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Abstract—Effectively integrating heterogeneous modal

information and alleviating performance bottlenecks caused by
sparse interactions remain core challenges in multimodal
recommendation systems. To address the limitations of existing
methods in modal fusion, feature redundancy, and
computational overhead, this paper proposes a novel
Diffusion-based Attention Self-Supervised Learning
Recommendation algorithm (DASRec). The method introduces
a dynamic sparse generation process through diffusion models,
which enhances representation quality under sparse data
conditions via forward perturbation and reverse denoising.
Simultaneously, it incorporates a modal attention mechanism to
learn the importance of different modalities dynamically and
designs a modal-aware signal injection strategy to guide the
diffusion process in generating semantically consistent
interaction graphs. To further enhance modal consistency and
cross-modal collaborative representation, DASRec introduces a
cross-modal contrastive learning strategy that jointly optimizes
alignment constraints between primary and modal perspectives,
thereby improving model generalization and robustness.
Extensive experiments on two real-world multimodal datasets
demonstrate that DASRec significantly outperforms various
existing recommendation methods across evaluation metrics,
mainly exhibiting superior personalized recommendation
performance in high-sparsity scenarios. These results validate
its broad applicability and superior performance in multimodal
sparse recommendation tasks.

Index Terms—Attention Mechanism, Multimodal Fusion,
Diffusion Modal, Contrastive Learning, Recommendation

I. INTRODUCTION
ith the rapid development of internet technologies,
personalized recommendation systems are widely

applied across various domains, including e-commerce, short
video platforms, music streaming, and social media. These
systems recommend suitable content or products based on
their historical behaviors, preference patterns, and social
relationships, enhancing user experience and commercial
benefits. However, as data grows and user demands become
increasingly diverse, existing recommendation methods face
several challenges, such as data sparsity[1], difficulty in
multimodal information fusion[2], and limited
interpretability of recommendation results.
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In recent years, multimodal recommendation systems[3]
have emerged as a research focus. Compared with unimodal
methods, multimodal systems integrate multiple sources of
information, such as text, images, and audio, to
comprehensively understand user preferences and improve
recommendation accuracy. For instance, in short, video
recommendation systems[4], textual descriptions, cover
images, and background music of the videos are used to
model user interests. Nonetheless, multimodal
recommendation methods still encounter several challenges,
including: (1) semantic discrepancies and heterogeneity
across different modalities, which hinder effective
information fusion; (2) missing or noisy modality data, which
degrades recommendation performance; (3) the high
dimensionality of multimodal features, which results in
sizeable computational overhead and limits scalability.
Therefore, effectively leveraging multimodal information
while improving computational efficiency and
recommendation performance is a critical research direction
in current recommender systems.
In multimodal recommendation systems, traditional

approaches typically fuse features from different modalities
through weighted summation or simple concatenation.
However, such approaches fail to adequately consider the
relative importance of different modalities, which may lead
to interference from irrelevant or redundant information.
Moreover, current multimodal recommendation methods
usually adopt fixed fusion strategies[5], without adaptively
adjusting modality weights according to different users or
recommendation scenarios[6], thus limiting model flexibility
and generalization capability.
Meanwhile, the data sparsity issue severely limits

recommendation systems' performance. In real-world
applications, user-item interaction data is often minimal, as
most users interact with only a few items. This sparsity makes
it difficult for collaborative filtering methods[7] to accurately
learn user preferences. To alleviate the problem of data
sparsity, self-supervised learning (SSL)[8] is widely applied
in recommendation systems in recent years. SSL extracts
potential supervisory signals from unlabeled data and
generates auxiliary training objectives to improve the
generalization ability of models. However, existing
self-supervised learning methods still exhibit limitations
when applied to multimodal recommendation tasks. For
example, some approaches generate self-supervised signals
through random data augmentation[9], such as node or edge
dropout. However, these augmentation strategies are often
designed based on heuristic rules[10], which fail to account
for the characteristics of different modalities fully and may
introduce irrelevant noise.
This paper proposes a Multimodal Diffusion Attention
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With Self-Supervised Recommendation algorithm (DASRec)
to address the aforementioned challenges. This method
enhances the performance of recommendation systems by
incorporating cross-modal attention mechanisms[11] and a
dynamic sparse attention mechanism based on diffusion
processes[12]. The main contributions of this work are
summarized as follows:
 A dynamic sparse attention mechanism based on diffusion

models is proposed. A diffusion process is introduced on
the user-item interaction graph and combined with a
modality attention mechanism to adaptively adjust the
weights of multimodal features, thereby improving the
accuracy of personalized recommendations.

 A self-supervised multimodal fusion strategy is explored.
A cross-modal contrastive learning framework enhances
the model's capability to learn from different modalities of
features.

 Extensive experiments are conducted to validate the
effectiveness of the proposed model. The results show that
the model consistently performs better in recommendation
tasks, especially in sparse data scenarios, significantly
improving recommendation accuracy and personalization.

II. RELATEDWORK

This section reviews several important research directions
in the field of recommendation algorithms, with a focus on
the integration of multimodal diffusion and attention
mechanisms, as well as the application of self-supervised
learning in recommendation systems.

A. Recommendation Algorithms Based on Multimodal
Multimodal recommendation algorithms have emerged as

one of the key research hotspots in recent years. Unlike
traditional unimodal recommendation methods, multimodal
recommendation systems incorporate various types of
information—such as text, images, audio, and video—to
enhance the modeling of user interests. Reference[13]
proposes a self-supervised multimodal recommendation
model that does not require auxiliary graph augmentation or
negative sampling. It generates contrastive views via dropout
and jointly optimizes user and item representations through
interaction reconstruction and modality alignment, thereby
improving recommendation performance while reducing
computational costs. Reference[14] introduces a
self-supervised multimodal graph contrastive learning model.
It constructs multiple views by dropping modality-specific
edges and applying modality masking, and incorporates a
novel negative sampling strategy to enhance multimodal
representation learning. This approach better captures user
preferences across modalities and improves micro-video
recommendation performance and convergence speed.
Reference[15] proposes a multimodal variational graph
autoencoder model. It uses modality-specific variational
encoders to learn Gaussian variables for users and items. It
applies a product-of-experts strategy to fuse embeddings
from different modalities, thereby balancing semantic
informativeness and uncertainty.

B. Recommendation Algorithms Based on Diffusion
Diffusion models represent a powerful class of generative

modeling techniques that have achieved significant progress

in computer vision, natural language processing, and related
fields in recent years. The core idea of diffusion models is to
learn the underlying data distribution through forward noise
injection and reverse denoising reconstruction, enabling the
generation of high-quality samples. Reference[16] proposes a
diffusion-based recommendation system that learns the
generation process of user interactions through denoising. It
introduces two task-specific extensions: L-DiffRec performs
diffusion in the latent space to reduce the computational cost,
while T-DiffRec captures evolving user preferences via time
reweighting, enhancing recommendation performance.
Related work[17] proposes a deep influence diffusion
recommendation model, which simulates the recursive
diffusion process of users in social networks through a
hierarchical influence propagation structure. This model
dynamically updates user embeddings to alleviate data
sparsity and improve social recommendation effectiveness.

C. Recommendation Algorithms Based on Self-Supervised
Learning
Self-supervised learning (SSL) has recently been widely

applied in recommendation systems. The core idea of SSL is
to extract supervision signals from the data itself, thereby
reducing dependence on manual annotations and improving
the robustness and generalization ability of recommendation
models. Related work[18] is a commonly used SSL approach.
It constructs positive and negative samples to make the
representations of similar users/items closer while pushing
apart dissimilar representations. SLMRec[19] is a
multimedia recommendation model based on SSL. It
enhances item representation quality by leveraging
multimodal data augmentation and contrastive learning to
explore potential relationships across modalities. RGCL[20]
is a review-aware recommendation model based on graph
contrastive learning. It constructs a user-item graph with
enhanced edge features incorporating user-item ratings and
review semantics. By performing node- and edge-level
contrastive tasks, RGCL provides self-supervised signals to
improve the representation learning for users and items.

D. Recommendation Algorithms Based on Attention
Mechanism
The attention mechanism is a dynamic weighting strategy

that estimates input features' importance, thereby enhancing
models' expressive power. Modality attention mechanisms
dynamically adjust the weights of different modalities,
allowing the model to integrate multimodal information more
effectively. CRMMAN[21] is a collaborative
recommendation model based on a multimodal multi-view
attention network. It simultaneously models user preferences
and aversions and enriches item representations using
semantic and structural information, improving
recommendation comprehensiveness and accuracy.
MMKDGAT[22] is a remote sensing image recommendation
model based on a deep graph attention network aware of
multimodal knowledge graphs. It constructs a multimodal
knowledge graph to integrate various attributes and visual
information of remote sensing images and performs
information aggregation through a deep relational attention
mechanism. This model achieves strong performance in
cold-start scenarios.
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III. PRELIMINARIES

This section introduces the key notations and definitions
used throughout the paper and briefly overviews the problem.
Table I lists the specific meanings of the symbols:

TABLE I SYMBOL DESCRIPTIONS

Symbol Description

 1 2 | |, ,..., UU u u u The set of users

 1 2 | |, ,..., II i i i The set of items

( , )u i E Indicates an interaction between user u and
item i

( , , )G U I E User-item interaction graph

M The set of modalities

md Feature dimension of modality m

ˆ mdm
if  Feature vector of item i under modality m

( ,{ })M
iG G F i I  Multimodal interaction graph

ˆuiy Predicted interaction probability between user
u and item i

Definition 1. Let U denote the set of users
 1 2 | |, ,..., UU u u u , and I denote the set of items

 1 2 | |, ,..., II i i i . Let | |U and | |I denote the total number of

users and items, respectively.
Definition 2. The user-item interaction graph is denoted as
( , , )G U I E , where U is the user set, I is the item set, and E

is the set of edges. An edge ( , )u i E indicates that user u has
interacted with item i.
Definition 3. For each item i, a multimodal feature vector

îF is introduced to incorporate information from different

modalities 1 | |ˆ ˆ ˆˆ ( ,..., ,..., )m M
i i i iF f f f . Let M represent the set

of modalities (e.g., textual, visual, acoustic). For each
modality m, ˆ mdm

if  denotes the feature vector of item i,

and md is the corresponding feature dimension.
In DASRec, the recommendation algorithm predicts

potential interactions between users and items based on the
graph structure once the graph is constructed. The prediction
function is defined as follows:

,ŷ ( )M
u i f G (1)

where ,ŷu i denotes the predicted interaction score between
user u and item i.

IV. ALGORITHM FRAMEWORK

This section presents a detailed description of the proposed
recommendation algorithm, DASRec, which consists of four
key components: 1) Dynamic Sparse Diffusion. A diffusion
model is employed to simulate the denoising generation
process of user-item interactions, enhancing representation
learning quality. The diffusion process adopts a dynamic
sparsity strategy to denoise high-noise data, improving the
recommendation model's robustness. 2) Modality-Attentive
Multimodal Aggregation. A modality attention mechanism is
utilized to dynamically learn the importance of different
modalities, thereby optimizing user and item representations.
3) Cross-Modal Contrastive Learning. Positive and negative
sample pairs are constructed to pull similar data closer and
push dissimilar data apart, thus enhancing the representation
quality of users and items across modalities. 4)
Recommendation Prediction. The final prediction is
optimized using a loss function incorporating Bayesian
Personalized Ranking (BPR)[23], enabling the model to
generate personalized recommendation results. The overall
framework of DASRec is illustrated in Figure 2.

A. Dynamic Sparse Diffusion
Inspired by the successful application of diffusion models

in preserving essential patterns during data generation, this
work designs a multimodal graph diffusion module that
generates user-item interaction graphs enriched with
modality information, enabling more accurate modeling of
user preferences.

Fig. 1. Overall Framework of the DASRec.
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In multimodal recommendation tasks, modality
information may contain irrelevant or noisy features,
negatively affecting recommendation performance. To
address this issue, a modality-aware denoising diffusion
probabilistic model is proposed. This model fuses
collaborative signals from user-item interactions with
multimodal information. Specifically, the user-item
interaction graph is progressively perturbed, and iterative
denoising learning is performed to recover the interaction
structure. This denoising process effectively incorporates
multimodal knowledge while suppressing irrelevant or noisy
signals.
In addition, a modality-aware signal injection mechanism

is introduced to guide the recovery of interaction
relationships. This mechanism provides adequate
modality-level support during the reconstruction of
user-item interactions, allowing the final generated graph to
reflect users' actual preferences better. DASRec presents an
efficient and robust solution for multimodal
recommendation by combining diffusion modeling with
modality-aware signal guidance.
1) Dynamic Forward Diffusion Process
Let the interaction behavior of user u over the item set I

represented as 0 1 | | 1, ,...,u u u
u Ia a a     , where each element

{0,1}u
ia  indicates whether user u has interacted with item

i. The forward diffusion process gradually adds Gaussian
noise over T time steps, transforming the interaction
distribution toward a standard Gaussian form. The transition
equation of the diffusion process is defined as:

1 1( | ) ( ; 1 , )t t t t tq N I       (2)
Where (0,1)t  controls the noise intensity added at

each time step.
In this work, user sparsity information is introduced to

dynamically regulate the diffusion process to better align
with real-world data distribution. The sparsity of user u is
defined as:

0 1|| ||1
u

u
as
M

  (3)

Where 0 1|| ||ua denotes the number of interactions for user
u in the interaction matrix, and M is the maximum possible
number of interactions (i.e., the total number of items). The
sparsity score us ranges from 0 to 1 and reflects the degree
of sparsity in user behavior.
This metric quantifies the sparsity level of a user's

interactions across all items. A higher value us indicates that
the user exhibits more sparse interaction behavior. During
the forward diffusion process, this sparsity measure is
incorporated to adaptively adjust the noise intensity,
enabling the model to fit users with varying sparsity levels
better. The adjusted noise scheduling function is defined as:

0 0( | , ) ( ; , (1 ) )t tt u t uq s N s I       (4)
To regulate the amount of noise added during the

diffusion process, two parameters are introduced, 1t t  
which represent the proportion of original information
retained at time step t. '' 1

t
t tt

 


 , which accumulates the

overall information retention rate from t = 1 to time t.

Based on this, the diffusion data t can be
reparameterized as:

0 1 , (0, )t tt N I         (5)
where 0 denotes the original (clean) data and  is

random noise sampled from a standard normal distribution.
To control the magnitude of noise introduced during

diffusion, a linear noise scheduling strategy is adopted,
defined as:

min max min
11 ( ( ))
1t u

ts
T

   
    


(6)

where min and max (both within the range (0, 1)) define
the lower and upper noise bounds, respectively.
This scheduling strategy enables effective control over the

level of noise added at different diffusion steps, ensuring
that the model receives appropriate perturbation throughout
the process. As a result, the quality and stability of the
generated data are significantly improved.
2) Dynamic Reverse Diffusion Process
DASRec aims to progressively remove the noise

introduced t during the reverse process and recover the
original clean data 1t  , enabling the multimodal diffusion
to effectively capture subtle variations in the generative
process. The reverse diffusion process starts from the final
noisy representation T and iteratively reconstructs the
user-item interaction information through denoising
transformations.
The transition of the reverse process is defined as:

1 1( | , ) ( ; ( , , ), , )t t u t t u tp s N t s t  
        (7)

Where ( , )t t  and ( , )t t
 denote the predicted

mean and covariance of the Gaussian distribution,
respectively. These parameters are generated by a neural
network with learnable parameters  .
This approach ensures that the diffusion model gradually

removes noise during the reverse generation while
preserving the critical information in the data, resulting in a
more accurate and representative reconstruction of user-item
interactions.
3) Diffusion Model Training
The training objective of the diffusion model is to

optimize the evidence lower bound (ELBO) to maximize the
log-likelihood of the observed user-item interaction 0 ,
formulated as:

   
0( ) 0

0
log ( )

T

elbo q q t
t

L p L  


     (8)

The term tL at different time steps is defined as:

0 1

0

1 0 1

log ( | ), 0
( ( | ) || ( )),
( ( | , ) || ( | )), {1,2,..., 1}

t KL T T

KL t t t t

p t
L D q p t T

D q p t T

  
  
     

 
 
  

(9)

Here, 0L represents the negative reconstruction error 0 .
The terms tL for {1,..., 1}t T  constrain the model to
approximate the reverse transition distribution 1( | )t tp  

to the true posterior 1 0( | , )t tq    .
To optimize the diffusion process, a neural network is

designed for denoising. According to Bayes' theorem, the
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posterior 1 0( | , )t tq    has the following closed-form
expression:

 2
1 0 1 0( | , ) ( ; ( , , ), ( ) )t t t tq N t t I          (10)

Where:

1 1
0 0

(1 ) (1 )
( , , )

1 1
tt t t

t t
t t

t
   

    
 

  
 

 
(11)

2 1(1 )(1 )( )
1

tt

t

t  


 



(12)

To simplify computation and enhance training stability,
the variance term is set as 2( , ) ( )t t t I


  . The final loss

function at time step t is defined as:

   2
0 22

1 || , ( , , ) ||
2 ( )t t tL t t

t     


  (13)

The neural network learns the mean ( , )t t  , which is
defined as:

1 1(1 ) (1 )
( , ) ( , )

1 1
tt t t

t t t
t t

t t

   
    

 
  

 
 

(14)

Here,  ( , )t t  is the network's prediction of 0 ,
implemented using a multilayer perceptron (MLP) with
inputs t and the embedding of time step t. For the initial
step 0L , the loss is computed as:

 2
0 1 0 2|| ( ,1) ||L     (15)

In practice, the time step t is uniformly sampled to reduce
the computational cost {1,2,..., }T . The final training loss is
expressed as:


0

2
(1, ) ( ) 0 2|| ( , ) ||elbo t U T q tL t         (16)

B. Modality-Attentive Multimodal Aggregation
A modality attention mechanism is designed to perform

multimodal aggregation to effectively integrate multimodal
semantic features and guide the diffusion process in
generating modality-aware user-item graph structures. This
mechanism injects modality-aware signals into the
aggregated information to extract user preferences under
different modalities and enhance the semantic alignment of
the generated graph structure.
1) Modality Attention Aggregation
For each modality {1,..., }m M , the predicted user-item

interaction probability  | | | |
0

U I  is first used to perform
weighted aggregation on the modality-specific item features

mdm
ie  , yielding the latent preference representation of

user u under modality m:

0,

m m
uiu i

i I
z e



  (17)

Next, each modality-specific representation is fed into a
modality attention network to learn the contribution weight
of each modality to the user's preferences:

2 1 1max( ( ))m T m
u ua Soft w W z b   (18)

Finally, a weighted fusion strategy is adopted to aggregate
the user preferences from all modalities and obtain the final
modality-aware user representation uz :

1

M
m m

u u u
m

z a z


  (19)

2) Modality-Aware Signal Injection Mechanism (MSI)
To enhance the diffusion module's ability to model

multimodal semantics in the construction of user-item graph
structures, a Modality-aware Signal Injection (MSI)
mechanism is proposed. MSI aims to guide the model in
generating user-item interaction graphs that are semantically
aligned across modalities. After modality attention
aggregation, a semantic path is constructed based on the
aggregated modality-aware representations. Simultaneously,
based on the observed binary interaction matrix 0 , an
aggregation of item ID embeddings ie is performed to
construct a structure-aware path. By minimizing the mean
squared error (MSE) between these two types of paths, the
model is encouraged to generate modality-aware interaction
graphs semantically consistent with the proper interaction
structure. The loss function is defined as:

 2
0 0 2|| ||m m

msi i iL e e     (20)

where i
me denotes the item feature under modality m,  0

is the predicted interaction probability from the diffusion
model, and 0 is the observed binary interaction matrix.

C. Cross-Modal Contrastive Learning
A contrastive learning-based cross-modal alignment

mechanism is proposed to fully exploit the commonalities in
user behavior across different modality feature spaces and
improve cross-modal representations' consistency and
generalization. This mechanism performs dual-directional
alignment from both the modality and main view
perspectives by constructing positive and negative sample
pairs and maximizes semantic consistency between different
modalities.
Based on the modality-aware user-item graph mG

constructed in the previous module, a graph neural network
(GNN) is applied to perform structured feature modeling.
For each modality m M , the original feature vectors
 m
m df  are aligned in dimensionality, mapped to a shared

embedding space via a single-layer multilayer perceptron
(MLP), and normalized to obtain modality-aligned item
feature representations:

( ( )),
mm

ie Norm Trans f m M  (21)
( )Trans  denotes a nonlinear transformation that maps

inputs from md to d , and ( )Norm  represents feature
normalization. Subsequently, one-step graph neighborhood
aggregation is performed on the modality-aware
graph | | | |m U IG  to derive structural representations for
users and items under modality m:

,* *,,
m mm m m
uu u i iiz G E z G E    (22)

Here, | |m I d
iE

 denotes user

embeddings, | |m I d
iE

 represents modality-aligned item

features, and
m

G is the symmetrically normalized adjacency
matrix of mG . The normalization is defined as:
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,
,

| || |

m
m u i
u i

m m
u i

G
G

N N
 (23)

Where ,m m
u iN N denote the neighbor sets of user u and

item i in the modality-specific graph mG , respectively. To
further exploit cross-modal structural synergies in the
original interaction graph, multilayer message propagation
is applied to the original user-item interaction graph G,
yielding higher-order semantic-enhanced representations:

( 1) ( ) (0),l l
m m m mZ G Z Z Z    (24)

Here, G is the normalized adjacency matrix of the
interaction graph. Finally, the modality-aware
representations for contrastive learning are obtained by
aggregating all layer-wise outputs via summation:

( )

0

L
l

m m
l

Z Z


 (25)

1) Modality Perspective as Anchor
Given any two distinct modalities 1 2,m m M (e.g., text,

image, audio), the feature embeddings from these modalities
are treated as anchors for contrastive learning. For a given
user, the representations are derived from the two modalities

1m
uz and 2m

uz are considered positive sample pairs, while
representations of other users under either modality form
antagonistic sample pairs. By maximizing the similarity
between positive samples and minimizing the similarity
between negative samples, the model is guided to learn the
latent consistency of user representations across different
modalities. Specifically, the InfoNCE loss is adopted and
defined as:

1 2

1 2
1 2
1 2

,

exp( ( , ) / )log
exp( ( , ) / )

m m
user u u
cl m m

m m M u U u vv Um m

s z zL
s z z



 


  


(26)

where ( )s  ， denotes a similarity function (e.g., cosine
similarity), and  is a temperature coefficient that controls
the smoothness of the distribution.
2) Main View as Anchor
Beyond enforcing consistency across modalities, the final

user/item representations 
uh generated by the main

recommendation task are also used as anchors to align the
modality-specific feature views. This alignment enhances
the consistency between the main task and the multimodal
features. Specifically, the InfoNCE loss on the user side is
defined as:




exp( ( , ) / )log
exp( ( , ) / )

m
uuser u

cl m
m M u U u uv U

s h zL
s h z


 



  
(27)

Similarly, the item representation 
ih from the main

view is also used as an anchor to compute the consistency
between the primary representation and the
modality-specific item embeddings m

iz , resulting in a
corresponding contrastive loss item

clL .
To comprehensively enhance the cooperative learning

of cross-modal representations, the user-side and item-side
contrastive losses are combined to form the final
cross-modal contrastive learning objective, defined as:

user item
cl cl clL L L  (28)

3) Cross-Modal Aggregated Representation

To further enhance the contribution of multimodal
information to recommendation performance, the final user
and item embeddings , d

u ih h  for prediction are
generated based on their structure-aware representations
from all modalities.

First, the raw features 
m
f of each modality are aligned

in dimensionality using an MLP mapping function, yielding
modality-aligned feature representations m

ie . Subsequently,
multilayer graph aggregation is performed on both the
original user-item interaction graph G and the

modality-aware graph
m

G , generating structural

representations ,
m m
u iz z  for users and items under each

modality:

,* ,* ,* *,

,* ,* ,* *,

( )

( )

m
u u u u uu u u
m
i i i i ii i i

z A E A A E A E

z A E A A E A E

      

      




(29)

This design integrates first- and second-order
connectivity from the original interaction graph while
incorporating neighbor information from the
modality-aware graph, thereby preserving cross-modal
collaborative signals.

After obtaining individual structural representations for
all modalities, a weighted aggregation is applied to generate
the final fused multimodal representations. To account for
the varying importance of modalities, a learnable modality
weight vector mk is introduced as a regulator, performing a
weighted summation:

,
m m
u iu m i m

m M m M
h k z h k z

 

    (30)

To further enhance the modeling of high-order
collaborative relationships, multilayer graph neural network
(GNN) propagation is applied to the original interaction
graph G :

( 1) ( ) (0),l l
uH G H H h    or ih (31)

Where ( )lH denotes the embeddings at the l-th layer,
and the GNN is stacked for L layers. Normalized initial
embeddings are incorporated as residual terms to mitigate
over-smoothing caused by excessive message passing. The
final user or item representations are generated by summing
all layer-wise embeddings with weighted residuals:

( ) (0)

0
( )

L
l

l
H H Norm H



   (32)

 is a hyperparameter controlling the residual ratio.

D. Recommendation List Generation
After learning the final user representation uh and item

representation ih , the predicted interaction score between
user uu and item i is computed via their inner product:

​  T
u iuiy h h  (33)

The Bayesian Personalized Ranking (BPR) loss is
adopted as the primary optimization objective for
recommendation:

 
( , , )

log ( )bpr ui uj
u i j O

L y y


   (34)

To integrate cross-modal contrastive learning objectives,
the total loss function is jointly optimized as follows:
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1 2 2|| ||rec bpr clL L L     (35)

Here,  represents the set of trainable parameters,
1 2 ， adjust the relative importance between the

contrastive loss and the regularization term.

V. EXPERIMENTS

This section describes the datasets, evaluation metrics,
baseline comparisons, and ablation studies conducted to
validate the proposed method. Detailed analyses of
experimental results are provided.

A. Experimental Setup
1) Datasets
The model is evaluated on two widely used real-world

datasets, TikTok and Amazon-Baby, to assess
recommendation algorithms, covering user rating behaviors
across diverse items. These datasets represent two common
multimodal domains: short-video recommendations and
e-commerce. TikTok Dataset， derived from the popular
short-video platform TikTok, includes user interaction data
such as video views, likes, and shares. Amazon-Baby
Dataset focuses on maternal and infant products (e.g., bottles,
strollers, toys). It contains user reviews, ratings, and
multimodal features (e.g., textual, visual, and acoustic) of
related products. Detailed statistics for both datasets are
summarized in Table II.
Specifically, the letter T denotes the textual modality, V

represents the visual modality, and A stands for the acoustic
modality. The TikTok dataset includes all three modalities
(T, V, A), whereas the Amazon-baby dataset contains only
two modalities (T and V).
The sparsity of each dataset is calculated as:

int1 eractionsSparsity
users items

 


(36)

TABLE II Statistical Information Of The Datasets

Datasets TikTok Amazon-baby

Modality Embed Dim T V A T V
768 128 128 1024 4096

Users 9319 19445
Items 6710 7050

Interaction 59541 139110

Sparsity 99.904% 99.899%

2) Evaluation Metrics
Three widely-used metrics are adopted to evaluate

recommendation performance: Recall@k, Normalized
Discounted Cumulative Gain (NDCG@k), and Precision@k,
where @k denotes the ranking position, typically evaluating
the top-k recommended items (in this work, k=20).
 Recall@k. Measures the overlap between recommended

items and users' truly relevant items, reflecting
recommendation comprehensiveness. It is computed as:

 
:

Re @

k
rel

uu

rel
u

i i

call k

 



    
   (37)

Where rel
u represents the set of all relevant items for

user u, and
 k

u


denotes the top-k items recommended to u.
 NDCG@k. Evaluate ranking quality by considering the

recommended items' relevance and positional importance.
The formula is:

����@� = 1
� �=1

� 1
log2 (��+1)

� (38)

where ji indicates the position of the i-th relevant item in
the recommendation list. If the i-th relevant item is not in the

top-k list, the term
2

1
log ( 1)ji 

defaults to 0.

 Precision@k. A standard metric in information retrieval
and recommendation systems, measuring the accuracy of
the top-k recommendations. It calculates the proportion
of truly relevant items among the top-k results:

1
( )

Pr @
N

i
rel i

ecision K
K

 (39)

N is the total number of users and ( )rel i is an indicator
function that equals one if the i-th recommended item is
relevant to the user, and zero otherwise.
Three metrics evaluate model performance, targeting the

top 20 items in the recommendation list. This paper employs
a full-ranking evaluation strategy to calculate the
recommendation effectiveness, and the average scores
across all users in the test set are aggregated as the final
evaluation metrics. Higher metric values indicate superior
recommendation performance of the DASRec model.

3) Baselines
The DASRec model is compared with the following 12

baseline methods:
 NGCF[24]: Utilizes multilayer graph convolutional

networks (GCNs) to propagate information on user-item
interaction graphs, learning latent user and item
representations. It emphasizes neighbor information
propagation and aggregation to enhance recommendation
effectiveness.

 LightGCN[25]: Simplifies GCN propagation by
removing nonlinear activations and feature
transformations, improving computational efficiency and
model performance.

 SGL[26]: Introduces contrastive learning signals through
stochastic data augmentation (e.g., node/edge dropout) to
enhance graph collaborative filtering.

 NCL[27]: Employs Expectation-Maximization (EM)
clustering to identify neighboring nodes and construct
contrastive views for generating high-quality positive
pairs.

 HCCF[28]. Captures local and global collaborative
relationships via hypergraph neural networks and
optimizes recommendations through cross-view
contrastive learning.

 MMGCN[29]. Propagates modality-specific embeddings
using GNNs and models user preferences for different
modalities tailored for micro-video recommendation.

 GRCN[30]. Refines interaction data using structurally
optimized GCNs, reducing false-positive feedback and
noise via pruning.
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TABLE III PERFORMANCE COMPARISON OF DASREC WITH BASELINES ON TWO DATASETS

Datase
ts Metric NGCF LightG

CN SGL NCL HCCF MMG
CN GRCN LATTI

CE
CLCR
ec

SLMR
ec BM3 DiffM

M
DASR
ec

LastF
M

Precisi
on@2
0

0.0030 0.0033 0.0030 0.0034 0.0030 0.0037 0.0036 0.0042 0.0035 0.0042 0.0048 0.0056 0.0057

Recall
@20 0.0604 0.0653 0.0603 0.0658 0.0670 0.0730 0.0806 0.0842 0.0627 0.0845 0.0957 0.1129 0.1148

NDCG
@20 0.0238 0.0282 0.0282 0.0269 0.0267 0.0307 0.0350 0.0369 0.0265 0.0353 0.0403 0.0456 0.0483

Amazo
n-baby

Precisi
on@2
0

0.0032 0.0037 0.0036 0.0038 0.0037 0.0032 0.0041 0.0044 0.0034 0.0043 0.0044 0.0051 0.0052

Recall
@20 0.0591 0.0601 0.0678 0.0705 0.0705 0.0640 0.0754 0.0829 00613 0.0765 0.0839 0.0975 0.0990

NDCG
@20 0.0261 0.0261 0.0296 0.0311 0.0308 0.0284 0.0336 0.0367 0.0286 0.0352 0.0361 0.0411 0.0424

 BM3[31]. Leveraging self-supervised learning for
user-item interaction modeling avoids reliance on
randomly sampled negative samples.

 LATTICE[32]. Discovers latent item-item relationships
via modality-aware homogeneous item graphs to improve
recommendation performance.

 SLMRec[33]. Enhances recommendations through
multimodal data augmentation, including feature
perturbation and modality-aware pattern recognition.

 DiffMM[34]. Augments user-item interaction
representations with diffusion processes and optimizes
multimodal fusion via self-supervised learning.

 CLCRec[35]. CLCRec is a contrastive learning-based
framework designed for cold-start recommendation. It
enhances recommendation accuracy by maximizing the
mutual information between item content features and
collaborative representations, enabling effective
predictions even for items without historical interactions.

4) Parameter Setting
The DASRec model is implemented under the PyTorch

framework and updated using the Adam optimizer with
Xavier initialization (default parameters) to ensure fair
comparisons. During training, the batch size is set to 1024,
the embedding dimension is set to 128, and the diffusion
steps are set to 5. In the modality attention mechanism, the
number of attention heads is set to 4 to dynamically adjust the
weights of different modality features, with a default value of
1 (enabled). The dynamic noise intensity coefficients are
searched within the range {0.1,0.3,0.5,0.7} , while the
modality similarity threshold is adjusted within the
range {0.3,0.4,0.5,0.6,0.7} . The same optimization
algorithms, parameter initialization methods, and batch sizes
as DASRec are adopted for baseline methods.

B. Analysis of Experimental Results
Extensive experiments are conducted on the TikTok and

Amazon-Baby datasets, and the results are compared with 11
baseline methods, as shown in Table 3. The experimental
results demonstrate the following:
Models such as NGCF and LightGCN adopt graph neural

network-based collaborative filtering methods.
Specifically, BiasMF optimizes matrix factorization by

introducing bias scores, while AutoRec learns embeddings
through autoencoder-based interaction reconstruction,
validating the effectiveness of these methods in
recommendation tasks. Models including SGL, NCL,
and HCCF are self-supervised learning-enhanced
recommendation frameworks that effectively capture
high-order collaborative signals between users and items via
distinct message-passing mechanisms. The multimodal
recommendation frameworks are
GRCN, LATTICE, BM3, SLMRec, DiffMM, CLCRec,
and MMGCN.
The results show that the DASRec model consistently

outperforms all baselines, significantly improving evaluation
metrics. This indicates that cross-modal attention
enhancement and the dynamic sparse attention mechanism
based on diffusion processes substantially improve model
performance. Notably, the sparsity levels of the two datasets
are 99.904% and 99.899%, respectively, which benefit more
from the dynamic sparse attention mechanism.

C. Model Analysis
This section investigates the effectiveness of individual

modules in DASRec and analyzes the impact of key
parameters through ablation studies and parameter sensitivity
analyses.
1) Ablation Experiments
To validate the contributions of the data augmentation

method and attention mechanism, two variants of DASRec
are generated by removing specific modules. DASRec-n
excludes the dynamic sparse attention mechanism based on
the diffusion process. DASRec-a turns off cross-modal
attention enhancement to adjust attention weights.
Experimental results on the TikTok and Amazon-Baby
datasets are summarized in Table IV.
2) Analysis of Hyperparameters
This section discusses the impact of hyperparameters 

and the similarity sim-threshold on the performance of
DASRec. The detailed analysis is as follows:
 Impact of  .
The parameter  controls the noise intensity in the

diffusion model, which directly affects the augmentation
strategy for interaction data.
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TABLE IV PERFORMANCE COMPARISON OF DASREC WITH OTHER
ABLATION METHODS

Datasets Metrics DASRec-n DASRec-a DASRec

TikTok

Recall@20 0.1131 0.1130 0.1147

NDCG@20 0.0471 0.0473 0.0479

Precision@20 0.0056 0.0057 0.0057

Recall@20 0.0051 0.0052 0.0052

Amazon-baby NDCG@20 0.0981 0.0990 0.0990

Precision@20 0.0415 0.0426 0.0424

A moderate noise level enhances the robustness of
interaction representations. A low value of  (e.g., 0.1) may
lead to insufficient augmentation, while a high value (e.g.,
0.7) may introduce excessive noise, degrading
recommendation accuracy. Taking the TikTok dataset as an
example, all other hyperparameters are fixed while varying
 within a defined range {0.1,0.3,0.5,0.7} . The results are
shown in Figure 2:

Fig. 2. Performance Comparison of different 

As illustrated in the figure, the model achieves optimal
performance when  =0.3.
 Impact of the sim-threshold.
The sim-threshold filters the similarity between modalities,

ensuring the quality of information fusion. The default value
is set to 0.5, meaning that only modality pairs with similarity
above 0.5 contribute to the final representation. A lower
threshold (e.g., 0.3) may introduce irrelevant information,
while a higher threshold (e.g., 0.7) may exclude potentially
helpful information. Again, using the TikTok dataset, the sim
threshold is tested with values 0.3, 0.4, 0.5, 0.6, and 0.7 while
keeping other hyperparameters fixed. The results are shown
in Figure 3:

Fig. 3. Performance Comparison of different sim-thresholds

The results show that recommendation performance varies
significantly with different sim thresholds. The model
performs best when sim-threshold = 0.6, while higher and
lower values lead to noticeable performance degradation.
Therefore, choosing an appropriate sim-threshold value to
achieve optimal results is essential.

VI. CONCLUSION
This paper addresses key challenges in multimodal

recommendation systems, including difficulties in modality
fusion, severe data sparsity, and lack of representation
consistency. A novel recommendation algorithm, DASRec,
is proposed, a self-supervised learning framework with
attention-enhanced multimodal diffusion. From a generative
modeling perspective, DASRec introduces a diffusion
process to construct a dynamically sparse,
attention-enhanced denoising interaction graph, significantly
improving the model's ability to handle sparse interaction
data. A modality attention mechanism is designed to model
the importance of different modalities, and a modality-aware
signal injection mechanism is incorporated to guide the
diffusion-based reconstruction, ensuring semantic
consistency in the generated multimodal structure.
Experimental results demonstrate that DASRec consistently
outperforms existing methods on the TikTok and
Amazon-baby datasets, confirming its effectiveness and
practical value. Future work may extend this framework to
real-time recommendations, cold-start scenarios, and more
complex multimodal fusion settings, enhancing its
adaptability in dynamic environments.
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