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Abstract—We construct a generalisation of a recently pro-
posed SEIR-type epidemic model involving social distancing
and lockdown intensities, by incorporating the proportion
of vaccinated newborns and replacing the bilinear incidence
rate with a Holling type II incidence rate. We establish the
dynamical properties of the resulting model: the solutions’ non-
negativity and boundedness, the equilibria and basic reproduc-
tion number, as well as the local asymptotic stability of the
equilibria. Subsequently, we use the forward Euler method to
construct a discrete version of the model, which admits the
same equilibria. We formulate sufficient conditions for the local
asymptotic stability of these equilibria, involving not only the
basic reproduction number but also the discretisation step size.
Finally, using two sets of parameter values representing disease-
free and endemic situations, we conduct numerical simulations
and sensitivity analysis, the latter revealing that vaccination
is more effective for preventing an outbreak in a disease-free
situation, whereas social distancing and lockdown are more
effective for resolving an endemic situation and lowering the
epidemic peak.

Index Terms—social distancing, lockdown, vaccination,
Holling type II, basic reproduction number, forward Euler
method, sensitivity analysis, epidemic peak

I. INTRODUCTION

THE recent COVID-19 pandemic has led to a remarkable
surge of interest in disease-transmission modelling.

Indeed, mathematical models have been developed to un-
derstand not only how the disease itself is transmitted within
a certain population, but also to investigate whether eradica-
tive interventions such as social distancings and lockdowns
could effectively mitigate the transmission. For the latter
purpose, classical disease-transmission models such as the
Kermack-McKendrick SIR-type model [38], albeit remaining
of extensive use [8], [9], [25], [37], [47], [68], [22], [40],
often prove insufficient. As a result, through modifications
and alignments with real-world observations, more complex
mathematical models have been proposed, and employed to
better assess the impact of such interventions [3], [10], [12],
[16], [29], [31], [57], [63], [70], [54], [42], [14], [33], [1],
[26], [55]. Additionally, disease-transmission models have
also been used to study the propagation of alcoholism [41],
[20], [64], computer virus [74], [75], game addiction [58],
and public opinion [66], [67].

In 2022, Al-Harbi and Al-Tuwairqi [3] proposed a four-
compartment disease-transmission model of type SEIR, with
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the aim of modelling the transmission of COVID-19 in Saudi
Arabia, thereby complementing previous studies on COVID-
19 in the same country [2], [5], [6], [7], [13]. A distinctive
feature of their model lies in the incorporation of two
percentage-valued parameters representing social distancing
and lockdown intensities. Using the model, the authors
derived an expression for the disease’s basic reproduction
number in terms of the involved parameters, demonstrated
the existence of two equilibria: disease-free and endemic,
and established the equilibria’s global asymptotic stability.
The authors also fitted their model to the actual 2020 data
provided by the Saudi Ministry of Health, using the results to
conduct numerical experiments and sensitivity analysis of the
basic reproduction number. The latter revealed that the social
distancing and lockdown intensities are indeed parameters
upon which the basic reproduction number depends particu-
larly sensitively.

The SEIR-type model of Al-Harbi and Al-Tuwairqi, how-
ever, does not take into account another intervention strat-
egy whose effectiveness has been confirmed by numerous
studies [17], [30], [44], [46], [60], [61], [70]: vaccination.
Indeed, the practice of incorporating vaccination into disease-
transmission models has been in place for a significant
period. The variable-population Kermack-McKendrick SIR-
type model enhanced with constant vaccination, discussed
in various resources [45], [48], [60], has been a popular
prototypical disease-transmission model which takes into
account vaccination. In this paper, we enhance the model
of Al-Harbi and Al-Tuwairqi by adopting the same idea.
That is, we introduce a new percentage-valued parameter
representing the proportion of vaccinated newborns, so that
only unvaccinated newborns are assumed to be susceptible.
Later we shall reconduct a sensitivity analysis to compare the
significance of this parameter with that of social distancing
and lockdown intensities.

In addition, the model of Al-Harbi and Al-Tuwairqi, as
also the model of Kermack and McKendrick, employs the so-
called bilinear form of incidence rate. This means that, at any
given time, the rate at which susceptible individuals become
infectious is assumed to be proportional to the product of
the number of susceptible and infected individuals. Such an
assumption leads to a property which is not entirely realistic,
namely that the incidence rate becomes arbitrarily large as
the number of infected individuals increases. In reality, large
numbers of infected individuals may serve as noticeable
warnings to susceptible individuals, prompting them to adjust
their behaviour to reduce transmission. A generalisation of
the bilinear incidence rate which captures such a behaviour
adjustment is the so-called Holling type II incidence rate
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[15], [35], [59], [36], [73]. Unlike the bilinear incidence
rate which involves only a single parameter: the incidence
coefficient, the Holling type II incidence rate involves two
parameters: the incidence and the inhibition coefficients, the
latter quantifying the intensity of the mentioned behaviour
adjustment.

In the upcoming section II, we thus modify the SEIR-type
disease-transmission model of Al-Harbi and Al-Tuwairqi by
incorporating the vaccination proportion and replacing the
bilinear incidence rate with a Holling type II incidence
rate. We establish the non-negativity and boundedness of
the solutions of the resulting model, determine the model’s
equilibria and basic reproduction number, and relate the local
asymptotic stability of each equilibrium to the value of the
basic reproduction number. In the subsequent section III,
we discretise our model using the forward Euler method,
deduce that the resulting discrete model possesses the same
equilibria, and formulate criteria for the local asymptotic
stability of these equilibria, which involve not only the basic
reproduction number but also the discretisation step size.
In section IV, we conduct numerical simulations using two
sets of parameter values derived from the work of Al-Harbi
and Al-Tuwairqi [3], representing two qualitatively different
cases: a disease-free case and an endemic case. In the former
case, we analyse the sensitivity of the basic reproduction
number with respect to the model’s parameters, using the
results to compare the effectiveness of social distancing,
lockdown, and vaccination for preserving the disease-free
state. In the latter case, we analyse the sensitivity of not
only the basic reproduction number but also the epidemic
peak with respect to the model’s parameters, using the results
to compare the effectiveness of social distancing, lockdown,
and vaccination for eradicating the disease and lowering
the epidemic peak. In the final section V, we state our
conclusions and describe avenues for further research.

II. MODEL CONSTRUCTION AND ANALYSIS

In this section, we first construct a modification of the
SEIR-type disease-transmission model of Al-Harbi and Al-
Tuwairqi [3] which takes into account vaccination and em-
ploys the Holling type II form of incidence rate (subsec-
tion II-A). Subsequently, we verify the model’s biologi-
cal feasibility, establishing its solutions’ non-negativity and
boundedness (subsection II-B). Finally, we analyse the model
from the perspective of dynamical systems theory [4], [48],
[56], [62], determining its equilibria and basic reproduction
number (subsection II-C) as well as conditions for the local
asymptotic stability of each equilibria in terms of the basic
reproduction number (subsection II-D).

A. Model construction

To begin our model construction, let us consider a pop-
ulation over which a disease spreads, which is divided
into four compartments comprising those of susceptible,
exposed, infected, and recovered individuals, respectively.
We assume that a proportion of v ∈ [0, 1] of newborns
are vaccinated, and that only unvaccinated newborns enter
the population, specifically the susceptible compartment.
Assuming a birth rate of η > 0 individuals per day, this
means that (1− v) η individuals per day enter the susceptible

µS µE (µ+ d) I µR

S E I R
ρτ

βSI

1 + αI γE δI(1− v) η

Fig. 1. The compartment diagram of our SEIR-type model (1).

compartment. Next, employing a Holling type II form of inci-
dence rate, βSI/ (1 + αI) individuals per day, where β > 0
and α > 0 denote, respectively, the incidence and inhibition
coefficients, and combining this with the lockdown intensity
1 − ρ ∈ (0, 1) and social-distancing intensity SD = 1 − τ ,
where τ ∈ (0, 1), we assume that susceptible individuals
become exposed at the rate of ρτβSI/ (1 + αI) individuals
per day. Furthermore, letting the disease’s incubation and
recovery coefficients be γ > 0 per day and δ > 0 per day,
respectively, we assume that exposed individuals become
infected at the rate of γE individuals per day, and infected
individuals become recovered at the rate of δI individuals
per day. Finally, letting the natural and disease-caused death
coefficients be µ > 0 per day and d > 0 per day, respectively,
we assume that the numbers of susceptible, exposed, and
recovered individuals decrease due to deaths at the rates of
µS, µE, and µR, respectively, while the numbers of infected
individuals decreases due to deaths at the rate of (d+ µ) I .

The above assumptions lead to the compartment diagram
shown in Figure 1, and the system of differential equations

dS
dt

= (1− v) η − ρτ βSI

1 + αI
− µS,

dE
dt

= ρτ
βSI

1 + αI
− (γ + µ)E,

dI
dt

= γE − (δ + d+ µ) I,

dR
dt

= δI − µR.

(1)

Notice that by setting v = α = 0, we retrieve the original
model of Al-Harbi and Al-Tuwairqi [3, eqn. (1)]. Thus, the
model (1) can be regarded as a generalisation of the model
of Al-Harbi and Al-Tuwairqi. The parameters involved in the
model (1), along with their values to be used in our numerical
simulations (section IV), are summarised in Table I.

B. Non-negativity and boundedness of solutions

Let us now verify that the model (1) is biologically fea-
sible, particularly that the numbers of susceptible, exposed,
infected, and recovered individuals as governed by the model
remain non-negative at all times, provided that their initial
values are non-negative. For this purpose, let R+ = [0,∞),
and let

(S,E, I,R) = (S(t), E(t), I(t), R(t)) (2)

be a solution of the model (1) associated to an initial
condition (S(0), E(0), I(0), R(0)) ∈ R4

+.
By the model’s equations, we have that if S (t1) = 0 for

some t1 > 0, then

dS
dt

∣∣∣∣
t=t1

= (1− v) η > 0.
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TABLE I
PARAMETERS USED IN OUR MODEL AND THEIR VALUES SELECTED FOR

OUR NUMERICAL SIMULATIONS (SECTION IV).

Parameter Description Unit Value for
simulation

Source

v
vaccination
proportion –

0.8
0.1 simulated

η birth rate individual/day 1250 [3, Tbl. 1]

1− ρ lockdown
intensity – 0.1 simulated

1− τ social-distancing
intensity – 0.5 simulated

β incidence
coefficient

1/(individual×day) 1.0063 · 10−4 [3, Tbl. 1]

α
incidence
inhibition
coefficient

1/individual 10−4 simulated

µ natural death
coefficient

1/day 0.04 [3, Tbl. 1]

d death-by-disease
coefficient

1/day 2.3724 · 10−1 [3, Tbl. 1]

γ incubation
coefficient

1/day 0.167 [3, Tbl. 1]

δ
recovery
coefficient 1/day 3.2772 · 10−1 [3, Tbl. 1]

S(0)
initial number of
susceptible
individuals

individual 2999 simulated

E(0)
initial number of
exposed
individuals

individual 1 simulated

I(0)
initial number of
infected
individuals

individual 0 simulated

R(0)
initial number of
recovered
individuals

individual 0 simulated

This implies that for every t > 0 we have S (t) ∈ R+. Next,
suppose that for some t2 > 0 and t3 > 0 we have

(E (t2) , I (t2)) = (0, I (t2)) ∈ R2
+

and
(E (t3) , I (t3)) = (E (t3) , 0) ∈ R2

+.

If t2 6= t3, then for ∆t ∈ [0, 1/ (δ + d+ µ)) we have

E (t2 + ∆t) = ρτ
βS (t2) I (t2)

1 + αI (t2)
∆t+O

(
(∆t)

2
)
, (3)

I (t2 + ∆t) = [1−(δ+d+µ) ∆t] I (t2)+O
(

(∆t)
2
)
, (4)

and for ∆t ∈ [0, 1/ (γ + µ)) we have

E (t3 + ∆t) = [1− (γ + µ) ∆t]E (t3) +O
(

(∆t)
2
)
, (5)

I (t3 + ∆t) = γE (t3) ∆t+O
(

(∆t)
2
)
, (6)

where the terms preceding O
(

(∆t)
2
)

on the right-hand
sides of (3), (4), (5), and (6) are positive. On the other hand,
if t2 = t3, then

dnE
dtn

∣∣∣∣
t=t2

=
dnI
dtn

∣∣∣∣
t=t3

= 0 for every n ∈ N.

Consequently, for sufficiently small ∆t > 0 we have
E (t2 + ∆t) = I (t3 + ∆t) = 0. It follows that for every
t > 0 we have (E (t) , I (t)) ∈ R2

+.

Finally, if R (t4) = 0 for some t4 > 0, then, using the fact
that I (t) ∈ R+ for every t > 0, we have

dR
dt

∣∣∣∣
t=t4

= δI(t4) > 0.

In the case I (t4) = 0, we have

d2R

dt2

∣∣∣∣
t=t4

= δγE(t4) > 0.

In the case E (t4) = 0, we have

dnR
dtn

∣∣∣∣
t=t4

= 0 for every n ∈ N.

Thus, for every t > 0 we have R (t) ∈ R+. This proves that
the solution (2) remains in R4

+ for every t > 0.
Next, letting N = N(t) = S(t) + E(t) + I(t) +R(t) for

every t > 0 and adding the four equations in (1), we obtain
the following which shows that our total population is not
constant:

dN
dt

= (1− v) η − µN − dI 6 (1− v) η − µN.

Multiplying both sides by eµt gives

d
dt
[
eµtN(t)

]
6

d
dt

[
(1− v) η

µ
eµt +N(0)− (1− v) η

µ

]
.

The functions eµtN(t) and (1− v) η eµt/µ + N(0) −
(1− v) η/µ both evaluate to N(0) at t = 0 and, by the above
inequality, at every t > 0, the slope of the former function
is bounded above by that of the latter function. This implies
that for every t > 0 we have

eµtN(t) 6
(1− v) η

µ
eµt +N(0)− (1− v) η

µ
.

Multiplying both sides by e−µt gives

N(t) 6
(1− v) η

µ
+

[
N(0)− (1− v) η

µ

]
e−µt

6 max

{
N(0),

(1− v) η

µ

}
. (7)

On the other hand, we have that

dN
dt

= (1− v) η + d (S + E +R)− (µ+ d)N

> (1− v) η − (µ+ d)N.

Multiplying both sides by e(µ+d)t gives

d
dt

[
e(µ+d)tN(t)

]
>

d
dt

[
(1−v) η

µ+ d
e(µ+d)t+N(0)− (1−v) η

µ+ d

]
.

As before, the functions e(µ+d)tN(t) and
(1− v) η e(µ+d)t/ (µ+ d) + N(0) − (1− v) η/ (µ+ d)
both evaluate to N(0) at t = 0 and, by the above inequality,
at every t > 0, the slope of the former function is bounded
below by that of the latter function. This implies that for
every t > 0 we have

e(µ+d)tN(t) >
(1− v) η

µ+ d
e(µ+d)t +N(0)− (1− v) η

µ+ d
.
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Multiplying both sides by e−(µ+d)t gives

(1− v) η

µ+ d
+

[
N(0)− (1− v)η

µ+ d

]
e−(µ+d)t

> min

{
N(0),

(1− v) η

µ+ d

}
. (8)

From (7) and (8), we also have
(1− v) η

µ+ d
6 lim
t→∞

N(t) 6
(1− v) η

µ
.

We have thus established the following theorem.

Theorem 1. The set R4
+ is positively invariant under

the model (1). Moreover, every solution (S,E, I,R) =
(S(t), E(t), I(t), R(t)) of the model (1) associated to an
initial condition (S(0), E(0), I(0), R(0)) ∈ R4

+ satisfies

min

{
N(0),

(1− v) η

µ+ d

}
6 S(t) + E(t) + I(t) +R(t)

6 max

{
N(0),

(1− v) η

µ

}
for every t > 0, where N(0) = S(0) +E(0) + I(0) +R(0).

C. Equilibria and basic reproduction number
Let us next determine the equilibria of the model (1),

which are the solutions of the system

(1− v) η − ρτ βSI

1 + αI
− µS = 0,

ρτ
βSI

1 + αI
− (γ + µ)E = 0,

γE − (δ + d+ µ) I = 0,
δI − µR = 0.

(9)

The system’s second equation gives

E =
ρτβSI

(1 + αI) (γ + µ)
. (10)

Substituting this into the system’s third equation gives

0 = γ
ρτβSI

(1 + αI) (γ + µ)
− (δ + d+ µ) I

= I

[
ρτβS

(1 + αI) (γ + µ)
− (δ + d+ µ)

]
,

which implies that either I = 0 or

S =
(γ + µ) (δ + d+ µ) (1 + αI)

βγρτ
. (11)

If I = 0, then (10) gives E = 0, the system’s fourth
equation gives R = 0, and the system’s first equation gives
S = (1− v) η/µ. Therefore,

E0 = (S0, E0, I0, R0) =

(
(1− v)η

µ
, 0, 0, 0

)
. (12)

is the model’s disease-free equilibrium.
Next, suppose that I 6= 0. Substituting (11) into the

system’s first equation gives

0 = (1− v) η − ρτ βI

1 + αI

[
(γ + µ) (δ + d+ µ) (1 + αI)

βγρτ

]
= (1− v) η − (γ + µ) (δ + d+ µ) I

γ

− µ (δ + µ) (δ + d+ µ) (1 + αI)

βγρτ
,

i.e.,

(1− v) η =
(γ + µ) (γ + d+ µ)

γ

[
I +

µ (1 + αI)

βρτ

]
.

Multiplying both sides by βγρτ/ [µ (γ + µ) (δ + d+ µ)]
gives

ηβγτρ (1− v)

µ (γ + µ) (δ + d+ µ)
=

(
βτ

µ
+ α

)
I + 1,

from which one obtains

I =
µ

αµ+ βρτ

[
ηβγρτ (1− v)

µ (γ + µ) (δ + d+ µ)
− 1

]
. (13)

Substituting this into the system’s third and fourth equations,
one obtains

E =
µ (δ + d+ µ)

γ (αµ+ βρτ)

[
ηβγρτ (1− v)

µ (γ + µ) (δ + d+ µ)
− 1

]
. (14)

and

R =
δ

αµ+ βρτ

[
ηβγρτ (1− v)

µ (γ + µ) (δ + d+ µ)
− 1

]
. (15)

Finally, substituting (13) into (11) gives

S =
(γ + µ) (δ + d+ µ) (1 + αI)

βγρτ

=
(γ + µ) (δ + d+ µ)

βγρτ
[1

+
µα

αµ+ βρτ

[
ηβγρτ (1− v)

µ (γ + µ) (δ + d+ µ)
− 1

]]
=

(γ + µ) (δ + d+ µ)

βγρτ

[
βρτ

αµ+ βρτ

+
ηβαγρτ (1− v)

[βρ (1− σ) + µα] (γ + µ) (δ + d+ µ)

]
=

(γ + µ) (δ + d+ µ)

γ (αµ+ βρτ)

[
1 +

ηαγ (1− v)

(γ + µ) (δ + d+ µ)

]
=

(γ + µ) (δ + d+ µ) + ηαγ (1− v)

γ (αµ+ βρτ)
. (16)

This proves that

E1 = (S1, E1, I1, R1) , (17)

where S1, E1, I1, and R1 are as given by (16), (14), (13),
and (15), respectively, is the model’s endemic equilibrium.

Let us now derive our model’s basic reproduction number,
using van den Driessche and Watmough’s next-generation
approach [24], [48]. First, we extract from our model (1) the
equations governing the rates of change of the numbers of
individuals in our infectious compartments E and I:

dE
dt

= F1 (S,E, I,R)− V1 (S,E, I,R) ,

dI
dt

= F2 (S,E, I,R)− V2 (S,E, I,R) ,

where

F1 (S,E, I,R) = ρτ
βSI

1 + αI
,

F2 (S,E, I,R) = 0,

V1 (S,E, I,R) = (γ + µ)E,

V2 (S,E, I,R) = −γE + (δ + d+ µ) I.
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Next, we evaluate the matrices

F (S,E, I,R) =


dF1 (S,E, I,R)

dE
dF1 (S,E, I,R)

dI
dF2 (S,E, I,R)

dE
dF2 (S,E, I,R)

dI


=

0 ρτ
βS

(1 + αI)2

0 0


and

V (S,E, I,R) =


dV1 (S,E, I,R)

dE
dV1 (S,E, I,R)

dI
dV2 (S,E, I,R)

dE
dV2 (S,E, I,R)

dI


=

[
γ + µ 0
−γ δ + d+ µ

]
at the disease-free equilibrium E0, obtaining

F (E0) =

0 ρτ
β(1− v)η

µ
0 0


and

V (E0) =

[
γ + µ 0
−γ δ + d+ µ

]
.

The next-generation matrix F (E0) [V (E0)]
−1 of our model

(1) is thus βηγρτ (1− v)

µ (γ + µ) (δ + d+ µ)

βηρτ (1− v)

µ (δ + d+ µ)
0 0

 . (18)

The desired basic reproduction number is the spectral radius
of the above matrix, namely,

R0 =
βηγρτ (1− v)

µ (γ + µ) (δ + d+ µ)
.

It is worth mentioning that R0 is independent of the in-
cidence inhibition coefficient α. Rewriting the coordinates
(14), (13), and (15) of our model’s endemic equilibrium
(17) in terms of R0 and summarising our findings in this
subsection, we obtain the following theorem.

Theorem 2. The model (1) has the basic reproduction
number

R0 =
βηγρτ (1− v)

µ (γ + µ) (δ + d+ µ)
(19)

and two equilibria: the disease-free equilibrium

E0 = (S0, E0, I0, R0) =

(
(1− v)η

µ
, 0, 0, 0

)
(20)

which exists for all sets of parameter values, and the endemic
equilibrium

E1 = (S1, E1, I1, R1) , (21)

where

S1 =
(γ + µ) (δ + d+ µ) + ηαγ (1− v)

γ (αµ+ βρτ)
,

E1 =
µ (δ + d+ µ) (R0 − 1)

γ (αµ+ βρτ)
,

I1 =
µ (R0 − 1)

αµ+ βρτ
,

R1 =
δ (R0 − 1)

αµ+ βρτ
,

which exists if and only if R0 > 1.

D. Stability of equilibria

Let us now study the stability of the equilibria of our
model (1). For this purpose, letting

f1(S,E, I,R) = (1− v)η − ρτ βSI

1 + αI
− µS,

f2(S,E, I,R) = ρτ
βSI

1 + αI
− (γ + µ)E,

f3(S,E, I,R) = γE − (δ + d+ µ) I,

f4(S,E, I,R) = δI − µR,

we compute the Jacobian of our model (1):

J(S,E, I,R) =



df1

dS
df1

dE
df1

dI
df1

dR
df2

dS
df2

dE
df2

dI
df2

dR
df3

dS
df3

dE
df3

dI
df3

dR
df4

dS
df4

dE
df4

dI
df4

dR



=



−ρτ βI

1 + αI
− µ 0 −ρτ βS

(1 + αI)
2 0

ρτ
βI

1 + αI
− (γ + µ) ρτ

βS

(1 + αI)
2 0

0 γ − (δ + d+ µ) 0

0 0 δ −µ


.

Evaluating this matrix at the model’s disease-free equi-
librium E0 gives the matrix J (E0), whose characteristic
polynomial |rI− J (E0)| is given by∣∣∣∣∣∣∣∣∣∣∣∣∣

r + µ 0
βηρτ (1− v)

µ
0

0 r + γ + µ −βηρτ (1− v)

µ
0

0 −γ r + δ + d+ µ 0

0 0 −δ r + µ

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding along the first and last columns gives

|rI− J(E0)| = (r + µ)
2 (
r2 +A1r +A2

)
,

where

A1 = γ + δ + d+ 2µ,

A2 = µ (γ + µ) (δ + d+ µ)− βηγρτ (1− v) .

Thus, of the four eigenvalues of the matrix J (E0), two are
−µ, while the remaining two are the roots of the polynomial
r2 +A1r +A2. Since A1 > 0, while A2 > 0 is equivalent
to R0 < 1, then the Routh-Hurwitz criterion [4, sec.
4.5] implies that the disease-free equilibrium E0 is locally
asymptotically stable if R0 < 1. If R0 = 1, then a zero
eigenvalue exists, so that the disease-free equilibrium E0
is non-hyperbolic. If R0 > 1, then A2 < 0, and so the
polynomial r2 + A1r + A2, which clearly takes a positive
value for a sufficiently large value of r, takes a negative value
at r = 0. By the intermediate value theorem, this ensures the
existence of a positive eigenvalue, implying that the disease-
free equilibrium E0 is unstable.
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Theorem 3. The disease-free equilibrium E0 of the model (1)
is locally asymptotically stable if R0 < 1, is non-hyperbolic
if R0 = 1, and is unstable if R0 > 1.

On the other hand, evaluating the matrix J(S,E, I,R) at
our model’s endemic equilibrium E1 gives the matrix J (E1),
whose characteristic polynomial |rI− J (E1)| is given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r +
µR0 (αµ+ βρτ)

R0αµ+ βρτ
0

βρτ (αµ+ βρτ)
2
S1

(R0αµ+ βρτ)
2 0

−βρτµ (R0 − 1)

R0αµ+ βρτ
r+γ+µ −βρτ (αµ+βρτ)

2
S1

(R0αµ+ βρτ)
2 0

0 −γ r + δ + d+ µ 0

0 0 −δ r + µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding along the last column and applying an elemen-
tary row operation, one obtains that |rI− J (E1)| can be
expressed as (r + µ)D (r), which implies that −µ is an
eigenvalue of the matrix J (E1), where

D(r)=

∣∣∣∣∣∣∣∣∣∣∣∣

r+
µR0 (αµ+ βρτ)

R0αµ+ βρτ
0

βρτ (αµ+ βρτ)
2
S1

(R0αµ+ βρτ)
2

−βρτµ (R0 − 1)

R0αµ+ βρτ
r+γ+µ −βρτ (αµ+βρτ)

2
S1

(R0αµ+ βρτ)
2

0 −γ r + δ + d+ µ

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
r+

µR0 (αµ+ βρτ)

R0αµ+ βρτ
0

βρτ (αµ+ βρτ)
2
S1

(R0αµ+ βρτ)
2

r + µ r+γ+µ 0

0 −γ r + δ + d+ µ

∣∣∣∣∣∣∣∣∣∣
= (r + γ + µ) (r + δ + d+ µ)

[
r +

µR0 (αµ+βρτ)

R0αµ+ βρτ

]
− βγρτ (αµ+ βρτ)

2
S1

(R0αµ+ βρτ)
2 (r + µ)

= r3 + B1r
2 + B2r + B3,

with

B1 = δ + d+ 2µ+ γ +
µR0 (αµ+ βρτ)

R0αµ+ βρτ
, (22)

B2 = (γ+µ) (δ+d+µ)+(δ+d+2µ+γ)
µR0 (αµ+βρτ)

R0αµ+ βρτ

− βγρτ (αµ+ βρτ)
2
S1

(R0αµ+ βρτ)
2 , (23)

B3 = (γ + µ) (δ + d+ µ)
µR0 (αµ+ βρτ)

R0αµ+ βρτ

− µβγρτ (αµ+ βρτ)
2
S1

(R0αµ+ βρτ)
2 . (24)

Multiplying both sides of (24) by

(R0αµ+ βρτ)
2

[µ (αµ+ βρτ)]

and using the expressions (16) and (19) for S1 and R0,

respectively, one finds that

(R0αµ+ βρτ)
2

µ (αµ+ βρτ)
B3

= (γ + µ) (δ + d+ µ) (R0αµ+ βρτ)R0

− βγρτ (αµ+ βρτ)S1

= (γ + µ) (δ + d+ µ) (R0αµ+ βρτ)R0

− βρτ (γ + µ) (δ + d+ µ)−R0αµ (γ + µ) (δ + d+ µ)

= (γ + µ) (δ + d+ µ) (R0αµ+ βρτ) (R0 − 1) ,

and so

B3 =
µ (γ + µ) (δ + d+ µ) (αµ+ βρτ) (R0 − 1)

R0αµ+ βρτ
. (25)

Next, eliminating the terms containing S1 in (24) and (23),
one obtains that

B2 =
B3

µ
− (γ + µ) (δ + d+ µ)

βρτ (R0 − 1)

R0αµ+ βρτ

+ (δ + d+ 2µ+ γ)
µR0 (αµ+ βρτ)

R0αµ+ βρτ
. (26)

Substituting (25) into (26) gives, after simplification,

B2 =
1

R0αµ+ βρτ

[
(γ + µ) (δ + d+ µ)αµ (R0 − 1)

+ (δ + d+ 2µ+ γ)µR0 (αµ+ βρτ)
]
. (27)

Therefore, ifR0 > 1, then (22) and (25) imply that B1 > 0
and B3 > 0, while (22) and (27) imply that

C1 := B1 − (γ + µ) > 0,

C2 := B2 − (δ + d+ µ)
µR0 (αµ+ βρτ)

R0αµ+ βρτ
> 0,

and so

B1B2 = [C1 + (γ+µ)]

[
C2 + (δ+d+µ)

µR0 (αµ+βρτ)

R0αµ+ βρτ

]
> (γ + µ) (δ + d+ µ)

µR0 (αµ+ βρτ)

R0αµ+ βρτ

> B3,

by (24). By the Routh-Hurwitz criterion [4, sec. 4.5], we
conclude that the endemic equilibrium E1 is locally asymp-
totically stable if R0 > 1. If R0 = 1, then a zero eigenvalue
exists, so that the endemic equilibrium E1 is non-hyperbolic.
If R0 < 1, then, as before, the intermediate value theorem
applied to the polynomial r3+B1r

2+B2r+B3 guarantees the
existence of a positive eigenvalue, implying that the endemic
equilibrium E1 is unstable.

Theorem 4. The endemic equilibrium E1 of the model (1)
is locally asymptotically stable if R0 > 1, is non-hyperbolic
if R0 = 1, and is unstable if R0 < 1.

III. DISCRETISATION

The fact that the solution of our model (1) is difficult if
not impossible to obtain analytically forces us to switch our
approach from analytical to numerical. To prepare a setting
for our numerical simulations, in this section we discretise
our model (1) using the forward Euler method [39, sec.
22.3] and study the resulting model as a discrete-time dy-
namical system. Specifically, we observe that the discretised
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model has the same set of equilibria as our original model
(subsection III-A) and derive sufficient conditions for the
equilibria’s local asymptotic stability which involves not only
the basic reproduction number but also the discretisation step
size (subsection III-B).

A. Forward Euler discretisation

We discretise the model (1) using the forward Euler
method with step size ∆t > 0. For every n > 0, we define

tn = n∆t

and the approximations Sn ≈ S (tn), En ≈ E (tn), In ≈
I (tn), and Rn ≈ R (tn) generated via the recursion

Sn+1 = Sn+

[
(1−v) η−ρτ βSnIn

1+αIn
−µSn

]
∆t,

En+1 = En+

[
ρτ
βSnIn

1+αIn
−(γ+µ)En

]
∆t,

In+1 = In+
[
γEn−(δ+d+µ) In

]
∆t,

Rn+1 = Rn+
(
δIn−µRn

)
∆t.

(28)

Letting

f1

(
S,E, I,R

)
= S +

[
(1− v)η − ρτ βS I

1 + αI
− µS

]
∆t,

f2

(
S,E, I,R

)
= E +

[
ρτ

βS I

1 + αI
− (γ + µ)E

]
∆t,

f3

(
S,E, I,R

)
= I +

[
γE − (δ + d+ µ) I

]
∆t,

f4

(
S,E, I,R

)
= R+

(
δI − µR

)
∆t,

one observes that the system of equations satisfied by the
equilibria of the discrete model (28), namely,

f1

(
S,E, I,R

)
= S,

f2

(
S,E, I,R

)
= E,

f3

(
S,E, I,R

)
= I,

f4

(
S,E, I,R

)
= R,

is precisely the system (9) satisfied by the equilibria of the
original model (1). It follows that the discrete model (28)
and the original model (1) have the same equilibria, namely,
E0 and E1, as given by (20) and (21).

B. Stability of equilibria

Let us now study the stability of E0 and E1 as the equilibria
of the discrete model (28). The model’s Jacobian is given by

J
(
S,E, I,R

)
=



df1

dS
df1

dE
df1

dI
df1

dR
df2

dS
df2

dE
df2

dI
df2

dR
df3

dS
df3

dE
df3

dI
df3

dR
df4

dS
df4

dE
df4

dI
df4

dR



=



1−
(
ρτ

βI

1+αI
+µ

)
∆t 0 −ρτ βS(

1+αI
)2 ∆t 0

ρτ
βI

1 + αI
∆t 1−(γ+µ)∆tρτ

βS(
1 + αI

)2 ∆t 0

0 γ∆t 1−(δ+d+µ)∆t 0

0 0 δ∆t 1−µ∆t


.

The characteristic polynomial
∣∣rI− J (E0)

∣∣ of the matrix
J (E0) is given by [r − (1− µ∆t)]

2D(r), where

D(r) =

∣∣∣∣∣∣r − [1− (γ + µ) ∆t] −βηρτ (1− v)

µ
∆t

−γ∆t r − [1− (δ + d+ µ) ∆t]

∣∣∣∣∣∣
= r2 +A1r +A2,

with

A1 = (δ + d+ 2µ+ γ) ∆t− 2,

A2 = 1− (δ + d+ 2µ+ γ) ∆t

+ (γ + µ) (δ + d+ µ) (1−R0) (∆t)
2
.

Now, suppose that R0 < 1. Let us formulate a sufficient
condition for the stability of the disease-free equilibrium E0
of the discrete model (28). First, we require that |1− µ∆t| <
1, which is equivalent to ∆t < 2/µ. Next, the Schur-Cohn
criterion [4, sec. 2.9] for the polynomial r2 + A1r + A2,
which reads ∣∣A1

∣∣ < 1 +A2 < 2,

is equivalent to

∆t <
δ + d+ 2µ+ γ

(γ + µ) (δ + d+ µ) (1−R0)
(29)

and[
∆t− δ + d+ 2µ+ γ

(γ+µ)(δ+d+µ)(1−R0)

]2

>
K

(γ+µ)
2
(δ+d+µ)

2
(1−R0)

2 ,

where

K = (δ + d+ 2µ+ γ)
2 − 4 (γ + µ) (δ + d+ µ) (1−R0) .

In the case K < 0, the latter trivially holds. In the opposite
case, the latter and (29) together imply that

∆t <
δ + d+ 2µ+ γ −

√
K

(γ + µ) (δ + d+ µ) (1−R0)
.

Our conclusion is the following theorem.

Theorem 5. Suppose that R0 < 1. The disease-free equilib-
rium E0 of the discrete model (1) is locally asymptotically
stable if

∆t < min

 2

µ
,
δ + d+ 2µ+ γ −

√
max

{
K, 0

}
(γ + µ) (δ + d+ µ) (1−R0)

 ,

where

K = (δ + d+ 2µ+ γ)
2 − 4 (γ + µ) (δ + d+ µ) (1−R0) .

On the other hand, one verifies that the characteristic
polynomial of the matrix J (E1) is given by∣∣rI− J (E1)

∣∣ = [r − (1− µ∆t)]
(
r3 + B1r

2 + B2r + B3

)
,
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where

B1 = −3 + B1∆t,

B2 = 3− 2B1∆t+ B2 (∆t)
2
,

B3 = −1 + B1∆t− B2 (∆t)
2

+ B3 (∆t)
3
,

with B1, B2, and B3 as defined by (22), (23), and (24). In
the case R0 > 1, we have that

1 + B1 + B2 + B3 = B3 (∆t)
3
> 0

by (25), so that the Schur-Cohn criterion [4, sec. 2.9] for
the polynomial r3 +B1r

2 +B2r+B3 implies the following
theorem.

Theorem 6. Suppose that R0 > 1. The endemic equilibrium
E1 of the discrete model (28) is locally asymptotically stable
if ∆t < 2/µ and the following three inequalities hold:

• 8− 4B1∆t+ 2B2 (∆t)
2 − B3 (∆t)

3
> 0,

• 4B1 − 2
(
B2

1 + 2B2

)
∆t + (3B1B2 + 5B3) (∆t)

2 −(
3B1B3 + B2

2

)
(∆t)

3
+ 2B2B3 (∆t)

4 − B2
3 (∆t)

5
> 0,

• B1B2 − B3 −
(
B1B3 + B2

2

)
∆t + 2B2B3 (∆t)

2 −
B2

3 (∆t)
3
> 0,

where B1, B2, and B3 are as defined by (22), (23), and (24),
respectively.

IV. NUMERICAL SIMULATIONS AND SENSITIVITY
ANALYSIS

Let us now employ our discretised model (28) to gen-
erate numerical solutions of our original model (1), using
the parameter values provided in Table I. Many of these
parameter values are derived from the work of Al-Harbi and
Al-Tuwairqi [3]. These authors, firstly, estimated the birth
rate η and the natural death coefficient µ using the average
life span in Saudi Arabia: 75 years [3, Tbl. 1]. In addition,
they estimated the incubation coefficient γ using the median
incubation period of COVID-19 in Saudi Arabia: 6 days
[3, Tbl. 1]. Subsequently, employing the data of the active
cases of COVID-19 from March 12, 2020 to September
23, 2020 provided by the Saudi Ministry of Health, the
same authors carried out a nonlinear least-squares curve-
fitting to estimate the incidence, recovery, and death-by-
disease coefficients β, δ, and d [3, Tbl. 1]. The values for the
other parameters: the vaccination proportion v, the lockdown
intensity 1 − ρ, the social-distancing intensity 1 − τ , the
incidence inhibition coefficient α, and the initial number of
individuals in each compartment S(0), E(0), I(0), and R(0),
are all simulated. Notice that Table I specifies two different
sets of parameter values, differing only on the values of
the vaccination proportion v. As we shall see, the higher
value v = 0.8 leads to a disease-free case (subsection IV-A),
while the lower value v = 0.1 leads to an endemic case
(subsection IV-B). For each case, we shall visualise the time-
evolution of the number of individuals in each compartment
as governed by our discretised model (28). In the disease-
free case, we conduct a sensitivity analysis of the basic
reproduction number with respect to each parameter, whereas
in the endemic case, we conduct a sensitivity analysis of not
only the basic reproduction number but also the epidemic
peak —the maximum number of infectious individuals—
with respect to each parameter.

A. A disease-free case

Using the parameter values in Table I with v = 0.8, the
basic reproduction number (19) evaluates to R0 ≈ 0.3774 <
1, and the model’s disease-free equilibrium (20) reads

E0 ≈ (6250, 0, 0, 0) .

By Theorem 5, this equilibrium of the discrete model (28)
is stable if ∆t < 2.8543. Choosing ∆t = 0.4, we generate
the plots visualising the time-evolution of the numbers of
susceptible, exposed, infected, and recovered individuals as
governed by the model (28), presented in Figure 2. Evidently,
the dynamics of the number of susceptible individuals, begin-
ning at 2999, is characterised by an initial sharp increase and
a monotonic convergence towards the equilibrium value of
6250. Conversely, the dynamics of the number of exposed
individuals, beginning at 1, is characterised by an initial
sharp decrease and a monotonic convergence towards the
equilibrium value of 0. On the other hand, the numbers of in-
fected and recovered individuals both display non-monotonic
convergence towards 0. Consequently, as expected, the pop-
ulation becomes disease-free at the equilibrium state.

To determine an appropriate strategy for the preservation
of such disease-free condition, let us carry out a sensitivity
analysis of the basic reproduction number with respect to our
model’s parameters. The availability of the expression (19)
of the basic reproduction number as a differentiable function
of the parameters presented in Table I enables us to compute
analytically the sensitivity index

ΥR0
p =

∂R0

∂p
· p
R0

of R0 with respect to each of our model’s parameter p ∈
{v, η, ρ, τ, β, α, µ, d, γ, δ} [21]. The computation yields

ΥR0
v = − v

1− v
, ΥR0

η = ΥR0
ρ = ΥR0

τ = ΥR0

β = 1,

ΥR0
α = 0,

ΥR0
µ = −3µ2 + 2 (δ + d+ γ)µ+ (δ + d) γ

(γ + µ) (δ + d+ µ)
,

ΥR0

d = − d

δ + d+ µ
, ΥR0

γ =
µ

γ + µ
,

and ΥR0

δ = − δ

δ + d+ µ
.

Since our model (1) is a modification of the model by
Al-Harbi and Al-Tuwairqi [3], it is not surprising that the
sensitivity indices ΥR0

η , ΥR0
ρ , ΥR0

β , ΥR0
µ , ΥR0

d , ΥR0
γ , and

ΥR0

δ are the same as those computed by Al-Harbi and Al-
Tuwairqi using their original model [3, p. 16]. Evaluating
the above indices for the parameter values given in Table
I with v = 0.8, we obtain the values listed in the second
column of Table II. Observing that ΥR0

v is significantly larger
in absolute value compared to the other sensitivity indices
including ΥR0

τ and ΥR0
ρ , we conclude that, as a strategy

to preserve the disease-free condition, maintaining the high
value of the vaccination proportion is more important than
maintaining the enforcement of social distancings or lock-
downs. In fact, substituting all the disease-free parameter
values apart from τ and ρ into the expression (19), one
obtains an expression for R0 as a bivariate function of τ
and ρ, for which the inequality R0 (τ, ρ) < 1 holds for every
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Fig. 2. Plots of Sn, En, In, and Rn versus tn for n ∈ {0, . . . , 1000}
using parameter values listed in Table I, with v = 0.8 and ∆t = 0.4.

τ ∈ [0, 1] and ρ ∈ [0, 1]. This implies that, provided the high
value of the vaccination proportion v = 0.8 is sustained, the
population will remain disease-free even if social distancing
and lockdown restrictions are entirely lifted.

B. An endemic case

For an endemic case, let us employ the parameter values in
Table I with the low vaccination proportion v = 0.1. Substi-
tuting these into the expression (19) gives R0 ≈ 1.6984 > 1.
Furthermore, the model’s endemic equilibrium (21) reads

E1 ≈ (17498, 2054, 567, 3362) .

TABLE II
VALUES OF THE SENSITIVITY INDICES OF THE BASIC REPRODUCTION

NUMBER OF OUR MODEL FOR PARAMETER VALUES LISTED IN TABLE I,
WITH v AS IN THE FIRST ROW.

Sensitivity index
v = 0.8,

R0 ≈ 0.3774 < 1

v = 0.1,
R0 ≈ 1.6984 > 1

ΥR0
v −4.0000 −0.1111

ΥR0
η 1.0000 1.0000

ΥR0
ρ 1.0000 1.0000

ΥR0
τ 1.0000 1.0000

ΥR0
β 1.0000 1.0000

ΥR0
α 0.0000 0.0000

ΥR0
µ −1.2594 −1.2594

ΥR0
d −0.3922 −0.3922

ΥR0
γ 0.1932 0.1932

ΥR0
δ −0.3922 −0.3922

The first of the sufficient conditions for the stability of
this equilibrium of the discrete model (28) as prescribed
by Theorem 6 reads ∆t < 50, and evaluating the constants
defined in (22), (23), and (24),

B1 ≈ 0.8763, B2 ≈ 0.0589, and B3 ≈ 0.0033,

one verifies that ∆t = 0.4 satisfies the three inequalities
stated in the theorem. Using the same value of ∆t, we gen-
erate the time-evolution plots displayed in Figure 3. Observe
that the convergence towards the endemic equilibrium occurs
in a non-monotonic manner. The infectious population size,
plotted against time in Figure 4, reaches a maximum of

Imax = max
{
En + In : n ∈ {0, . . . , 1000}

}
≈ 3725.8723

at time tmax = 153.2.
Let us now turn to our sensitivity analysis of the basic

reproduction number in this endemic case. Among all sensi-
tivity indices computed in subsection IV-A, we note that only
ΥR0
v depends on v. Consequently, as apparent from the third

column of Table II, the values of all sensitivity indices in this
endemic case are the same as those in the disease-free case,
with the exception of ΥR0

v , which evaluates to −0.1111 in
this endemic case. The fact that

∣∣ΥR0
ρ

∣∣ =
∣∣ΥR0

τ

∣∣ = 1.0000 >
0.1111 =

∣∣ΥR0
v

∣∣ implies that, as a strategy to suppress the
value of the basic reproduction number in this endemic case,
the intensification of social distancing and lockdown is more
effective than the distribution of vaccines.

The fact that the infectious population size, as a function of
time, possesses a unique maximum Imax, the epidemic peak,
as apparent from Figure 4, motivates the determination of a
strategy which is most effective to lower this peak. For this
purpose, we wish to conduct a sensitivity analysis of Imax

with respect to our model’s parameters. However, since an
analytical expression of Imax as a function of the parameters
is not readily available, we employ the following estimate for
ΥImax
p :

Υ
Imax

p (Ψ) =
1

|Ψ|
∑
ψ∈Ψ

ρImax,p (ψ)

ψ
,

where Ψ = {−10%, −5%, 5%, 10%} and ρImax,p (ψ) is
the relative change in the value of Imax due to a change
of ψ in the value of p. Our computation of Υ

Imax

p (Ψ)
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Fig. 3. Plots of Sn, En, In, and Rn versus tn for n ∈ {0, . . . , 1000}
using parameter values listed in Table I, with v = 0.1 and ∆t = 0.4.
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Fig. 4. Plot of En+In versus tn for n ∈ {0, . . . , 1000} using parameter
values listed in Table I, with v = 0.1 and ∆t = 0.4.

TABLE III
ESTIMATION OF THE SENSITIVITY INDICES OF Imax WITH RESPECT TO

OUR MODEL’S PARAMETERS, USING PARAMETER VALUES LISTED IN
TABLE I, WITH v = 0.1 AND ∆t = 0.4.

p ψ ρImax,p (ψ) ρImax,p (ψ) /ψ Υ
Imax
p (Ψ)

v

10% −3.4108% −0.3411

−0.3420
5% −1.7072% −0.3414

−5% 1.7112% −0.3422

−10% 3.4312% −0.3431

η

10% 31.4487% 3.1449

3.0698
5% 15.5700% 3.1140

−5% −15.1791% 3.0358

−10% −29.8458% 2.9846

ρ

10% 21.0648% 2.1065

2.2108
5% 10.8004% 2.1601

−5% −11.3231% 2.2646

−10% −23.1183% 2.3118

τ

10% 21.0648% 2.1065

2.2108
5% 10.8004% 2.1601

−5% −11.3231% 2.2646

−10% −23.1183% 2.3118

β

10% 21.0648% 2.1065

2.2108
5% 10.8004% 2.1601

−5% −11.3231% 2.2646

−10% −23.1183% 2.3118

α

10% −1.3816% −0.1382

−0.1403
5% −0.6960% −0.1392

−5% 0.7067% −0.1413

−10% 1.4243% −0.1424

µ

10% −30.0007% −3.0001

−3.3498
5% −15.8539% −3.1708

−5% 17.6213% −3.5243

−10% 37.0389% −3.7039

d

10% −8.3960% −0.8396

−3.3498
5% −4.2395% −0.8479

−5% 4.3200% −0.8640

−10% 8.7245% −0.8724

γ

10% 0.8461% 0.0846

0.1084
5% 0.4763% 0.0953

−5% −0.5977% 0.1195

−10% −1.3415% 0.1342

δ

10% −11.5125% −1.1512

−1.1826
5% −5.8349% −1.1670

−5% 5.9916% −1.1983

−10% 12.1367% −1.2137

for p ∈ {v, η, ρ, τ, β, α, µ, d, γ, δ} is presented in Table III.
Since

∣∣∣ΥImax

τ (Ψ)
∣∣∣ ≈ ∣∣∣ΥImax

ρ (Ψ)
∣∣∣ ≈ 2.2108 > 0.3420 ≈∣∣∣ΥImax

v (Ψ)
∣∣∣, we conclude that the intensification of social

distancing and lockdown is significantly more effective in
lowering the epidemic peak compared to the distribution of
vaccines.

V. CONCLUSIONS AND FUTURE RESEARCH

We have constructed a modification of an SEIR-type
disease-transmission model, originally proposed by Al-Harbi
and Al-Tuwairqi to study the impact of social distancings
and lockdowns on the transmission of COVID-19 in Saudi
Arabia [3]. Our modified model features two additional
parameters: the proportion of vaccinated newborns and the
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incidence inhibition coefficient, the former allowing a com-
parison of three eradication strategies: social distancing,
lockdown, and vaccination. We have established the non-
negativity and boundedness of the model’s solutions, showed
that the model possesses two equilibria: disease-free and
endemic, and obtained an expression for the model’s basic
reproduction number R0 as a function of the involved
parameters. We have also proved that the disease-free equi-
librium is locally asymptotically stable if R0 < 1, and that
the endemic equilibrium is locally asymptotically stable if
R0 > 1. Subsequently, we have discretised our model using
the forward Euler method, and showed that the resulting
discrete model possesses the same equilibria. We have also
formulated conditions on the discretisation step size for the
local asymptotic stability of the disease-free equilibrium in
the case R0 < 1, and for that of the endemic equilibrium
in the case R0 > 1. Finally, we have employed our
discrete model to generate numerical solutions of our original
model, and carried out a sensitivity analysis using two sets
of parameter values, representing the cases R0 < 1 and
R0 > 1. The results showed that, for preventing an outbreak
in a disease-free situation, vaccination is more effective than
social distancing and lockdown, whereas for resolving an
endemic situation and lowering the epidemic peak, social
distancing and lockdown are more effective than vaccination.

This research is extendible in numerous ways. First, one
could attempt to establish the global asymptotic stability
of the equilibria of our model and its discretisation using
Lyapunov functions [48, sec. 7.3], as demonstrated by Al-
Harbi and Al-Tuwairqi for their original model [3, sec. 3.3].
In addition, our model itself could be further modified to
incorporate currently unconsidered parameters, such as the
vaccine’s efficacy [23], [28], [69], [70], the hospitals’ bed-
occupancy rate [19], [50], [71], or the influence of mass
media [18], [43], [49], [65], and to accommodate other vac-
cination strategies, such as pulse vaccination [30], [44], [46],
[60], [61]. One could also replace not only the Holling type II
incidence rate but also the linear recovery rate with various
alternative forms [52]. Finally, one could also extend our
study through an actuarial viewpoint, by designing a health-
and-life insurance policy based on our disease-transmission
model, and conducting a financial analysis of the policy [11],
[27], [32], [34], [51], [53], [72].
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