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Abstract—With the rapid development of artificial

intelligence technology, traffic sign recognition has become a
critical component of the environmental perception system in
intelligent driving, attracting increasing attention. However, the
complexity of real world conditions—such as variable weather,
changing lighting, and background interference—continues to
pose significant challenges to the accuracy and robustness of
recognition systems. To address these issues, this paper
proposes an innovative, ultra lightweight traffic sign detection
model based on YOLOv8n, aiming to achieve more efficient and
accurate detection in complex environments. The model
incorporates several structural optimizations: an Efficient
Multi Scale Attention (EMA) module is introduced at the end of
the backbone to significantly enhance key feature extraction; a
lightweight GSConv convolution is adopted to greatly reduce
computational complexity and memory consumption; the
pooling structure is improved to boost detection speed; and an
additional small object detection head is added to improve multi
scale feature fusion and enhance the detection accuracy for
small targets. The proposed model is evaluated on two
representative datasets, TT100K and CCTSDB 2021.
Experimental results show that, compared with the original
YOLOv8n, the model reduces parameters by 0.95M and model
size by 0.72M, while achieving mAP improvements of 7.2% and
1.8% on the two datasets, respectively. This model strikes an
excellent balance between accuracy and real time performance,
outperforming the original YOLOv8n and demonstrating
strong practical value. It offers a more reliable and efficient
solution for traffic sign detection in intelligent transportation
systems.

Index Terms—Traffic sign detection, Lightweight, YOLOv8n,
GSConv, Attention mechanism

I. INTRODUCTION
HE technology of traffic sign detection and recognition is
a crucial component of autonomous driving systems. Its

core objective is to accurately extract key information such as
road speed limits, driving directions, and construction zones
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to ensure the safe and reliable operation of autonomous
vehicles. However, in practical applications, the accuracy and
reliability of traffic sign detection are often affected by
varying weather conditions, complex road environments, and
various potential interference factors. Additionally, the high
complexity of deep learning models results in low
operational efficiency in resource constrained environments
such as in vehicle systems and mobile terminals. Therefore,
designing an efficient traffic sign detection algorithm that is
adaptable to various complex scenarios has become a key
research focus.
Currently, traffic sign detection methods can be broadly

categorized into two types: traditional feature based methods
and deep learning based methods. Traditional methods
primarily rely on manually defined features such as color and
shape for traffic sign recognition. While these methods have
lower computational costs, they are susceptible to variations
in lighting, weather conditions, and occlusions, leading to
weaker generalization capabilities. In contrast, deep learning
based detection methods can automatically extract deep
features of traffic signs, offering greater adaptability and
detection accuracy, making them the mainstream approach.
Since Redmon [1] first introduced the YOLO (You Only
Look Once) detection algorithm, it has undergone rapid
development in recent years due to its significant advantages
in both detection accuracy and speed. This evolution has led
to the emergence of various versions, with YOLOv8
currently being widely adopted for its accurate and fast
detection performance. YOLOv8 consists of five models of
different sizes, determined by scaling factors. Among them,
YOLOv8n is a smaller version with fewer network layers and
parameters. Although its detection accuracy is lower than that
of larger models, it offers higher detection speed. However,
in complex traffic scenarios, factors such as multi scale
variations of traffic signs, background interference, and
sample imbalance can lead to false detections and
inconsistencies in recognition performance. To address these
issues, this paper proposes an enhanced traffic sign detection
method based on the YOLOv8n model.
Since Redmon [1] first introduced the YOLO (You Only

Look Once) detection algorithm, it has undergone rapid
development in recent years due to its significant advantages
in both detection accuracy and speed. This evolution has led
to the emergence of various versions, with YOLOv8
currently being widely adopted for its accurate and fast
detection performance. YOLOv8 consists of five models of
different sizes, determined by scaling factors. Among them,
YOLOv8s is a smaller version with fewer network layers and
parameters. Although its detection accuracy is lower than that
of larger models, it offers higher detection speed. However,
in complex traffic scenarios, factors such as multi scale
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variations of traffic signs, background interference, and
sample imbalance can lead to false detections and
inconsistencies in recognition performance. To address these
issues, this paper proposes an enhanced traffic sign detection
method based on the YOLOv8n model.

II. RELATEDWORK

In recent years, researchers have proposed various deep
learning based traffic sign detection methods to improve
detection accuracy and efficiency. For example, Rishabh [2]
et al. introduced a multi branch, multi task convolutional
neural network (CNN) architecture that enables simultaneous
traffic sign detection and classification, accelerating
detection speed while maintaining accuracy. Li et al.
optimized Faster R-CNN by integrating the ResNet50
network with an attention-guided contextual feature pyramid
network, enhancing the detection capability for small traffic
signs in complex backgrounds.
Xiang Xinjian et al. applied preprocessing techniques such

as image space transformation, illumination compensation,
and brightness adjustment to enhance traffic sign image
quality, combining these with Mask R-CNN to improve
detection accuracy. Additionally, Jing Fangke et al. proposed
a dual head detection structure tailored for small objects,
effectively capturing small target features while reducing
model parameters. Saxena [3] et al. optimized the PANet
structure of the YOLOv4 neck network and introduced
feature scales specifically for small object detection, enabling
the algorithm to better adapt to complex road environments.
Mahadshetti [4] et al. incorporated YOLOv7, the SE module,
and attention mechanisms to enhance the model’s ability to
capture the salient features of traffic signs. Wu Mengmeng et

al. proposed an adaptive feature enhancement object
detection network called YOLO-AFENet, which
significantly improved the detection accuracy of small
objects.
In optimizing the YOLO series models, Luo Yutao [5] et al.

introduced a channel attention calibration module and
combined it with a dual path enhancement structure to
optimize the prediction branch. They also employed the K
means++ clustering algorithm to improve YOLOv5s
detection capability for small objects. Zhao et al. proposed a
lightweight feature extraction backbone network and
optimized the ESGBlock structure using an attention
mechanism to reduce computational complexity. Zhu Ningke
et al. improved the inverted residual structure in
MobileNetv3 and applied it to the YOLOv5 backbone
network, enhancing the model's lightweight efficiency. Cao
et al. proposed a lightweight backbone network based on
GhostNet, effectively reducing the parameter count and
model size of YOLOv5s. Peng [6] et al. introduced a
lightweight context aware traffic sign detection network into
YOLOv8n to reduce network computational costs.
Additionally, Liu Fei et al. replaced the original YOLOv5s

backbone network with BoTNet (Bottleneck Transformer
Network) and designed a lightweight network called
C3GBneckv2. Integrating the Ghostv2 Bottleneck and
channel attention mechanisms enhanced the model's feature
extraction capability. Lan Hong [7] et al. proposed an
efficient multi scale feature pyramid fusion network,
MPANet, which improves computational speed by
downscaling shallow feature maps and incorporating
lightweight modules such as BBot and C2fGhost.However,
despite the significant progress in deep learning based traffic

Fig. 1. Improved YOLOv8 network structure diagram
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sign detection, several challenges remain in complex
scenarios. These include susceptibility to occlusions,
background interference, and high computational costs,
necessitating further optimization and improvement. Deep
learning based traffic sign detection eliminates the need for
manual feature extraction. By training on large amounts of
labeled data, deep learning models learn nonlinear functions
that transform images into a feature space where a linear
classifier can quickly distinguish categories, enabling
accurate traffic sign recognition.
The proposed algorithm is an improved version of

YOLOv8n. As a groundbreaking advancement in object
detection, YOLOv8 has achieved significant progress in
balancing real time detection accuracy and computational
efficiency through systematic architectural reconstruction
and multi dimensional algorithmic innovations. It has made
breakthroughs in optimizing the tradeoff between
computational efficiency and detection accuracy.
By reconstructing the backbone network and feature fusion

mechanisms, YOLOv8 introduces the C2f (Cross Stage
Partial Context Fusion) structure, which enhances gradient
propagation efficiency and multi scale feature representation.
At the training paradigm level, YOLOv8 innovatively
employs a dynamic sample weighting mechanism, which
adaptively adjusts the ratio of positive and negative samples
and the confidence threshold, mitigating the common issue of
class imbalance in object detection. Architecturally, this
model integrates object detection, instance segmentation, and
keypoint detection into a unified framework. Its hierarchical
design allows for the generation of sub models with varying
complexity (Nano/Small/Medium/Large/XLarge) by
adjusting depth and width factors, achieving a linear tradeoff
between parameter size and inference speed. In the MS
COCO benchmark, the YOLOv8 X version attained an
average precision (AP) of 53.9%, an 8.2% improvement over
previous models, while maintaining an end to end processing
speed of under 30ms, demonstrating its applicability in
resource constrained environments. The training process
incorporates multi scale hybrid augmentation strategies, a
self optimizing anchor mechanism, and task oriented loss
function design, exhibiting strong robustness against
occlusions and small object detection challenges. In terms of
open source ecosystem support, YOLOv8 provides a
comprehensive model compression toolchain and multi
platform deployment solutions. Its technological capabilities
have been successfully applied in cutting edge fields such as

intelligent medical image analysis, autonomous drone
navigation, and precision industrial inspection, offering
innovative solutions for the engineering deployment of
lightweight visual perception systems.
The main contributions of this paper are as follows:
Integration of the EMA [8] attention mechanism into the

YOLOv8 backbone. By reshaping certain channels into the
batch dimension and grouping the channel dimension into
multiple sub features, this approach preserves channel
information while reducing computational overhead. The
EMA module recalibrates channel weights by encoding
global information and captures pixel level relationships
through cross dimensional interactions, effectively
addressing challenges caused by complex backgrounds in
traffic scenarios.

•Replacing standard convolution (Conv) with GSConv [9].
This lightweight convolution module enhances the receptive
field[10], while reducing the number of parameters,
improving the efficiency of large kernel convolutions and
overall detection performance.

•Modifying the pooling layer structure. The redesigned
pooling mechanism expands the model’s receptive field,
enhances robustness, and improves the integration of multi
scale features.

•Adding a small object detection head. This enhancement
strengthens the model's ability to detect small objects,
improving detection performance in complex traffic
environments.
This study conducted comprehensive experimental

evaluations on the improved YOLOv8n lightweight traffic
sign detection algorithm using two widely recognized
datasets: TT100K and CCTSDB2021.[11] The results
demonstrate that the proposed method not only significantly
reduces computational complexity and model size but also
maintains, and in some cases improves, detection accuracy
across diverse scenarios. This balance between performance
and efficiency makes the algorithm particularly well suited
for deployment in resource constrained computing
environments, such as embedded systems or edge devices in
intelligent transportation systems.

III. LISTLIGHT AND IMPROVED YOLOV8N ALGORITHM

Figure 1 shows the architecture of the new generation
object detection model proposed in this study, which realizes
the comprehensive performance exceeding YOLOv8n[12]

Fig. 2. EMA attention network structure diagram
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through multi dimensional technological innovation. In terms
of architecture design, the model innovatively integrates four
core modules: EMA attention module based on two
dimensional dynamic channel space calibration, which
enables the network to adaptively enhance the contrast of
occlocclted objects and background by constructing feature
importance weight graphs[13],[14],[15] and significantly
improve the feature focusing capability in complex lighting
and dense scenes; The improved SPPF_imp module adopts
the multi level gated void pooling strategy and introduces a
learnable feature screening mechanism based on the
traditional spatial Pyramid structure not only preserves the
fusion efficiency of cross scale context information but also
optimizes the feature representation ability of different scale
targets through dynamic receptive field regulation. [16]The
lightweight GSConv operator designed for edge computing
needs, through the hybrid architecture of packet convolution
and channel recombination, reduces the computing load by
55% while maintaining the semantic integrity of deep
features by using dynamic kernel parameter sharing
technology, providing an efficient reasoning basis for mobile
terminal deployment. The cascade detector system designed
for small objects constructs a complete detection link from
feature retention to precise location through high resolution
shallow feature guidance, cross scale feature pyramid
two-way interaction, and prediction frame optimization
algorithm based on probability density estimation. All
modules form closed loop optimization through a cooperative
working mechanism: EMA module preferentially selects key
semantic features, SPPF_imp extends multi scale sensing
domain and eliminates feature redundancy, GSConv
implements dynamic computational resource allocation
during feature transfer, and finally, small target detection
head completes fine-grained feature decoding.[17],[18],[19]
This architecture design not only realizes the strong
adaptability of the model in complex scenarios but also
significantly improves the processing ability of challenging
scenarios such as large scale differences, high target density,
and strong background interference in detection tasks under
the premise of maintaining real time reasoning speed through
intelligent optimization of the calculation path. It provides a
new generation of solutions with high efficiency and
robustness for automatic driving environment perception,
industrial precision parts inspection, and remote sensing
image analysis.

A. Ema attention mechanism
The Efficient Multi Scale Attention (EMA) module is a

novel Attention mechanism based on improved Coordinate
Attention, which aims to enhance feature representation
through collaborative modeling of channel dimensions and
spatial dimensions. Unlike traditional attention mechanisms,
EMA is capable of capturing feature dependencies at both a
local and global scale in an image, providing a more refined
representation of objects in complex scenes. Especially in the
traffic sign detection task, the dataset usually contains a large
number of targets with a small scale and is easily affected by
background interference, which makes the model susceptible
to the impact of background noise during detection[20],
resulting in the reduction of recognition accuracy. In order to
solve this problem, the EMA module is introduced into the

YOLOv8n backbone network to enhance the feature
expression ability of the model for small targets. Specifically,
by building long and short range feature dependencies[21],
EMA enables the model to more accurately capture the subtle
features of traffic signs, effectively separating targets from
interference information in complex contexts. The
introduction of this module not only improves the detection
accuracy of the model but also improves the adaptability of
the model to different scale targets while maintaining the
computational efficiency and ensuring the robustness and
reliability of the traffic sign detection task. The specific
structure of EMA is shown in the figure.

B. Improvement of the pooling layer
In object detection tasks, the spatial pyramid pool fast

module (SPPF) is often used to extract multi scale features
and enhance the model's ability to perceive objects of
different sizes. However, the original SPPF of YOLOv8
mainly relies on the 5×5 maximum pooling operation of a
fixed size, and only obtains the characteristics of different
receptive fields through multiple pooling, which lacks the full
utilization of global information. Therefore, we propose an
improved version of the SPPF module (SPPF_imp), which
retains the original SPPF structure and introduces an adaptive
pooling mechanism to enhance the global feature extraction
capability. Specifically[22], SPPF_imp first reduces
dimension by 1×1 convolution to reduce computational effort
and improve computational efficiency. Then, when
performing multiple 5×5 maximum Pooling to extract local
features of different scales, Adaptive Max Pooling and
Adaptive Avg Pooling are introduced to obtain the most
significant features and global average information,
respectively. These features from different sources are
spliced in the channel dimension, and after 1×1 convolution
fusion, the enhanced feature expression is finally generated.
Compared with the original SPPF, SPPF_imp can integrate
local and global information more comprehensively, improve
the robustness of the model to the shape and scale changes of
the target, and thus improve the detection accuracy and
generalization ability. Figure 3 shows the structure of the
improved sppf.

Fig. 3. SPFF Improvements

C. GSConv
GSConv[9] convolution is an improved convolution

structure consisting of standard convolution, depth separable
convolution, and shuffle operation. It is designed to improve
model performance and detection accuracy while
maintaining computational efficiency and accelerating
convergence during training. Its overall structure is shown in
the figure 3.
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Assume that the number of channels for the input feature is
Cin, and the number of channels for the output feature is Cout.
First, the input features are processed by the standard
convolution layer, and the number of channels is reduced to
Cout/2 while the basic features are extracted in order to reduce
the computation amount and improve the computation
efficiency. Then, the features after dimensionality reduction
are sent into the deep separable convolution layer, where
channel by channel convolution is used to extract local
features of each channel, while point by point convolution is
responsible for integrating information between channels to
further enrich the feature expression ability. Then, the
features extracted by depth separable convolution are fused
with the features directly output by the standard convolution
layer to enhance the complementarity of information and
retain more spatial structure information and semantic
information.
After the merged features are shuffled, the channels are

rearranged to improve cross channel information exchange.
Finally, the output features with the number of channels as
Cout are generated. This design fully combines the powerful
capability of standard convolution in feature extraction with
the advantage of deep separable convolution in
computational efficiency so that GSConv can not only
improve the expressibility of the model under limited
computational resources but also achieve a reasonable
balance between the number of parameters and the amount of

computation, and finally improve the overall performance
and applicability of the model.

D. Small target detection head
Aiming at the detection challenge of small traffic signs

(10×10 pixels) in vehicle scenes, this study carried out multi
scale perception enhancement optimization of YOLOv8n
architecture. The original model adopts 640×640 input
resolution and generates three groups of 80×80,40×40 and
20×20 feature maps through five stages of downsampling.
The minimum detection head corresponds to an 8×8
receptive field. In the traffic sign data obtained by a wide
angle vehicle lens, the physical size of the tiny target is often
smaller than the network base receptor field, resulting in the
attenuation of high frequency details during deep feature
extraction. Traditional multi scale detection architecture
makes it difficult to achieve subpixel level feature analysis.
Therefore, this study proposes a 160×160 super resolution
detection mechanism based on hierarchical feature
reconstruction. The innovative implementation path includes:
first, the 160×160 scale feature map of the third layer of the
backbone network is retained, and local feature enhancement

is carried out through the C2f module. Then, a cross stage
feature fusion channel is constructed, and the deep 80×80
feature map is spatially aligned with the shallow high
resolution features by up sampling. Finally, the two branch
feature refining architecture is designed to integrate shallow
texture details and deep semantic information, and finally,
the fine grained target location is realized by adding detection
heads. By establishing a cooperative mechanism of "deep
semantic guidance and shallow feature compensation", the
scheme significantly enhances the representation ability of
the network for small size targets while maintaining the
lightweight characteristics of the model.

Fig. 5. Small target detection head

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets used in the experiment
This study utilizes two publicly available traffic sign

detection datasets CCTSDB and TT100K to
comprehensively evaluate the proposed model’s performance
across various environmental conditions, weather scenarios,
and object scales. The China Traffic Sign Detection
Benchmark (CCTSDB) is designed to simulate real world
driving environments and emphasizes complex and adverse
road conditions. It contains a total of 13,828 images,
including 11,062 for training and 2,766 for testing. The
dataset features a wide range of challenging scenarios, such
as fog, rain, glare from strong light, background occlusion,
image blurring, and diverse camera angles. Traffic signs in
CCTSDB are categorized into three functional types:
mandatory, warning, and prohibited. This variability enables
the model to learn more robust and generalizable features,
improving its detection accuracy and reliability in degraded
or dynamic conditions typical of real traffic scenes.
In contrast, the TT100K dataset, jointly developed by

Tsinghua University and Tencent, emphasizes high
resolution imagery and small target detection. It consists of
10,000 images at a resolution of 2048×2048 pixels, with over
30,000 traffic signs collected from real urban and suburban
roads. A distinctive feature of TT100K is the large proportion
of small scale traffic signs, some as small as 32×32 pixels,
which are often difficult to detect due to limited pixel
information and interference from complex backgrounds.
To reduce class imbalance and improve training efficiency,

categories with fewer than 100 instances were excluded,
resulting in a filtered dataset containing 45 sign categories.
The final training and testing sets include 6,105 and 3,065
images, respectively. This preprocessing not only balances
the dataset but also strengthens the model’s stability and
adaptability in small object detection tasks.
In summary, the CCTSDB dataset is primarily used to test
the model’s robustness under harsh weather and complex

Fig. 4. GSConv structure diagram
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visual conditions, while TT100K provides a focused
evaluation of its ability to detect small scale targets in high
resolution scenes. By combining these two datasets, the study
offers a comprehensive and realistic assessment of the
model’s performance in diverse traffic scenarios, ensuring its
effectiveness and reliability in practical traffic sign detection
applications.

Fig. 6. CCTSDB2021 dataset label type

Fig. 7. TT100K dataset label type

B. Experimental environment and parameter setting

This experiment was conducted on a Windows 10
operating system, using Python as the programming language
and PyTorch (version 2.4.0) as the deep learning framework,
with CUDA version 12.1. The hardware configuration
included an NVIDIA GeForce RTX 3070 GPU with 8GB of
video memory and an Intel(R) Core(TM) i7-10700F
processor, which provides sufficient performance for large
scale deep learning model training. To standardize the input
data format, the image size was adjusted to 640×640 during
training. The model was trained for 150 epochs on the
TT100K dataset with a batch size of 4. For the CCTSDB2021
dataset, the model was trained for 100 epochs, with the
momentum and weight decay parameters set to 0.937 and
0.0005, respectively, to enhance model stability and
generalization. The learning rate was set to 0.01 and adjusted
using a cosine annealing scheduling algorithm to optimize
the training process. Additionally, Mosaic data augmentation
was applied during the final 10 training epochs to further

improve the model's adaptability to diverse scenarios.

C. Experimental environment and parameter setting
The experimental results of this paper use the commonly

used evaluation indexes of object detection: accuracy (P),
recall rate (R), and average detection accuracy (mAP@0.5)
as the main indexes of model evaluation. mAP@0.5
measures the average accuracy of the model for all classes of
targets at 0.5 overlaps (IoU) between the predicted border
and the actual border of the target. Specifically, mAP is
calculated by calculating the accuracy and recall rate of the
model under different detection thresholds and then
represented by the area value under the P-R curve. The
vertical axis of the P-R curve is Precision, which represents
the proportion of correctly predicted positive samples in all
predicted positive samples. The horizontal axis is Recall,
which represents the proportion of samples correctly
predicted to be positive to all actual positive samples. In this
way, mAP can comprehensively evaluate the overall
performance of the model under different detection tasks,
especially the accuracy and recall ability of the model when
dealing with target detection.
These indicators are calculated by the following formula:

Precision= TP
TP+FP

(1)

Recall= TP
TP+F

(2)

AP= i=1
N Pi
N

(3)

mAP= j=1
N APj
M

(4)

D. Experimental results of the TT100K dataset
To fully verify the effectiveness of the proposed algorithm

in traffic sign detection tasks, this study selects classic
models such as YOLOv3, YOLOv4, YOLOv5s, and
YOLOv7-tiny as comparison models. The performance
comparison results of different algorithms are shown in Table
1, where "ours" represents the proposed algorithm.
Table 1 summarizes the performance comparison of

various models on the TT100K dataset. As shown, the
proposed model (Ours) achieves the best overall performance,
with a Precision (P) of 72.2%, Recall (R) of 68.2%, and
mAP@0.5 of 73.8%, while maintaining a lightweight
architecture with only 2.21M parameters. Compared with
other representative models, such as YOLOv5 (P: 72.1%, R:
70.7%, mAP@0.5: 70.1%) and YOLOv11 (P: 71.6%, R:
65.2%, mAP@0.5: 72.8%), the proposed approach
demonstrates superior detection accuracy and better balance
between precision and recall. Moreover,it significantly

TABLE Ⅱ
EXPERIMENTAL RESULTS OF DIFFERENT MODELS ON THE TT100K DATASET

Model EMA SPPF_imp GSConv Head mAP@0.5 Parameters(M) ModelSize（M）

Yolov8n

67.0 3.01 5.1
√ 68.0 2.59 4.9

√ 67.9 3.12 6.11
√ 67.1 2.83 5.63

√ 73.8 3.11 6.20
√ √ 68.9 2.79 4.60
√ √ √ 72.1 2.38 4.54
√ √ √ √ 74.2 2.06 4.38
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reduces model complexity compared to models like YOLOv5
(7.02M parameters) and YOLOv10 (5.5M parameters),
which is particularly advantageous for deployment in
resource constrained environments. These results validate the
effectiveness of the proposed improvements in enhancing
both accuracy and model efficiency for traffic sign detection
tasks.
As shown in Table 2, introducing the EMA attention

module alone improves mAP@0.5 by 1% and significantly
increases precision. Additionally, Parameters and Model Size
decrease by 0.42M and 0.2M, respectively, indicating that the
EMA module can reduce false detection rates while
decreasing model size, verifying its ability to represent high
level semantic features. When introducing the SPPF
improvement module alone, the improved SPPF module
enhances feature representation capabilities, expands the
receptive field, improves object perception, reduces
information loss, enhances detection accuracy, and increases
computational efficiency. These improvements are
confirmed in the ablation experiments. When introducing the
convolution module alone, mAP@0.5 increases by 0.1%.
Although the accuracy improvement is minor, the Parameter
count is significantly reduced, demonstrating that GSConv
effectively reduces the model's parameter size. When
introducing the small object detection head alone, mAP@0.5
increases by 6.8%, a significant improvement compared to
the original YOLOv8n model. This validates the
effectiveness of the small object detection head, though it
comes with an increase in parameter count and model size.
When both the EMA attention module and the improved
SPPF module are introduced into the YOLOv8 network,
mAP@0.5 increases by 1.9%, while both Parameters and
Model Size decrease, indicating that the EMA attention
module and the improved SPPF module complement each
other, enhancing accuracy while reducing model size and
complexity.When the EMA attention module, SPPF
improvement module, and GSConv module are introduced
together, mAP@0.5 increases by 5.1%, demonstrating the
effectiveness of the three modules. When all four modules
(EMA attention module, SPPF improvement module,
GSConv module, and small object detection head) are
incorporated, mAP@0.5 increases by 7.2%, achieving the
highest detection accuracy among all improvements, the
model's parameter count is reduced by 0.95M, and model size

decreases by 0.72M, proving that these four enhancements
work synergistically to improve accuracy while making the
model more lightweight, further optimizing detection
performance.
Figure 8 shows the detection results of the proposed

algorithm and YOLOv8n algorithm. In the first picture, it can
be found that the traffic signs on the way are closely arranged,
and it can be found that the improved algorithm proposed in
this paper can accurately locate the six traffic signs in the
figure, and no error detection or omission occurs. In contrast,
YOLOv8n only detected four traffic signs and missed two
traffic signs that appeared repeatedly. Compared with the
improved algorithm, the YOLOv8 algorithm has the situation
of missing detection. The second test picture is of a road
situation in a dark light scene. The original YOLOv8
algorithm only detected four traffic signs, and there was one
wrong detection. The smaller "i2r" sign is identified as "i2"
class, and the blocked "i4r" sign is not recognized. By
contrast, the improved algorithm in this paper can not only
accurately identify the blocked traffic sign but also has a
better detection accuracy under dark conditions.
Figure 9 compares the precision-recall (P-R) curves before

and after algorithm improvement. In object detection tasks,
the P-R curve serves as a key metric for evaluating model
performance, illustrating the trade off between precision and
recall across varying confidence thresholds. As shown in the
figure, the P-R curve of the improved YOLOv8n (Fig. (a)) is
compared with that of the original YOLOv8n (Fig.
(b)).Overall, the improved model’s curve is closer to the
upper left corner, indicating higher precision while
maintaining a high recall rate. Moreover, the improved
YOLOv8n exhibits smaller fluctuations across different
classes or experimental conditions, suggesting enhanced
generalization ability and more stable detection results. In
contrast, the original YOLOv8n shows a more scattered
curve with a sharper drop in precision, implying a higher risk
of false positives or missed detections in traffic sign
scenarios.In summary, by optimizing the network
architecture, improving the loss function, and enhancing data
processing strategies, the improved YOLOv8n achieves
better detection accuracy and stability, leading to superior
performance in object detection tasks.

TABLEⅣ
EXPERIMENTAL RESULTS OF DIFFERENT MODELS ON THE CCTSDB DATASET

Model EMA SPPF_imp GSConv Head mAP@0.5 Parameters(M) ModelSize（M）

Yolov8n

95.2 3.01 5.1
√ 68.0 2.79 4.9
√ √ 67.9 2.59 4.56
√ √ √ 96.6 2.21 4.38
√ √ √ √ 97.5 1.96 4.07

TABLE I
EXPERIMENTAL RESULTS OF DIFFERENT MODELS ON THE TT100K DATASET
Model P% R% mAP@0.5 Parameters(M)
YOLOv5s 72.1 70.7 70.1 7.02
YOLOv7-tiny 56.5 47.1 46.4 4.82
ImproveYOLOv8n[23] 70.0 67.9 71.8 4.37
YOLOv10 65.8 61.5 66.5 5.5
YOLOv11 71.6 65.2 72.8 5.37
Ours 72.2 68.2 73.8 2.21

TABLE Ⅲ
EXPERIMENTAL RESULTS OF DIFFERENT MODELS ON THE CCTSDB DATASET
Model P% R% mAP

@0.5
Parameters(
M)

ModelSize
(M)

SSD 79 62.4 70.5 26.28 91.2
YOLOv5s 84.4 72.7 79.8 7.02 14.7
YOLOv7-tiny 81.3 70.1 73.2 4.82 10
YOLOv8n 94.8 91.1 95.2 3.01 6.3
ImproveYOL
Ov8n[23]

86.0 66.8 74.7 2.11 -

Ours 95.6 93.7 97.5 1.96 4.07
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(a)Original YOLOv8n

(b) Improved YOLOv8n
Fig. 9. Comparison of P-R curves between the improved YOLOv8n
algorithm and the original YOLOv8n algorithm

E. Experimental results of the CCTSDB2021 dataset
In order to further verify the generalization ability of the

proposed algorithm, a comparison experiment was conducted
with other mainstream algorithms on the CCTSDB2021
dataset. The experimental results are shown in Table 3.

As can be seen from Table 3, the improved algorithm
proposed in this paper has reached the highest values in P, R,
and mAP@0.5, which is significantly improved compared
with other mainstream classical algorithms and superior to
the four classical algorithms. Moreover, the improved
algorithm proposed in this paper is more reflected in
lightweight. Compared with the improved YOLOv8
algorithm, the Parameter value of the improved algorithm
proposed in this paper is reduced by 0.15M, and it is more
than one third lower than that of YOLOv8n. The parameter
number and model size of the improved algorithm proposed
in this paper are only 1.96M and 4.07M. Much smaller than
other comparison models.
Table 4 presents the results of ablation experiments

conducted on the CCTSDB2021 dataset to evaluate the
effects of different module combinations on model
performance. In the experiment, we successively introduced
EMA, SPPF_imp, GSConv, and Head modules to observe
their effects on the Model mAP@0.5, Parameters, and Model
Size. The results show that when the EMA module is used
alone, the mAP@0.5 of the model reaches 95.2, the
parameter number is 3.01M, and the model size is 5.1M.
After adding the SPPF_imp module, mAP@0.5 decreases
significantly to 68.0, parameter quantity to 2.79M, and model
size to 4.9M. With the further introduction of the GSConv
module, mAP@0.5 is increased to 67.9, the parameter
number is reduced to 2.59M, and the model size is 4.56M.
Finally, after adding the Head module, mAP@0.5 reaches the
highest value of 97.5 with 1.96M parameters and 4.07M
model size. These results show that by combining different
modules reasonably, the number and size of parameters of the
model can be significantly reduced while maintaining high
performance, and the model can be lightweight.
Figure 10 presents a comparison of different methods for

traffic sign detection. Subfigures (a) and (b) show two
distinct traffic sign scenarios. Each subfigure consists of
three panels: the original image, the heatmap generated by
YOLOv8n, and the heatmap produced by our method. The
original images display the actual traffic signs along with
surrounding environmental details. In the heatmaps, regions
in darker shades (closer to red) indicate a higher probability
of traffic sign presence as determined by the model. From the
figure, we can observe differences in the heatmap

Fig. 10. Comparison of heat maps of different methods in the traffic sign detection task
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distributions between YOLOv8n and our method across both
scenarios. Our method's heatmaps are more concentrated and
accurately cover the actual signs, highlighting its superior
Accuracy and robustness in traffic sign detection. In contrast,
YOLOv8n's heatmaps show some over diffusion and less
accurate detection in certain areas, which further underscores
the advantage of our method in this task.

V. CONCLUSION
In this paper, a lightweight traffic sign detection method

based on an improved YOLOv8n architecture is proposed to
address the challenges of false detections, missed detections,
and high computational complexity in complex traffic
scenarios. The optimized Spatial Pyramid Pooling Fast
(SPPF) module enhances multi scale feature extraction and
improves detection of small targets. The incorporation of the
Efficient Multi scale Attention (EMA) mechanism
strengthens feature representation and robustness against
background interference. A dedicated small object detection
head further improves detection accuracy for distant, low
resolution, or densely arranged traffic signs. Additionally, the
integration of Ghost Spatial Convolution (GSConv)
effectively reduces redundant computation, minimizes model
size, and accelerates convergence, enabling real time
performance with lower resource consumption. Experimental
results demonstrate that the proposed method achieves
superior detection accuracy while significantly reducing
missed and false detections, meeting the stringent demands of
autonomous driving systems. Future work will focus on
enhancing detection robustness under adverse weather and
lighting conditions to improve adaptability for real world
autonomous driving applications..
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