S. Tosun, J. M. Arco, and R.

Doriguzzi-Corin, “Hybrid SDN evolution: A comprehensive survey of

the state-of-the-art,” Comput. Networks, vol. 192, p. 107981, 2021,

doi: 10.1016/j.comnet.2021.107981.

[5] M. H. Rehmani, A. Davy, B. Jennings, and C. Assi, “Software Defined

Networks-Based Smart Grid Communication: A Comprehensive

Survey,” IEEE Commun. Surv. Tutorials, vol. 21, no. 3, pp. 2637–

2670, 2019, doi: 10.1109/COMST.2019.2908266.

[6] J. H. Cox et al., “Advancing software-defined networks: A survey,”

IEEE Access, vol. 5, pp. 25487–25526, 2017, doi:

10.1109/ACCESS.2017.2762291.

[7] O. I. Aladesote and A. Abdullah, “Efficient and Secure Topology

Discovery in SDN: Review,” Lect. Notes Data Eng. Commun.

Technol., vol. 127, pp. 397–412, 2022, doi: 10.1007/978-3-030-98741-

1_33.

[8] Z. Latif, K. Sharif, F. Li, M. M. Karim, S. Biswas, and Y. Wang, “A

comprehensive survey of interface protocols for software defined

networks,” J. Netw. Comput. Appl., vol. 156, no. February, p. 102563,

2020, doi: 10.1016/j.jnca.2020.102563

[9] S. Ahmad and A. Hussain Mir, “SDN Interfaces: Protocols, Taxonomy

and Challenges,” Int. J. Wirel. Microw. Technol., vol. 12, no. 2, pp.

11–32, 2022, doi: 10.5815/ijwmt.2022.02.02.

[10] D. Comer and A. Rastegarnia, “Toward Disaggregating the SDN

Control Plane,” IEEE Commun. Mag., vol. 57, no. 10, pp. 70–75,

2019, doi: 10.1109/MCOM.001.1900063.

[11] S. Algarni, F. Eassa, K. Almarhabi, A. Algarni, and A. Albeshri,

“BCNBI: A Blockchain-Based Security Framework for Northbound

Interface in Software-Defined Networking,” Electron., vol. 11, no. 7,

pp. 1–27, 2022, doi: 10.3390/electronics11070996.

[12] A. H. Abdi et al., “Security Control and Data Planes of SDN: A

Comprehensive Review of Traditional, AI, and MTD Approaches to

Security Solutions,” IEEE Access, vol. 12, no. May, pp. 69941–69980,

2024, doi: 10.1109/ACCESS.2024.3393548.

[13] M. S. Farooq, S. Riaz, and A. Alvi, “Security and Privacy Issues in

Software-Defined Networking (SDN): A Systematic Literature

Review,” Electron., vol. 12, no. 14, 2023, doi:

10.3390/electronics12143077.

[14] M. Iqbal, F. Iqbal, F. Mohsin, M. Rizwan, and F. Ahmad, “Security

issues in software defined networking (SDN): Risks, challenges and

potential solutions,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 10, pp.

298–303, 2019, doi: 10.14569/ijacsa.2019.0101042.

[15] T. W. Chao et al., “Securing data planes in software-defined

networks,” IEEE NETSOFT 2016 - 2016 IEEE NetSoft Conf. Work.

Software-Defined Infrastruct. Networks, Clouds, IoT Serv., pp. 465–

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

__

470, 2016, doi: 10.1109/NETSOFT.2016.7502486.

[16] S. Ghaly and M. Z. Abdullah, “Design and implementation of a

secured SDN system based on hybrid encrypted algorithms,”

Telkomnika (Telecommunication Comput. Electron. Control., vol. 19,

no. 4, pp. 1118–1125, 2021, doi:

10.12928/TELKOMNIKA.v19i4.18721.

[17] Y. Alemami, A. M. Al-Ghonmein, K. G. Al-Moghrabi, and M. A.

Mohamed, “Cloud data security and various cryptographic

algorithms,” Int. J. Electr. Comput. Eng., vol. 13, no. 2, pp. 1867–

1879, 2023, doi: 10.11591/ijece.v13i2.pp1867-1879.

[18] V. Varadharajan and U. Tupakula, “Counteracting Attacks from

Malicious End Hosts in Software Defined Networks,” IEEE Trans.

Netw. Serv. Manag., vol. 17, no. 1, pp. 160–174, 2020, doi:

10.1109/TNSM.2019.2931294.

[19] H. Al-Hamdani and W. S. Bhaya, “A Proposed Cryptography Key

Management in Software-Defined Networking (SDN),” 6th Iraqi Int.

Conf. Eng. Technol. its Appl. IICETA 2023, pp. 22–28, 2023, doi:

10.1109/IICETA57613.2023.10351402.

[20] N. Gray, T. Zinner, and P. Tran-Gia, “Enhancing SDN security by

device fingerprinting,” Proc. IM 2017 - 2017 IFIP/IEEE Int. Symp.

Integr. Netw. Serv. Manag., pp. 879–880, 2017, doi:

10.23919/INM.2017.7987393.

[21] A. Ranjbar, M. Komu, P. Salmela, and T. Aura, “An SDN-based

approach to enhance the end-to-end security: SSL/TLS case study,”

Proc. NOMS 2016 - 2016 IEEE/IFIP Netw. Oper. Manag. Symp., no.

July 2017, pp. 281–288, 2016, doi: 10.1109/NOMS.2016.7502823.

[22] B. Yigit, G. Gur, B. Tellenbach, and F. Alagoz, “Secured

Communication Channels in Software-Defined Networks,” IEEE

Commun. Mag., vol. 57, no. 10, pp. 63–69, 2019, doi:

10.1109/MCOM.001.1900060.

[23] Y. Peng, C. Wu, B. Zhao, W. Yu, B. Liu, and S. Qiao, “QKDFlow:

QKD based secure communication towards the openflow interface in

SDN,” Commun. Comput. Inf. Sci., vol. 699, pp. 410–415, 2017, doi:

10.1007/978-981-10-3969-0_45

[24] T. Adhikari, M. Kule, and A. K. Khan, “An ECDH and AES Based

Encryption Approach for Prevention of MiTM in SDN Southbound

Communication Interface,” 2022 13th Int. Conf. Comput. Commun.

Netw. Technol. ICCCNT 2022, pp. 1–5, 2022, doi:

10.1109/ICCCNT54827.2022.9984509.

[25] D. S. Sahana and S. H. Brahmananda, “Secure Authentication

Framework for SDN-IoT network using Keccak-256 and Bliss-B

algorithms,” International Journal of Information Technology

(Singapore), vol. 15, no. 1. pp. 335–344, 2023. doi: 10.1007/s41870-

022-01074-w.

[26] J. W. Kang, S. H. Park, and J. You, “Mynah: Enabling lightweight

data plane authentication for SDN controllers,” Proc. - Int. Conf.

Comput. Commun. Networks, ICCCN, vol. 2015-Octob, pp. 1–6, 2015,

doi: 10.1109/ICCCN.2015.7288433.

[27] D. J. Bernstein, “Curve25519 : new Diffie-Hellman speed records,”

vol. 25519, 2006.

[28] P. L. Montgomery, “Speeding the Pollard and Elliptic Curve Methods

of Factorization,” Math. Comput., vol. 48, no. 177, p. 243, 1987, doi:

10.2307/2007888.

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3543-3555

__

